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COMPUTATION OF THE ASYMPTOTIC STATES FOR
LINEAR HALF SPACE KINETIC PROBLEMS

Francois CORON

INRIA-Menusin, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex FRANCE

ABSTRACT

A spectral numerical scheme computing the asymptotic states for linear half space problems is described
in the case of a simple transport equation and the linearized Bhatnagar-Gross-Krook (BGK, ) model (see [5]).

This method seems very efficient and the results are in good agreement with those obtained by more direct
computations and by other authors.

KEYWORDS Spectral method, Boltzmann equation, BGK model, Kinetic boundary layer.

CALCUL DES ETATS ASYMPTOTIQUES
DE PROBLEMES DE TRANSPORT LINEAIRE
DANS UN DEMI-ESPACE

RESUME

Nous décrivons une méthode numérique spectrale pour calculer I’état asymptotique de problémes linéaires
de demi-espace dans le cas d’une équation simple de transport et du modéle Bhatnagar-Gross-Krook (BGK)
linéarisé (voir [5]). Cette méthode semble irés performante et les résultats sont en accord avec ceuz oblenus
a@ laide de simulations plus directes et par d’autres auteurs.

‘MOTS CLES : Méthode spectrale, Equation de Boltzmann, modéle BGK, couche limite cinétique.
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I MOTIVATIONS

The flow field around reentry aircrafts is well described by a density distribution f(z,v,t) governed
by the Boltzmann equation (see Cercignani [5], Chapman, Cowling [7], Ferziger, Kaper [14]). Numerical
methods used to solve it, for example the Monte-Carlo Simulation (see Babovsky [1], Bird [2], Deshpande
(13}, Nanbu [22]) or more direct computations (see Chorin [8], Yen [28]) are expensive in computer time.
When the mean free path of molecules is small, fluid dynamics (Navier-Stokes or Euler equations) gives
good results. Thus, it seems of great interest to be able to match regions in which we compute either the
Boltzmann equation or the Navier-Stokes system according to the local value of the mean free path (or some
other relevant criteria). A general strategy for this domain decomposition problem is described by Golse [15)
and will be developped in [11].

The distribution of particles coming from the Boltzmann cell to the Navier-Stokes cell is computed

“through the resolution of the Boltzmann equation using for example a Monte-Carlo method. Usually, this
distribution is not exactly Maxwellian and we have to proceed some kind of projection to get from the
knowledge of this distribution the right boundary conditions for the Navier-Stokes cell. This can be done by
introducing a Knudsen layer term, the support of which is of the thickness of some mean free paths. This
layer term makes the transition between the kinetic and the fluid descriptions of the flow, and it satisfies
the Boltzmann equation. Moreover, near the matching interface, the local Knudsen number (ratio of the
mean free path by a characteristic length of variation of the fluid quantities) is assumed to be small, in order
to be sure that the Navier-Stokes equations give a good approximation of the flow. Therefore, the kinetic
correction satisfies a linear half space problem

& +v)(%x+Lx=0,' 0 <z < oo, (I.1.1)
x(0,&1) = ¢(§), for &14+v>0 (1.1.2)

where v is the mean velocity normal to this interface and L the Boltzmann operator linearized around
the absolute Maxwellian. Existence and uniqueness for problem (1.1.1)-(1.1.2) was studied by Greenberg,
Van der Mee [17] for the BGK model and by Coron, Golse, Sulem [10] for the linearized Boltzmann operator.

The theoretical behavior of the solution of (I.1.1)-(I.1.2) is well known. We want to describe a numerical
method to compute the asymptotic behavior of x when z tends to infinity.

Since the problem (I.1.1)-(1.1.2) is to be solve at each cell of the interface to make domain decompositions
(see Golse [15)), it should be very easy to perform. The direct computation of the solution of (L1.1)-(1.1.2)
is too expensive from a computational point of view (see section I1.4.B.3); thus we propose a spectral
method which is much cheaper. In this method, we choose a vector space of finite dimension and we look for
exponentially decreasing solution of (I.1.1). This leads to a generalized eigenvalue problem. A decomposition
of the incoming flux on these eigenvectors gives an approximation of the asymptotic limit of the solution of
(I.1.1)-(1.1.2).

Note that linear half space problems (1.1.1)-(I.1.2) with v = 0 is also fundamental to get the coefficients
of the slip boundary equations for the Navier-Stokes system (see Coron [9] and Sone, Onishi [25]).

The following sections are organised as follows

in section II, we study the case of a simple transport equation. We present the spectral method and
test it by computing the “ extrapolation length” and by perfoming a direct computation for (I.1.1)-(I1.1.2).

in section III, we extend the method to the linearized BGK model and we test it on the computation of
the slip coefficients.



II SIMPLE TRANSPORT PROBLEM

1. Introduction
We first study the simple transport problem

(p+c)-a%-u+u-ﬁ=0, 0_<_.a:<+oo, -1<pu<+1 (I1.1.1)
u(0,4) = @(p), for u+c¢>0 (I1.1.2)

¢ € [-1,+1] is a shift constant, and

1
i0)=3 [ uznau
-1 )
The following proposition can be easily proved (see for example [16])

Proposition I1.1.1 _ .
For any ¢ > 0 and p such that f0<“+c<l @2dp < +oo, there ezists a unigue solution of (11.1.1)-(11.1.2)
in L®(dz, L%(du)) . This solution decreases ezponentially fast to a constant when z goes to infinity.

