-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Parallel branch and bound algorithms- an overview

C. Roucairol

» To cite this version:

C. Roucairol. Parallel branch and bound algorithms- an overview. RR-0962, INRIA. 1989. inria-

00075597
HAL Id: inria-00075597
https://hal.inria.fr /inria-00075597
Submitted on 24 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075597
https://hal.archives-ouvertes.fr

UNITE DEE RECHERCHE
NRIAROCOUENCOURT

bm
»

Institut National

en Informaticue
et en Automitique

Domeaine de Voluceau
Rocouencourt
L BPR10B
LeChesnay

~rance

Tl(1)39638511

Rapports de Recherche

N° 962

Programme 2

PARALLEL BRANCH AND BOUND
ALGORITHMS - an overview

Catherine ROUCAIROL

Janvier 1989

I

PARALLEL BRANCH AND BOUND ALGORITHMS - an overview

PARALLELISATION DES PROCEDURES
PAR SEPARATION ET EVALUATION - une revue

Catherine ROUCAIROL

Abstract :

In this paper, we present an overview of existing results on the parallelization of tree search
algorithms like Branch and Bound procedure.

These methods are the most efficient ones solving exactly optimization problems of high
complexity (NP hard problems). So, we give a characterization of the different ways B&B
algorithms are designed both with a classification of dif ferent approaches based upon computer
architecture.

We discuss also performances (particularly, anomalious behaviour) and report experiments on
shared memory multiprocessors machine and distributed architecture. C

Keywords : parallel algorithms, combinatorial optimization, parallel branch and bound.

Résumé :

Nous présentons ici I'état de I'art sur la parallélisation de méthodes de recherche arborescente
comme les procédures Branch & Bound. '

Ces méthodes sont les plus efficaces pour la résolution exacte de problemes d’optimisation
combinatoire difficile (NP hard en complexité). Nous donnons une caractérisation des différentes
facons de paralléliser ces méthodes ainsi qu’une classification des différentes expériences réalisées
suivant P'architecture utilisée. Nous discutons également des performances (en particulier, des
anomalies) et reportons des tests effectués sur des machines multiprocesseurs 3 mémoire partagée et
des réseaux distribués.

Mots clés : algorithmes paralléles, optimisation combinatoire, procédure par séparation et
évaluation paralléle.

N! !D PAPIER RECUPERE ET RECYCLE

)

PARALLEL BRANCH AND BOUND ALGORITHMS - an overview

Catherine ROUCAIROL

1. INTRODUCTION

Branch and Bound (B&B) algorithms are the most efficient methods known solving many
optimization problems of high complexity (NP-hard problems). They can also be viewed as the
most general techniques for the search for solutions in a combinatorially large problem space
which is 2 major problem in Operations Research and Artificial Intelligence. Backtracking
dynamic programming, decision trees like AND-OR, and a-8 search are variations of B&B
algorithms. But as these algorithms realize an implicit enumeration of the space of solutions, their
computational requirements (time and space) grow exponentially in the problem size and
overflowing storage and excessive running time can stop the program before reaching the optimal

-solution. Therefore, the idea to parallelize them has naturally emerged. The goal of this

parallelization is to solve problems faster

to solve larger problems.

In the literature, up to know, different versions of parallel B&B have been proposed ; they have
been implemented either on parallel machines which are emulated on sequential ones, or on
commercial supercomputers and networks. Our aim is to give an overview of existing results. The
second section presents a classification of different approaches based upon computer architecture ;
the third presents a characterization of the different ways B&B algorithms are designed. Section
four discusses performances and points out some anomalious behaviour under paraliel computing
proofs (theoretical and experimental) that parallel B&B can exhibit anomalous speed-up are

2. PARALLEL ALGORITHM DESIGN AND COMPUTER ARCHITECTURE

MIMD
SM ' MP
(shared memory) (message passing)
processors share a common address space
IC LC all communication and synchroniza-
. tion of processor/memory nodes is
(tightly coupled) (loosely coupled) achieved by message passing through
physically realised formed by combining an interconnection network.
as a single, global local memories associated
memory with processing elements
Cray x-MP Cm*(Univ. Carnegie Mellon) hypercube
Cray 2 DPUP System (Univ. Colorado) iPSC

Figure 1

The first classification of previous work we propose is based upon the characteristics of the
parallel machine used. In fact, B&B algorithms have been implemented on various classes of
computers such as array processors (AP), data flow machine (DT), MIMD machines. These last class
is usually subdivided using as a criteria the way in which the various processing elements are
connected and communicate each other (figure 1).