We are going to describe a numerical scheme to compute the asymptotic limit of problem (I1.1.1)-(I1.1.2)
when ¢ > 0. '

2. Desciption of the spectral method
We extend the method proposed by Degond, Mas-Gallic (12] for a model Fokker-Planck equation, to

this transport problem.

We consider the operators A, and B defined respectively by

Au=(p+cjuy, Bu=u-—1i

Following [12], we remark that if (A, ®,) is a solution of the generalized eigenvalue problem

/\ACQA(/J) = BQ,\([J) (II21)
then

Ua(z,p) = €72, ()

satisfies the equation (II.1.1). 4

Because we are looking for bounded solution of (I1.1.1)-(IL.1.2), we are interested in eigenfunctions &,
of (I1.2.1) with A > 0.

In the case ¢ = 0, it is well known that the function ¢ can be decomposed on the eigenfunctions &,
associated with positive or null eigenvalues

p=ao®o+ Y and, (11.2.2)
A>0

This property is known as “half range completeness” (see [12]).

When z goes to infinity, Wx(z,p) (with A > 0) tends to zero. Thus the asymptotic limit of the solution
of (I1.1.1)-(I1.1.2) is equal to ayq.

Now, we consider the space spanned by the n first Legendre polynomials and write down the operator
B and a truncation of A, in this vector space. We are going to solve the “discrete” eigenvalue problem
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corresponding to (I1.2.1) by performing an approximate decomposition similar to (II 2.2). We shall obtain
numerically the asymptotic limit of the solution of (I1.1.1)-(I1.1.2).

A) the discrete problem
Let P; be the normalized Legendre polynomial

P = {2 (- 1)

+1
Py(w)P;(p)dp = b: 5

The (P;) are normalized

and form a complete system of L%(dy).
We recall the induction relations

pPi=miPi 1+ mip Py, 1<i<n—-2

with
m; = i and uPy= £_ 1 Pr=mP
/E-NEiT) Rt/
The operator Acn, troncation of A. on Span(Po,...Pa—1) = E, is defined by the matrix
( c m 0 ... ... ... 0 \
m ¢ my :
0 my c
Aen = . :
0
: c  mp_
\0 see ees aes 0 Mmp.-1 [ )

The restriction of B to E,, referred to as B,, is defined By the matrix

o 0 .. ... 0

\ .
0 1

B,=]: :

: .1 0

o ... ... 0 1

These particular forms of operators A.,, By, are due to the choice of the Legendre polynomials.
Taking the discrete version of (I1.2.1), we are looking for solutions of the following generalized eigenvalue
problem
AiAchG = B,®; (1123)

As in the continuous case, for A; = 0, the space of solutions of (I1.2.3) is equal to Span(P;).
We then decompose the incoming flux data, ¢(u) (given for x + ¢ > 0), on the solutions &; of the
equation (I1.2.3) with A; > 0

p(p) ~ Z ai® +aP (I11.2.4)
Ai>0



The asymptotic limit calculated by this spectral method is

ag
aPp = —

V2

The main step in this method is the way to perform the projection (I1.2.4). In order to do this, following
(12], we remark that we have in the continuous case .

W)= Y ¢(Ho)bus(n), m+c>0 (I1.25)
Hotec>0

where 6, is the Dirac distribution at point uo and is also the generalized eigenfunction of the operator
A, associated to the eigenvalue pg + ¢

. Ac&l-‘o = (FO + 0)6#0

The decomposition (I1.2.5) can be viewed as the projection of % on the eigenfunction of A, associated
with positive eigenvalues.

We derived from this interpretation the way to perform the projection (I1.2.4) in the discrete case.

We consider the space E}, spanned by the eigenfunctions of A, with positive eigenvalue and we denote
by I}, the L? orthogonal projection on Ej.

Let ¢, be an approximation of ¢ in E,; we compute aq, a; such that

Oh(pn) = Y alIE (8:)  +aollt, (Po) (I1.2.6)
Ai>0 B

We prove in the section (I1.3.D) that ((II,(®:))x;>0, I}, (Po)) is a basis of EZ,, so that there exists a
unique sequence (ao, o) satisfying (11.2.6).

Note that (I1.2.6) is a system of n equations with Card{)\;/X; > 0} + 1 unknown. Thus, from a
computational point of view, we have used a least square algorithm to solve (II1.2.6).

The decomposition (I1.2.4) gives also an approximate solution of the problem (I1.1.1)-(11.1.2) and in
particular, a prediction of u(z = 0, u) for u + ¢ < 0 for any given ¢.

3. Properties of the eigenvalue problems

A) Eigenvalue of A,;,
We have

Acpn = Aon +cly

where I, is the n X n identity matrix.

Acn and Ao, have the same eigenvectors and their eigenvalues differ by c.