Using these classification on computer architectures, three kinds of works can be distinguished
(tablel) :

- first, those proposing parallel B&B algorithms without any effective implementation or using a
simulated parallelism on a sequential machine ; of course, they are the oldest ones because at this
time, either no machine was available or access to them was difficult (reserved to military
purposes or to physicists),

- the second category of works concerns the implementation on experimental machines (machines
built in research laboratories with exotic architectures more or less),

- then, the latest experiments conducted on commercial supercomputers.

Machine Vector Data Multiprocessors Network
computers Flow tightly coupled system loosely coupled
Array machine system
processors
Theoretical 75 83-84
(simulated Pruul + simulation Rayward - Smith
parallelism) Cornell Univ. (USA) Mac Keown et al,
79 Univ. East Anglia (UK)
+ simulation 84
Imai, Fukumura Lavallée, Roucairol
Nagoya Univ. (J) Inria (F)
80

El Dessouki, Huen (USA)
84
+ simulation
Lai, Sahni (USA)
Wah, Yu + simulation
Wah, Ma
Purdue Univ.

Experimental 85 84 75
machine Kindervater (NL) MPhan Finkel, Manber V)
Manchester Cm (H) Crystal DIB
data Flow mach. Carnegie Mellon (USA) Univ. Wisconsin

Madison (USA)
86

Trienekens (H)
DPU Boulder
Univ. Colorado (USA)

Commercial 85 85 87
machine Kindervater Lavallée, Roucairol (F) Mraz, Seward (USA)
Trienekens Cray XMP Rodgers, Pardalos (USA)
ICL Dap 86 Intel iPSC hypercube (V)
CDC Cyber 205 Roucairol (F) Vornberger (RFA)
(NL) Cray 2 (H\V) Transputer Inmos V)
88

Boehring, Butler, Gillet (USA),
Hep, Sequent, Encore (H),
Rodgers Pardalos (USA), Cray
XMP, IBM (H) 3090-600E,
Plateau, Roucairol (F),
Cray 2 (H)

Table 1

Obviously, the architecture of the selected computer will influence the design of parallel
algorithms which are implemented.

A decomposition of work into independant processes must be found , necessary synchronization and
communication mechanisms between concurent processes must be established in order to ensure a
good trade-off between communication and computation.

3. TWO MAIN FRAMEWORKS FOR ASYNCHRONOUS PARALLEL B&B ALGORITHMS
We first briefly recall what is a B&B algorithm.
3.1. B&B algorithms on a single processor machine

The goal of the B&B algorithm is to solve a constrained optimization problem :

min f(x)
xeX,

where X represents the domain of optimization,
X is a solution, x is feasible iff x € X,
f(x) is the value of the solution.

The B&B method is based on the idea of intelligently enumerating all the feasible solutions of a
combinatorial optimization problem.

The underlying idea of the B&B algorithm is to decompose a given problem into two or more
subproblems of smaller size. Then, this partitionning process is repeatedly applied to the generated
subproblems until each unexamined one is either partitioned, solved or shown not to yield an
optimal solution of the original problem.

The process of excluding subproblem from further consideration is based upon the computation of
a lower bound on the values of solutions within each subset : subproblems whose bounds exceeds
the value of some known solution can be discarded.

The state of the partitionning process at any time can be represented as a partial tree in which
subproblems are represented by nodes and the decomposition of problem into subproblems by
edges from nodes to their successors,

More precisely, a B&B algorithm has three major components : a branching scheme, a bounding
function, a search strategy.

Let B=(S,T') be the tree built, S the set of nodes and T the application successor.

Branching principle T

The root of the tree SO is the set X (or a set of solutions U with X included in U). Successors I'(Sk)
of every node Sk are defined by the branching scheme, which must satisfy three conditions :

(cl) the union of partitionned subsets is equal to the initial set
(c2) the number of node partitions necessary to reach an optimal solution is finite
(c3) a node -associated to a subset of solutions- cannot be partitionned (expanded) if :

- this subset is reduced to only one feasible solution

- this subset does not contain any feasible solution or feasible solutions whose cost is
smaller then the cost value of the beat known feasible solution. Such a node is called
a leaf of the B&B tree.