Let us study the case ¢ = 0

Since Ao, I8 a symmetric matrix, it has n real eigenvalues and n eigenvectors. Moreover, if &; =
E:;; ci,k Py satisfies A;®; = Ao, ®P; then one can compute ¢,k in terms of ¢; ¢ using the following induction
formula

ei1 = iy (I1.3.1)
my .

k= g =™l for 2<k<nol (11.3.2)
my mg : :

The eigenvalues of Aq,, are therefore simple.
The determinant of Aoy is equal to zero if n is 0dd and to (—1)*/2(m1)?(m3)2...(ma_1)? if n is even.
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From now on, we consider the case where n is even.

We also remark that if
n—1
(Z C; ,,Pk) =X\ (2 Ci kPk)

k=0 k=0
then

n-1 n—-1
Aon (}_j c.-,k(-—l)"Pk) ==X (E c.-,,,(-1)kp,,)
k=0 k=0

Thus, for ¢ = 0, the set of eigenvalues is symmetric with respect to 0 and the number of positive
eigenvalue is n/2.

For ® € E,, we have

' +1 +1
(And ®)l =1 [ e%aul < [~ o7 (11.3.3)
-1

-1

the inequality beeing strict if & # 0. Thus the eigenvalues of Ag, are smaller than 1.

B) Generalized eigenvalue problem (I1.2.3) X\;A.,®; = B, ®;

As ment:onned prevxously, the space of solution of (I1.2.3) with A; = 0 is equal to the space spanned by
Po. Let ®; = Y ;) ®; 1 P be a solution of (I1.2.3), we obtain

cDio+mPi1 =0 (11.3.4)

Let us study the generic case ¢ # 0
If ;i #0, (I1.2.3) is equivalent to

Qi = —%‘I’m (11.3.5)
and
;1 ) ®;.1
Acn : =1 § : (11.3.6)
]
Din-1 Pin1
where A~.,,, is the symmetric matrix
(c - ﬂci ms 0 ... ... 0 \
m; c LT '
ATC" = 0 ) ’ .
: 0
: c Mp_1
\ 0 cie een 0 My ¢ /

This matrix has n — 1 simple eigenvalues (the proof is similar to that given for Ag,). The determinant
of Acp is a rational function of ¢ with at most a finite number of zeros. Except for these critical values of ¢,
(I1.2.3) gives (n — 1) solutions.

We thus have found n solutions of the generalized eigenvalue problem (I1.2.3).

The particular case ¢ = 0.
For A; # 0, (I1.2.3) is equivalent to the system



Bip = ——28; (I11.3.7)
m

$i1=0 (11.3.8)
{ 0 mg 0 ... ... 0 \
ms 0 @, 2 ) ®; 0
0 - =< (11.3.9)
. 0 Q"t”—l Qa’,n—l
: e T 0 M1
\ 0 vee ees 0 Mp—-1 0

System (I1.3.9) defines n — 2 simple eigenvalues (n is even, so the symmetric square matrix in (I1.3.9)
does not have 0 as an eigenvalue). We have n — 1 solutions for the generalized eigenvalue problem (11.2.3).

Remark. According to (I1.3.8), solutions of (I1.2.3) have no component on P;. In fact P, (#) =/3/2u
corresponds to the unique polynomial unbounded solution of (I1.1.1) withe =0

u(z,p)=z—p

Such a solution does not exist for ¢ # 0.

C) Number of positive eigenvalues

Proposition I1.3.1 For ¢ > 0, the number of positive or null eigenvalues of Aon and of problem (11.2.3)
are equal.

Proof

When ¢ = 1, there exist n positive eigenvalues of 4., because E}, = E, (see (11.3.3)). Similarly, if
(As, ®;) satisfy (I1.2.3) with ¢ = 1 then ); >0.

Let us study the case where ¢ # 0 and ¢ # 1.

The eigenvalues of A., vary continuously when ¢ €]0, 1). Therefore, according to (I1.3.6), the number of
eigenvectors corresponding to positive or null eigenvalue of problem (11.2.3) is constant between the critical
values of ¢ where the determinant of A, in null. The eigenvectors are given by (I1.3.5)-(11.3.6) and thus
vary continuously when ¢ describes ]0, 1]. '

We remark that A; becomes infinite if and only if ®; satisfies A, ®; = 0. This relation implies that c is
minus an eigenvalue of Ag, and ®; a corresponding eigenvector.

Let us prove that the sign of \; changes when ¢ crosses one of these critical values.
We denote by (®ic,1/Aic) the continuous solution of (I1.3.5)-(11.3.6) corresponding to different values of
¢ around the critical value cg. Let

c=co+be, Aen= Acgn + 6Acn

1 1 1 1
Qic:él’o 6(1)3'; —_—= e - () = 6(—
w0t 0o =g+ =)
we have
AconQico =0
and

1
Acnoic = Aconééic + 6Acn®ico + 6Acn6¢ic = é(r)Bn(Dico
ic
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The image of A, is the orthogonal space to ®;.,. We thus get
1
6(:\-.")(311@”0)@:'::0) = (6Acnq>ico + 6Acn6(pic, Qico) (II310)
11

where (.,.) denotes the scalar product. We have §A., = (6c)I,. Equation (II.3.10) proves that

1
'\c’c
have the same sign. This result proves that the sign of A;, changes when c crosses the value ¢ which is
an eigenvalue of Agy,.
The numbers of positive or null eigenvalue of A, and of the problem (11.2.3) are both equal to n when
¢ = 1; the two numbers decrease when ¢ decreases and change by one when ¢ crosses an eigenvalue of Agy,.
They are thus equal for any ¢ €0, 1].

8(=—) and éc

When ¢ = 0, the number of positive or null eigenvalue of Ag, and of problem (I1.2.3) are both equal to
n/2 (see section 11.3.A, 11.3.B).

D) The decomposition

Let (®;, i € I.) be the solutions of the generalized eigenvalue problem (II.2.3) with positive, null or
infinite (that is to say A., ®; = 0) eigenvalue.

Proposition I1.3.2 The vectors (II},(®;), i € I.) are linearly independent and thus constitute a basis
of EY,.

Proof

We denote by ®g = 1/1/2, the eigenvector associated to Ao = 0. If

Y ol (@) =0 (I1.3.11)

then
Ea,'@g € (E;t,)'l'

and we have _
02 (An(D_i®:), Y 0i®i) = D 0F (Aen®i, ) +2 ) i (Aen®i, ®;) (I1.3.12)
i ' i
The second term in the right hand side of (11.3.12) is equal to zero because, for 0 < i < j and A; # 0
(Aeni, 85) = (@1, den®y) = 1-(04, B,8;) = 3 (Ba0, B.8)) =0

(see section I1.3.B for this identity). If \; = 0 then A.,®; = 0 which gives the same result.
Inequality (I1.3.12) becomes

2
02> ao(4eno, Bo) + 3 T(Bai, ®) (I11.3.13)
izo °*

for i # 0, (Ba®;, ®;) = (B,®;, B,®;) > 0 because B, ®; # 0 (see section (I1.3.b)).

for i =0, (Acnéo,il)o) =c/2.

a) In the generic case where c is different from 0 and the eigenvalue of Ag,, we get a; = 0 for all 4.
b) If ¢ = 0, then the inequality (I1.3.12) gives o; = 0 for i # 0 and using (I1.3.11), we obtain

aollf (%) =0 (11.3.14)
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but the induction relations (I1.3.1)-(I1.3.2) prove that the component of the eigenvector of Ag, on @, are
never zero; thus oy = 0.

¢) If ¢ is equal to an eigenvalue of Ay, then there exists a unique j such that A.,®; = 0. Inequality
(I1.3.12) proves that a; = 0 for i # j. Using (IL3.11), we get o; 11} (®;) = 0 but &; € E}, (see section

11.3.B), so a; = 0.

We have proved that I}, (®;) form a basis of E},, which allows the decomposition (I1.2.6).

4. Numerical results

From a computational point of view, the spectral method is easy to implement. First, the eigenvectors

- and eigenvalues (®;, A;), 1< i < n of problem (I1.2.3) are computed. This computation can be done with a

high efficiency because the matrix A.,, , By, are symmetric and tridiagonal. The eigenvectors of A., associated
with positive eigenvalues are also computed and we thus obtain the projection operator II},. The vectors
I}, () and I}, (®;) for X; > 0 are computed and decomposition (11.2.6) is performed using a least square
algorithm. This decomposition gives the spectral solution for problem (I1.1.1)-(11.1.2).

We now discuss the results obtained with this spectral method for the computation of the asymptotic

limit and the outgoing flux of the solution of problem (II.1.1)-(I1.1.2) for ¢ =0 and ¢ > 0.

A) The case c =0
1) Computation of the extrapolation length

We first test this method on the problem of the computation of the extrapolation length. We consider
the case ¢ = 0, ¢(u) = p. The bounded solution of (I.1.1)-(I.1.2) converges to a constant [ when z goes
to infinity. This constant is called the extrapolation length and its numerical value is I = 0.71044609 (see
Williams [27]). The results obtained by the spectral method are the following

N In (Y]
4 0.69402480 2.31 %
10 0.70823854 0.31 %
20 0.70991539  0.075 %
40 0.71031562 0.018 %
50 0.71036285 0.012 %
60 0.71038841 0.008 %
70 0.71040377 0.006 %

As in [12], we found that this spectral method gives very accurate results even for a small value of V.

Note that the Marshak approximation (see the following section) gives a value of / equal to Ipra, = 2/3,
this leads to an error of 6.16 % .

A variational method (see Loyalka [21], Golse[16]) gives Ly, = 0.7083 the error is of 0.3 %.

Remark We have tested another way to perform the decomposition (I1.2.4). Instead of computing
ag, a; by the relation (I1.2.6), we define ag, a; by

(@, Po)4 = (D ai®i + aoPo, Po)+ (I1.4.1)
Ai>0
and
(0, 9)s = (D i+ aoPo, @)y forall A >0 (11.4.2)
A >0
where
1

(f/,9)+ = /0 f(w)g(p)dp (11.4.3)
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The results are not as good as those obtained by the previous decomposition.

N In  (=inN
4 0.66175 6.85 %
10 0.69505 2.17 %
20 0.70364 0.96 %

In the next sections we use decomposition (II.2.6).