Bounding function v

A lower bound function v assigns to each subset of solutions a real number representing a lower
bound cost for all complete solutions in the set. It has the following properties : :

(pl) v:S—-RU {0)

(p2) for every node Sk of B associated with a set of solutions,
v(Sk) < min {f(s) / s€Sk} ,

(p3) for every leaf node Sk of B, v(Sk) = min{f(s) / seSk} ,

(p4) if no feasible solution belongs to Sk, v(Sk)=+oo ,
(p5) v is non decreasing on S: if Sl is a successor og Sk then v(SI) > v(Sk) ,
(p6) let us suppose that an upper bound UB of f° is known (for example UB is the value

of a feasible solution found by any. heuristic method or the cost of the cheapest
solution yet seen) ; whenever Sk is such that v(Sk) > UB then Sk is not selected
further for expansion.

Search strategy h

A strategy is a rule for choosing which of the currently active nodes the branching principle
should be applied to. For conceptual simplicity and uniformity of notation, we assume that a
heuristic function h, h : S —N, gives a priority to each node and thus the selected node is the one
with the smallest h value.

The choice of a heuristic function depends on the application ; the most commonly used are :

depth first h(Si) = I(Si) where 1(Si) is the level of node Si - length of the path from SO to Si -
best first h(Si) = v(Si).

The first strategy leads quickly to a feasible solution and is space-saving : a node at a lower level
will always be examined before a node at a higher level ; hence the set of active nodes can be
maintened in a FIFO list,

The second strategy is more targed towards a good solution ; good solutions are determined first
but all active nodes not yet examined must be stored. However, it can be shown that the total
number of nodes expanded is minimised in the sense that any branching operation performed
under this strategy must also be performed under other strategies, provided some condition on the
bound’s value hold.

Dominance relation may also be introduced in B&B algorithms ; it is a relation on subproblems

such that if Si dominates Sj, then Sj cannot contain a better solution than Si and thus Sj can be
eliminated.

Procedure B&B

liveset = set of active nodes
begin
liveset = {root};
if root is a solution node then UB = f(root) else UB = oo ;
while liveset contains a node S with v(S) < UB do
begin
X = node in liveset with min h() ;
delete x from liveset ;
/ branching scheme /
create successors nodes of x ;
/ evaluation /
for each successor y of x do
begin
if y is a solution and f(y) < UB then UB = f(y) ;
if y is not a leaf and v(y) < UB then add y to liveset ;
end
end
end.

3.2. Asynchronous B&B algorithms

While dividing the work (i.e. expanding parts of the B&B tree) among a bounded number of
processes, we have to avoid the following situations in order to reduce enumeration :

- several processes expand the same part of the tree,
- @ process is working on a node of the subtree whose lower bound’s value is greater than the
value of a solution found by another process in another part of the tree.

4

-

Hence, each process must broadcast all information obtained and the upper bound UB must be

"constantly updated. This can influence the choice of the next expanded node and some branch

which would occur in a sequential algorithm can be pruned.

Obviously, the synchronization of information exchange between processes (i.e. processes wait for
others which have not completed their tasks) is a solution that can be handle more easily but it
will increase the overall complexity of the algorithm. In B&B, the total work size (final size of
the tree) is not complety known in advance and it is very difficult to divide it into equal parts.
Synchronization will force some processes to wait for others and, hence, to lose time.

This hypothesis has been ve:ified by experiments with parallel synchronous B&B algorithms
conducted by Mohan on Cm'® at Carnegie Mellon (MOH 84), and Kindervater on ICL DAP at

Mancester (KIN 85).

There are two main methods to distribute th

number of processors.

e B&B algorithm’s operations among a bounded

Asynchronous parallel B&B algorithms

Vertical

Every process searches as a complete subtree
independantly of the others. The information
exchanged between various processes is
reduced to one value per complete solution. As
soon as this bound is communicated, it is the
responsability of each process to eliminate
nodes with lower bound greater than this
value.

The principal difficulty comes from necessary
synchronizations between processes which have
terminated their enumeration in order to
obtain some other work from their partners
quickly and consistently.

This kind of algorithm is dedicated to
computer networks or multiprocessors with
limited memory space and slow interprocessor
communication.

The principal criticism is that some processes
may be working on nodes of the subtree that
could be eliminated if a better communication
(last upper bound) was designed.

Horizontal

A specialized process - the scheduler-keeps
track of live nodes, maintains the current value
of the best known feasible solution, and
schedules the processes which expand either a
live node’ (one or two levels) or a subtree with a
bounded number of nodes (before returning for
re-scheduling).

The advantage is that information about the
current bound is kept reasonably up-to-date.
But as the number of processors grows, the
scheduler process and message transport
mechanism will become bootlenecks. Hence, this
algorithm is dedicated to a system with a modest
number of processors and an efficient message
passing scheme, like a multiprocessors with a
shared memory.

These algorithms are respectively denoted by H(horizontal)
and V(vertical) in table 1.

4. PERFORMANCES OF PARALLEL B&B

Classical measures for the efficiency of algorithms implemented on multiprocessors are speed-up

and efficiency.

The speed-up S achieved by a parallel algorithm A executing an instance of a problem 7, is

defined as the ratio between T1 and Tp : S(A,7) = ==

» where Tp is the time taken by the

parallel computer executing the parallel algorithm using p processors, T1 is the time taken by the
execution of the best known sequential algorithm with only one processor.

Remarks.

(i) This time is measured

- either theoretically : average number of operations, or number of iterations between two

synchronizations in case of parallel s
machine, a parallel algorithm is linke
non-determinism ; thus, it would be pre

ynchronous algorithm, (in case of asynchronous
d with several execution times, which is due to
ferable to compute the average time) ;

- or experimentally (dedicated CPU. time).

(ii) Some authors use as TI, the time of the parallel algorithm with one processor. But,

- synchronization and communication statements are included in the parallel program and

penalize the serial qule‘c,ut_ion.:rlt is, a, simple way if comparing experimental parallel
executions with an increasing number of processors.

(iii) Average speed up on all the same instances size of a combinatorial optimization problem can
be usefully considered.

Efficiency

The efficiency of a parallel algorithm running on n processors is the speed-up divided by p. In

general, the speed-up less than p but close to p is expected. So the following cases are called
anomalies :

detrimental anomaly Sp<«1
deceleration anomaly Sp<<p
acceleration anomaly Sp>p

So superlinear speed-up are possible ; because it is not always possible to choose for a given
problem instance the best serial algorithm and because in parallel, extra processors may enable the
parallel algorithm to find the optimal solution very quickly. Of course, one can say it is not
possible because a sequential computer can always emulate a parallel computer.

These anomalies are due to the fact that, for a problem’s instance, the search strategy which leads
to the best serial B&B algorithm: is not known "a priori". Anomalious behaviours of B&B
algorithms under parallel processing have been studied by many authors : Lai and Sahni (LAS 84),
Lai and Sprague (LASP 85), Li and Wah (LIW 84), Roucairol (ROU 87).

The computational efficiency of these algorithms depends on the bounding function, the data
structure and the search strategy. . - .

Let B&B tree denote the tree generatgd by the B&B algorithm, critical tree denote the subtree
whose nodes §i are such taht v(Si) < f°, minimum tree denote the subtree whose nodes Si are such
that v(Si) < f* (contains minimal number of nodes to expand in order to find an optimal solution),

A B&B algorithm A = (T branching principle, v bounding function, h strategy) is h-optimal if
the B&B tree is minimum.

Theorem : if T*1 is the time with a h-optimal B&B (called A) to expand all the nodes of the
minimum tree, Tp the time with a parallelization of A on p processors, speed-up

T /Tp<p |
This theorem shows that anomaly can occur when the serial B& B algorithm is not h-optimal.
Let us define some properties of the bounding function :

v is discriminating iff v (Si,8§) v(Si) # v(Sj)
h is consistent with v iff h(Si) < (Sj) => v(Si) < v(Sj) .
v is weak iff V Si which is not an optimal solution v(Si) # f .

Theoretical results have been obtained under some assumptions :

- horizontal parallelization,
- all processors are synchronized.

Time is measured as a number of iterations required ; at each iteration, p processes expand in
parallel the p first priority nodes of the list (provided this list contains at least p nodes) and add
their children to the share list. We summarize the contents of several theorems whose proofs can be
found in Lai and Sahni (Lais83), Lai and Sprague (LAI 85), Li and Wah (LIW 84), Wah and Yu
(WAY 82,85), Roucairol (ROU87):

- for a sequential B&B algorithm, if v is discriminating, a best first strategy h builds the
.critical tree, '

- for a parallel B&B algorithm, if h is a best first strategy and v is discriminating, the speed-up
isSp<p, '

[

- moreover, under these conditions, this strategy is robust - i.e. Sp = p
(p-t(p-1)/Tp) < T1 / Tp < p, is the t height of the B&B tree with 1 processor),
- necessary condition for good anomalies is that h is inconsistent with v,
- sufficient conditions for bad anomalies are that v is discriminating and h is consistent with v.