2) The Albedo operator

As it was noticed in the section I1.2, the spectral method gives not only the asymptotic limit of the
solution of (II.1.1),(II.1.2) but also the outgoing flux at z = 0 according to the decomposition (11.2.4)

u(0, ) = Z a;i®i(p) +aoPo(p), p+c<0 (I11.44)

Ai>0

For this simple transport problem (II.1.1)-(II.1.2) with ¢ = 0, Chandrasekhar’s calculus gives

w0, ~) = ZH (1) / M(l‘—)dﬂ, u>0 (11.45)

where the function H is the solution of some integral equation (see Chandrasekhar [6]).

We have tested the spectral method for the Albedo problem for ¢(p) = u, for 0 < u < 1.
The equation (I1.4.5) gives

u(0, —p) = g}%‘l —p (11.4.6)

On figure 1, the first curve represents the graﬁh of the solution u at z =0

u(0,p)=p, forpu>0 (11.4.7)
u(0, 1) given by (11.4.6), for u< 0 (11.4.8)

the second curve I}, (4) (for ¢ = 0 and n = 20), the third curve the approximation of the solution given
by the decomposition (II.2.4) at = 0, the fourth one is the prediction (constant with respect to p) of the
Albedo given by Marshak’s method.

As expected, I}, () is very close to 0 for 4 < 0 and to g for u > 0. The oscillations in the approximation
of the solution given by the spectral method are due to the fact that the exact solution is discontinuous at
z = 0 (Gibbs phenomenon). The spectral method seems to give a good approximation of the solution in the
Legendre space.

B) The case ¢c# 0

1) The Marshak approximation

Description of Marshak’s method.
For u solution of (II.1.1), the quantity

' (1 + cJu(z, p)dp (11.4.9)

is independent of z. In the Marshak’s approximation (see [16]), one assumes that the half flux

/ (# + )u(z, p)dp (11.4.10)



is conserved.
From (II.1.2), this quantity at z = 0, is equal to

[ wropemd
0<p+ec
-1<pu<+l
The limit of u at infinity, ue, is given by
Uoo / (u+c)dp= / (s +c)p(z, p)dp (I14.11)
0<pu+e 0L pu+e
-1<p<+1 -1<pu<+1

For ¢(p) = 4 and ¢ > 0, one obtains

(I14.12)

For ¢ = 0, this method gives for the extrapolation length the value 2/3.

For ¢ = 1, we remark that the half flux defined by (I1.4.10) is equal to the total flux (I1.4.9) and thus is
rigorously conserved. The asymptotic limit given by (I1.4.12) is therefore exact (ue = 1/3).

2) The spectral method

We compared the prediction of the asymptotic values uy, given by the Marshak approximation (formula
(I1.4.12)) to those given by the spectral method for N = 4, N = 10, N = 20 (figure 2), for different values
of c.

We notice that the result for N = 10 and N = 20 are very close to each other. We see on the curve of
the spectral method some bumps. They correspond to the parameters ¢ being eigenvalues of Ag,. At these
critical values, the dimension of E}, changes. In section (I1.3.c), we have obtained that if we denote by

1< -Ap2 < =Any221 < <=M <0< A < o < Apy2 21 < Mg

the eigenvalue of Ag,, then

if 0 < ¢ < A; then dim(E},) = n/2,

if ;; < ¢ < A4y then dim(EL) = (n/2) +1,

if Ay/2 < €< 1 then dim(E}) = n.

For N = 4, we have A\; ~0.34, )\, =~ 0.86

For N =10, A; ~0.149, )X, ~0.433, A32~0.680, X\;~0.865 s~ 0.974

Remark. For },,/; < ¢ <1, dim(E},) = n, the generalized eigenvectors ®; form a basis of E,, and the
decomposition (I1.2.4) is exact.

e, m)=p= > a;® +aoPo (11.4.13)
A,’)OI
Thus
(AenPo, i) = (Po, Aentt) = > (Po,3-Ba®:)  + co(Po, AenPo) = ao(Po, Aen Pr) = ape
Ai>0 '
and we get
lim w(z,u) = aoPy = = (I1.4.14)
e H) = 00_3c ) 4.

It is not very surprising to notice that Marshak’s formula (I1.4.12) and the spectral method for ¢ close
to 1 (relation (I1.4.14) ) give the same value for ue, and the same value for du,/dc at ¢ = 1 (this result is
apparent on figure 2).
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Proposition I1.4.1
The asymptotic limit given by the spectral method is continuous with respect to c.

Proof The continuity of the spectral result with respect to ¢ is obvious at any point different from an
eigenvalue of Ag,. Let us prove that it is also continuous at these critical points.

Let co be an eigenvalue of Ao, and ®; such that A.,,®; = 0. We denote with subscript ¢ (respectively
cp ) the limit of expressions dependent of ¢ when cg > ¢ — co (respectively ¢p < ¢ — ¢p). We get the
following natural relations

E},, = Span((¥)iz;, ®5) (I1.4.15)
Ej;n = Span((¥)iz;) (I1.4.16)

where Acon‘l’; = p;\I’,', p,'. >0 and \I’j = Qj.
Taking the limit ¢ — ¢f, the projection formula (I1.2.6) gives

Hj;,n (W)=Y _Bi% +B%=) a;fnj;,n(@-) + a;fn;}n(dy) (11.4.17)
i#j i#i
where

/\iAconQi = B,,Q,', /\.‘ > 0.
When ¢ — ¢; (I1.2.6) gives

O (W)=) A¥i=) oY (%) (11.4.18)
- %5 i#j °

(we have used (¥;,®;) = 0 for i # j to obtain the same f§; in expression (I1.4.17)-(11.4.18). From
(I1.4.15)-(11.4.16)

I}, (2) = (%;), T (2;)=0
and we have
I (8) = I (%) +(2;,9:)8;

Thus o} = o] and af = f; — ¥ of (®;,%:). In particular, for index i corresponding to ®; = Py, the
equality o} = o; proves that, using the spectral method, we obtain the same asymptotic value for problem
(IL.1.1)-(I1.1.2), when ¢ — ¢§ and ¢ — c5 . This concludes the proof of the above proposition.