5. SOME EXPERIMENTS

5.1. Experiments on asynchronous shared memory multiprocessor machines

The main characteristics of an horizontal
multiprocessor machines (as Cray X-MP or Cray

The distribution of work among the different

parallel B&B algorithm for shared memory
2) are the following :

processes (one process assigns to one of the four

processors) is done by giving access to a shared list which contains information about every node to
be expanded.

This list is implemented as a heap
sort and remove items.

A priority (adapted to the problem to be solved) is associated to each node. Nodes are ranked by
decreasing priority : every active process finds at the top of the list the node it has in charge.

(binary tree) in order to use fast existing algorithms to insert,

Insertion of items is done whenever the expansion of a node generates several successors whose
evaluation is less than the best known upper bound. The best known upper bound (BKUB) is a
shared variable which is updated whenever a local upper bound (lub) less than BKUB is found at
a node to be expanded.

Items are suppressed either at the beginning or at the end of the list. The former case occurs
whenever an inactive process looks for a new job, the latter case occurs whenever a lub is less than
BKUB : every node whose evaluation is greater than lub is eliminated because it cannot lead to an
optimal solution.

The algorithm terminates when the list is empty and all processes are inactive.

We report first on our experiments with the horizontal parallelization of a serial algorithm for the
asymetric traveling salesman problem (TSP) (other results for TSP can be found in (ROUS6), for
Quadratic assignment in (ROUB84), for Multiknapsack in (PRGS88)).

Given a complete oriented and weighted graph in which the weight of an arc c(i,j) represents the
cost of traveling from i to j, the traveling salesman problem is to find a circuit of minimum cost
that goes through every node exactly once.

First results have been obtained on an emulator called CREM running on a Multics machine
BULL DPS68 at INRIA, France and later results on the Cray X-MP 48 at CRAY RESEARCH,
Minneapolis, USA.

Speed-up :

The coefficients c(i,j) of the matrix C are
The best first strategy is used. Speed-up is

for one processor and Ti the solution time for i processors.

generated from a uniform distribution in a range [a,b].
computed here as: T1/Ti where T1 is the solution time

Number of processors
(from 1 to 3 on CREM)

Average simulated time
in seconds (CREM)

Average number of nodes
in the B&B tree

N
1 373 10
3 150 11
Average speed-up = 2.5 Average increase of nodes = N1/N3 = 1.1
Table 2. 40 TSPs of size 200, c(i,j) €1[0,100[.

Moreover, with one processor it was impossible t

and 21 of size 150 in a time limited to 900 seconds.

o find optimal solution for 6 problems of size 200

Number of processors Average simulated time Average number of nodes
in seconds (CREM) in the B&B tree
1 > 687 > 8
3 424 . 11,5
Average speed-up > 1.6 Average increase of nodes = NI1/N3 < 1.4

Table 3. 40 TSPs of size 150, c(i,j) € [0,1000].

But, these results hide a part of reality : worst speed-up is 0.5, best 12.5. The next table shows the
differences between problem instances.

Anomaly Class Number Average N3/N1
of TSPs speed-up S
S < 0.8 3 0.7 2.8
detrimental S € [0.8,1.2] 11 1 2.8
deceleration S € [1.2,2.8] 11 1.8 1.5
S e [28,4] 7 3.1 0.9
acceleration S > 4 8 6.9 0.5

Table 4. Anomalies

This table indicates that the time is directly related to the number of nodes expanded in the search
tree.

For this combinatorial optimization problem, the size of the B&B tree to be built is small (about
twenty nodes), but the time taken to evaluate a node is rather important. Hence, a larger number
of nodes will increase the total time.

But, whenever the bounding procedure does not take enough time, some granularity problems may
occur because the size of the work performed in parallel is to small.

For example, let us consider the following 0.1 multiconstraint problem :

maximize cx
subject to Ax<b;xeV,

whose data are such that

cEN®, b eINI, A is a mxn dense non-negative integer matrix,
and where V = (x €IRD | x-i =0or 1, j=1,2,..,n).

An horizontal parallel B&B algorithm has been implemented on the Cray 2 (Plateau and
Roucairol, (PRG 88)).

In order to balance the loads of each processor, we decide to define a priority rule for accessing

the shared list of node. Namely, a process is allowed to treat a node if its current load does not
exceed t% of the mean load.

Processors
t | times)| 1 2 3| 4
_ Cray 2 . '

N| o | 3.29 79 123 | 89 | 67
p 25% | 34% | 22% | 19%
N| 10%| 2.51 92 86 | 91 | 89
pl 26% | 24% | 25% | 25%
q 2 2 24 | 3
N 30%| 2.13 84 95 | 87| 92
P - » 23% | 27% | 24% | 26%
a.] 0 .| 2 0 10
N| 50%| 1.93 95 95 80 | 88
S N 26,5% | 26,5% | 22% | 25%
q 0 3 0 0

Table 5. Granularity’s problem on Fleisher’s example (m=10, n=20)
(N number of nodes treated. by a processor, p percentage of work done by a processor,
: q number of times a processor waits)

5.2. Experiments on others architectures

We choose to present the results obtained by Rodgers and Pardalos (RP 88) for quadratic 0.1
programming on various parallel computer architectures : :
min cTx + 172 xTAx :
X €{0,1)" where A €RMXN ¢ cIRD gre given

For the shared memory multiprocessor - machine, - they propose a synchronous / asynchronous
Vertical ‘parallelization ; a variable M controles the number of nodes that processes are allowed to

‘expand in parallel at each cycle of the synchronous algorithm.

For 'distributed memory processors, they design a vertical parallelization : a process expand a

subtree of M nodes then send subproblem to neighbor.

From their results (table below) it is clear that the algorithm for the hypercube were néarly as
efficient as the shared memory algorithms,

. Maximum Achieved Speedups
MACHINE T T Speedup Efficiency Number of
' processors
CRAY XMP/48 17.52 4.61 380 .95 4
IBM 3090 600E 15.48 2.97 5.22 .87 ' 6
Intel iPSC/1 1903.35 95.32 19.97 .62 32
Intel iPSC/2 428.26 35.10 12.20 .76 16

Table 6. Speed-ups for an example from (RP 88)
with A = (100 x 100) '

8. CONCLUSION

It 1s clear that parallelism or distribution of work can improve significantly the performance of
B&B algorithms. Vertical parallelization seems more adapted to distributed architecture,

- 10 -

horizontal one is well suited to share memory multiprocessors. Furthermore, it is interesting to
stress the two following points :

- even with a single processor machine and a simulated parallelism, optimal results have been
obtained for problems (experiments with asymetric traveling salesman problem (ROU 86))
which were not solved in sequential ; it means that asynchronous or merely non determinism of
choice can improve the performance of a pure sequential and deterministic algorithm ; of
course, performances can be improved with a real parallel machine.

- speed-up is almost linear with respect to the number of processors.

More precisely, there exist speed-ups which are more than linear and these cases are more
frequent than sub-linear speed-ups. Up to now, only the exploration of the B&B tree has been
parallelized ; but in many combinatorial optimization problems like the TSP or the Quadratic
assignment problem, the evaluation procedure called in each node of the B&B tree takes a long
time (about 80%) with respect to the time of buiding the tree. So the parallelization of this
procedure should be studied. From our point of view, it may be enough to vectorize the evaluation
procedure (in most cases a linear program). This has to be tested on a machine having many
processors, each one owning a vector facility.

We must also recognize that there is still a lack of experiments for "real problems" : problem of
larger size must also be included into experiments,
REFERENCES

(BBG88) Boehning R., Butler R., Gilett B., A parallel integer linear programming algorithm,
EJOR 34, 393-398, 1988.

(EDHB80) El-Dessouki O., and Huen W.H,, Distributed enumeration on network computers, IEEE
Trans. on Comp. 29, 818-825, 1980. -

(FM85) Finkel R. and U. Manber, "DIB- a ditributed implementation of backtracking", IEEE,
446-452, 1975.

(IF79) Imai M. and T. Fukuruma, "A parallelized Branch and Bound algorithms implementation
and efficiency", Systems computers controls, Vol. 10, n°3, 62-70, 1979.