3) Comparison with a direct computation

Description of the algorithm
Problem (I1.1.1)-(IL.1.2) is studied in the slab [0, L] instead of the half space [0,+00[. At z = L, we
prescribe one of the two different types of boundary conditions
- incoming flux
u(L,p)=f(p) givenfor —l<pu<—c (11.4.19)

- reflexion

u(L,p)=u(L,-2c—p), —-1<pu<—c (11.4.20)

Note that, for ¢ > 0, the solution in the slab does not depend on f except in a boundary layer near z = L.
The boundary condition (I1.4.20) prevents the apparition of this boundary layer (see figure 3) and allows us
to take a smaller value of L.
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We introduce the velocity and space discretization
Bbmn=-1 4+ mAp, 0<m<M, pu=1

zp=pAz, 0<p<P =zp=1L

We use the following iterative algorithm
Starting from flg =0, for 0 < p < P, and knowing iy solve
- for any integer m such that g, +¢> 0

n+l ) on4l n+1 n+1 o Mg
(Hm + ) u”“'"‘Az Zom "P“’"‘;' Zom _ “P+12+ %9, 0<p<P-1 (I1.4.21)
n+1

Uom = P(kim) (11.4.22)

- then from the knowledge of u;‘:},,m for any m such that g, + ¢ > 0 and the boundary condition

(11.4.19) or (I1.4.20), we get u;:}l,ym for integer m such that ., + ¢ < 0. We then solve equation (I1.4.21)
for these values of m with this boundary condition instead of (11.4.22).

- from u}?), we compute the value of iip*! by

1 m=M-1
= o ( +23 M)
) m=1

For ¢=0.5, L = 8, M = 50, P = 100, using 80 iterations, we have represented on figure 3 the value of
t(z) given by this method using the two different conditions (I1.4.19) and (11.4.20), (¢(p) = p and f(u) = 1).

We have thus obtain the asymptotic value of the solution u., = 0.51369. For N = 4,10, 40 the spectral
method gives respectively uo, = 0.51167,0.51337,0.51370 and the Marshak’s approximation uy, = 0.5 .

On figure 4, the first curve represents the solution u(0,#) computed by this direct method (with the
same numerical parameters) and the other curves, the results given by the spectral method for N = 20
(the second curve is II}, (1), the third curve is the approximate solution given by the spectral method at
z = 0). For the Albedo problem, we are interested in the distribution of particles with velocity u less than
—c. Instead of taking the restriction of the approximate solution for those values of i, we use the orthogonal
projection IIZ, on the eigenvectors of A, associated with negative eigenvalues (cf the restriction for yu > ~¢
and the introduction of II},). The fourth curve is the projection IIZ, of this approximation and gives a
better solution of the Albedo problem (we have less oscillations).

Comparison of the computational cost

In the spectral method, we solve two eigenvalues problem for nxn symmetric and tridiagional matrix
and we use a least square algorithm to compute the solution of the system (11.2.6).

In the direct method, the computational cost is proportional to the product of M by P and by the
number of iterations (which gives 40 000 in our case). In this direct method, more iterations are needed for
small values of ¢.

The spectral method is in any case less time consuming and gives accurate results.

Notice also that if we want to solve problem (I1.2.1)-(I1.2.2) for different functions ¢, the computation
of the two eigenvalue problems is only needed to be performed once. Moreover, if we compute the inverse
of the decomposition operator, we get the matrix of the linear operator which gives the coefficients of the
decomposition (I1.2.6) (and therefore the solution of the initial problem (I1.2.1)~(11.2.2)) in terms of . Then,
using this matrix, we get the solution of this problem for any ¢ in a very efficient way.

Remark. In the spectral method, one can use a large value of N and this gives a good result in the
Legendre space. However, when, for example, we want to compute the outgoing flux for different values of
p, we have to face a problem of precision because for |u| close to 1, it is difficult to evaluate a Legendre
polynomial of order N > 40 at point u. Therefore, to use the spectral method with N > 40 for the Albedo
problem, we have introduce a filter. When we have the solution in the Legendre space, we then take only
into account the 20 first polynomials to plot the solution in terms of p#. However, the quality of the solution
is close to the results obtained with the spectral method with N = 20; to get better results, it seems that
we have to improve our filter.
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III THE LINEARISED B.G.K. EQUATION

The B.G.K. equation is simpler than the Boltzmann equation and for this reason was intensively studied
as a model for rarefied gas dynamics. In this model, the collision operator is replaced by a relaxation towards
the local Maxwellian state (see [5]).

‘We now derive the spectral method for the linearised B.G.K. equation.