(KIN85) Kindervater G., Trinekens H., Experiments with parallel algorithms for combinatorial
problems, Report OS-R85 12, center for Mathematics and Computer Science, Amsterdam, 1985.

(LAS84) Lai H., Sahni S., Anomalies in Branch and Bound, Com. of ACM, Vol 27, n°6, 594-602,
1984. :

(LASP85) Lai T., Sprague, Performance of Branch and Bound algorithms, IEEE Trans. on Comp.,
C-34, n°10, 194-201, 1985.

(LAROUSS5) Lavallée L, Roucairol C., Parallel Branch and Bound algorithms, presented at Euro
VIII Congress, Bologna, Italy, RR MASI n°112, Univ. Paris VI, 1985.

(LIW84) Li G., Wah B., Computational efficiency of parallel approximate branch and bound
algorithms, Proc. of the Int. Conf. on Parallel Processing, 473-480, 1984.

(LMR88) Lichnewsky A., Marchand D. and Roucairol C., A fast vectorized version of a linear
assignment algorithm, RR INRIA, i paraitre 88.

(MS87) Mraz R. and W. Seward, "Performance evaluation of parallel Branch and Bound search

with the intel iPSC hypercube computer”, Proceedings of Supercomputing 88, Boston, 82-91,
1988.

(MOH84) Mohan J., A study in parallel computation : the traveling salesman problem, Carnegie
Mellon University, CMU-CS-82-136, 1982.

(PRG88) Plateau G., Roucairol C., Gachet 8., Algorithm PR2 88 for the parallel resolution of the
0.1 multiknapsack problem, RR INRIA to appear 88.

(PRU75) Pruul E.A., "Parallel processing and a B&B algorithm”, Thesis Cornell University,
Ithaca, N.Y., 1975.

o

~

L7

-11 -

(QUI87) Quinn M.J., Designing efficient algorithms for parallel computers, MC Graw Hill Series
in Supercomputing and Artificial Intelligence.

(RK83) Burton F.W., MM. Huntback, G.M. McKeown and U.J. Rayward-Smith, "Parallelism
in branch and bound algorithms", Mathematical Algorithms group-2, Internal report CSA/3,
University of East Anglia, Norwick, UK, 1983.

(RK84) McKeown G. and Rayward-Smith U., "Chaotic computing”, RR CSA 15/1984,
University of East Anglia, Norwick, UK, 1984,

(RP88) Rodgers G. and Pardalos P., Parallel Branch and Bound algorithms for Quadratic 0-1
programming, RR CS 88-17, Dept of Computer Science, Pennsylvania State University, 1988.

(ROU84) Roucairol C., An efficient branching scheme in branch and bound procedure, presented
at TIMS XXV, Copenhagen, RR Université Paris VI 79-4, 1983.

(ROU84) Roucairol C., A parallel branch and bound algorithm for the quadratic assignment
problem, Disc. Appl. Math., 18, 211-225, 1987.

(ROU86) Roucairol C., Experiments with parallel algoriihms for the asymetric salesman problem,
preesented at EURO VIII, Lisboa, Portugal.

(ROU87) Rouciirol C., Du séquentiel au paralléle : la recherche arborescente et son application a
la programmation quadratique en variables 0-1 » Thése d’état, Université Paris VI, Juin 1987.

(ROUS88) Roucairol C., Parallel computing in Combinatorial optimization, Proceedings of
Numerical methods for parallel vector computers, North Holland, to appear 1989.

(TR186) Trinekens H., Parallel Branch and Bound on an MIMD system, RR 8640/A Econometric
Institute Rotterdam, 1986.

(VOR87) Vornberger O., "Load balancing in a network of transputers”, Lectures notes in
Computer Science 312, Distributed Algorithms, Springer-Verlag, 116-126, 1988.

(WAMS84) Wah B., Ma Y., Manip : a multicomputer architecture for solving combinatorial
extremum search problems, IEEE Trans. on Comp. C3, 5, 1984,

(WAY82) Wah B. Yu C., Probabilistic modeling of branch and bound algorithms, Proc.
COMPSAC, 647-653, 1982.

(WAYS85) Wah B., Yu C., Stoéhastic modeling of branch and bound algorithms with best first
search, IEEE Trans. on Software Engineering, Vol SE-11, n°9, 922-934, 1985,

Imprimé en France
par
P Institut National de Recherche en Informatique et en Automatique

«
4.