1. Introduction

We linearise the B.G.K. relaxation term around a given Maxwellian

2
Mo(§) = (-27,—1}0)7,2«:::» (—12%%) (I11.1.1)

(the presence of a mean velocity in Mp(€) is already taken into account by the drift v in (I.1.1) ).
The linearised B.G.K. operator is written as

Lf=f—-=(f) (I11.1.2)
where 7(f) is the orthogonal projection in L?(df) of f on Span(¥a), a =0,1,2,3,4

a=4

() =) <Yarf>a (I11.1.3)

a=0

<fg>= / F(©)a(E)de

Yo(€) = MM, ¢.~(s)=ioMé’2, 21,23 yae) = EEZ3To,00

vTo V6T,

In order to use Hermite polynomials, we take Tp = 1/2 (this covers in fact the general case by a change
of velocities § and v in (I.1.1) ).

We have the following result

Proposition IIL.1
-If0 < v < \fBTo/3 = \/5]6, for any € L*((1 + |€|)d¢), there ezists a unique solution x €
L>(dz, L*((1+ [€])d€) of (1.1.1)-(1.1.2) such that

/ Six(2,6)dE =0 . (I111.1.4)

- if v > 1/5/6 (respectively —\/5/6 < v < 0; v < —\/5/6), we have ezistence and uniqueness of a solu-
tion of (1.1.1)-(1.1.2) without the additional condition (III.1.4) (respectively with 4; 5 additional conditions).

(see Greenberg and Van der Mee [17] for a proof, and also [10]).
We use the Hermite polynomials multiplied by (7)~/4ezp(—22/2)

1 z? V2 z? 222 -1 z?
Po(z) = mzezp(=3),  Pu(@) =zppean(—5), Poz) = Wezp("?)s“'

We thus obtain
Yo(€) = Po(&1) Po(§2)Pol8s),  %1(€) = Pr(€1)Po(E2) Po(€s), (idem for 42, 93),
Ya(§) = %(Pz(fl)PO(fz)Po(Ea) + Po(€1) P2(€2) Po(€3) + Po(€1) Po(€2) Pa(€3)) (I11.1.5)
As in the previous section, we assume that ¢(€) is decomposed on Pi(£;) P; (€2) Pe(£3)
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(&) = E €5,k Pi(§1) P (€2) Pi(§3)

4.5,k
We thus have to study the case p(¢) = Pi(&1) Pj(&2) Pe(&3).
Remark IIL.1If § > 2 or k > 2 then

X(zif) = 0: for £1 +¢<0

£ PEIPE@R(G), for&i+c>0

is a solution of (I.1.1)-(I.1.2) (we have n(x) = 0).

Moreover, if ¢ is odd (respectively even) with respect to ¢, there exists a solution y of (I.1.1) odd
(respectively even) with respect to £€;. We also notice that the variables &2 and &3 play similar roles.

We thus have to study the two cases

P(§) = Pi(&1)Pu(&2)Po(&3)
P(&) = Pi(61)Po(§2) Po(€3) or  Pi(€1)Pa(€2)Po(€3)

x(2,§) = exp(—

2. The case ¢(£) = P;(&1)Pi(€2)Po(€a)

A) Reduction to a one dimensional velocity problem

We are looking for a solution x of (1.1.1)-(I.1.2) of the form

x(2,€) = X'(,&1)P1(€2) Po(&s) (I11.2.1)
From (I.1.1)-(1.1.2), x’ must satisfy

€ +0)0x +x' -%' =0 (111.2.2)
X'(0,6)=Pi(&y), &1+v>0 (I11.2.3)

with
x'(2,61) = Po(€1) (/ X'(-’Byﬁi)Po(Ei)dfi) (I11.2.4)

Problem (II1.2.2)-(II1.2.4) is quite similar to the simple transport equation studied in section II (the
velocity variable belongs to a one dimensional space) except that the velocity space is not bounded.

Using Hermite polynomials instead of Legendre polynomials, we derive the same kind of spectral method.

B) Numerical results
1) The case v =0 ‘
When v = 0 and ¢(§) = P1(£1)Pi(£2)Po(€3), there exists a constant [ such that

Jm x(2,€) =1 Po(&)Py(£2) Pol&s) | (I11.2.5)

This constant is related to the coefficient of the slip boundary condition for the tangential velocity at the
Navier-Stokes level (see Coron [9]). This problem have been intensively studied for the B.G.K. model (but
also for the linearised Boltzmann equation). Direct computations of the Couette flow have been performed,
comparisons with experiments were made by Reynolds, Smolderen and Wendt [23] and variational methods
have been proposed (Cercignani [5], Golse [16], Loyalka [21]).

The Marshak’s approximation gives | = 1.253.

The variational method of Loyalka [21] gives | =~ 1.4245.
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[8)

The true value is | ~.1.437 (see Cercignani [4], Loyalka [21], Sone and Onishi [25]).
The spectral method gives

N Iy N Iy
4 134 40 1.432
10 1411 50 1.433
2 1426 . 60 1.434
30 1.430 70 1.434

2) The case v #0

The Marshak’s approximation presented in section I11.4.B.1 leads to

[ @+or@p@d=1[  (@+o)Pe) R
§14+v>0 §1+v>0 -
Thus .
_ V2 [} exp(-€)déy

2v fjuw exp(—£2)d¢y + exp(—v?)

In figure 5, we have represented the value of I predicted by the Marshak method, formula (II1.2.6) (curve
1), and the results of the spectral method with N = 4,10,20 (curves 2,3,4) for v € [0,2].
As expected, the results are similar to those obtained for the simple transport equation.

l

(I11.2.6)

3. The case ¢(£) = P;(é1)Po(€2)Po(€3) or  Pi(€1)Pa(€2)Po(é3)

A) Derivation of the spectral method
We are looking for a solution x of (I.1.1)-(I.1.2) when

@(€) = Pi(€1)Po(&2) Po(€3) or  Pi(€1)Pa(€2)Po(€s)

of the following form

x(2,€) = x1(2,§) Po(€2) Po(€3) + x2(2,§) P2 (€2) Po(€a) + x3(z, ) Po(§2) Pa(§s) (I111.3.1)

where x1, x2, x3 satisfy linear half space coupled equations. To solve this problem with the spectral
method, we consider the first n Hermite polynomials Py, Py,...P,_; and we define by Ej3, the space of
dimension 3n spanned by P;(€1)Po(€§2)Po(€3), Pi(§1)P2(€2)Po(€3), Pi(&1) Po(&2) Pa(€3) for 0 <i<n—1.

As in section II, A,3, is the truncation on E3, of the operator of multiplication by &; + v and Bz, the
operator on E3, corresponding to Lf = f — n(f).

The matrix of Ayan is formed by three identical n x n blocks (the multiplication by &; + v acts only on
the dependence with respect to £;).

For the spectral method, we consider the generalized eigenvalue problem

As'Au3n‘Di = B3n¢i (III.3.2)

The space of solutions of (II1.3.2) with A; = 0 is spanned by o, ¥1, ¥a.

As in section II, let EY,, be the space spanned by the eigenvectors of A,3, associated with positive

eigenvalues and II;,, the orthogonal projection on E};,. The decomposition of ¢

W) = Who (lo¥o + livoy +lavba + 3 i) (I11.3.3)
Ai>0
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gives in particular the asymptotic limit of the solution x

Xoo = lotho + Lith1 + 434 (I11.3.4)

For any value of n, we obtain that , for /5/6 < v (respectively 0 < v < 1/5/6 ), the number of positive
or null generalised eigenvalues ); of the equation (II1.3.2) is equal to the dimension of E};, (respectively
dimE"fan+1).

For 0 < v < /5/6, this corresponds to the fact that we can prescribe the additional condition (I11.1.4) for
the problem (1.1.1)-(I.1.2). For the spectral method, this additional condition corresponds to the constraint
Iy =0in (111.3.3).

B) Numerical results

Notice that the Marshak’s approximation leads to the following system for the unknown components
10,11, I4 of Xoo ON ¢0,¢1,¢4 (see (11134))

/ €1+ v)pvade = > I / (€1 +v)¥ivbade for a=0,1,4 (I11.35)
§1+v>0 §1+v>0

i=0,1,4

Thus (II1.3.5) is a system of 3 equations. For v > 1/5/6, there are 3 unknown lo, 1,14 but for 0 < v <

\/5/6, we are looking for a solution xo, with Iy = 0 ; there are only two unknowns.
We have studied the case

©(€) = (V3/2) P3(€1) Po(£2) Po(€3) + (Pr(€1) Pa(€2) Po(€3) + Pu(€1) Po(£2) Pa(£s)) /2

For v = 0 using the Marshak’s method with equations (II1.3.5) with @ = 0,4 only, we obtain Iy =
=5/7/16 ~ —0.5539, Iy = 5v67/16 ~ 1.35675 whereas a least square method to solve (I.3.5) gives
lp~—0.547, 14~ 1.355. '

Note that l4 is related to the temperature jump at the wall due to the slip boundary conditions for the
Navier-Stokes system (see [9]).

A variational method (Loyalka [21]) gives [4 ~ 1.5767 whereas a direct computation performed by Larini
and Brun [20] gives I5 =~ 1.6 and Sone, Onishi [25] find 14 ~ 1.596.

The spectral method gives

N Iy Iy

4 -0.37156 1.25127
10 -0.7026 1.5638
16 -0.7230 1.5792

In the subsonic case, 0 < v < 1/5/6, figures 6 and 7 are devoted to the variation, with respect to v, of
the components lo,l4 of the asymptotic state of the solution x with the mass flux I; equal zero. The first
curve represents the Marshak’s approximation using equations (11.3.5) with o = 0,4. The three other curves
represent the results of the spectral method for N = 4, 10, 16.

In the supersonic case (1/5/6 < v), the components lg, 11,1, are represented on figures 8, 9, 10. The
first curve represents the Marshak’s approximation, the three other ones, the results of the spectral method
(N =4,10, 16).

For n = 4, the spectral method is not very accurate whereas for N greater or equal to 10 the results
obtained seems to be correct.
For v >> 1, the Marshak method gives the asymptotics

l ~_iv-3 l N_i l Ni.v’
0 — 12 ’ 1= 6\/‘2 ) 4""2\/6

These results are in agreement with the spectral method for n = 4, 10, 16.

-2
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