-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

An empirically-derived control structure for the process
of program understanding

Francoise Détienne, E. Soloway

» To cite this version:

Frangoise Détienne, E. Soloway. An empirically-derived control structure for the process of program
understanding. [Research Report] RR-0886, INRIA. 1988. inria-00075668

HAL Id: inria-00075668
https://hal.inria.fr /inria-00075668
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075668
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 886

AN EMPIRICALLY-DERIVED

CONTROL STRUCTURE FOR

THE PROCESS OF PROGRAM
UNDERSTANDING

Francoise DETIENNE
Elliot SOLOWAY

AOUT 1988

Mg

r R oo A R N AR - B RIS T PG TR oK 77 1 A A= SN

'An Empirically-Derived Control Structure
for the Process of Program Understanding!

Une structure de contrdle dérivée empiriquement
pour le processus de la compréhension de programmes

Frangoise DETIENNE
Projet de Psychologie Ergonomique pour l'Informatique
Institut National de Recherche en Informatique et Automatique
Domaine de Voluceau, Rocquencourt '
B.P. 105, 78105 Le Chesnay (France)

Elliot SOLOWAY
Department of Computer Science
Cognition and Programming Project
Yale University
New Haven, CT 06520 (USA)

Thanks are due to David Littman for helpful comments on the manuscrit.

1Cet article a été soumis pour publication 2 la revue "International Journal of Man-Machine
studies” en juin 1988. L'expérience qui y est décrite a été réalisée a 'occasion d'un stage de
recherche fait 2 1'Université de Yale par le premier auteur cité. Ce stage était financé par une
bourse postdoctorale accordée par 'TNRIA.

0

Abstract

The contribution of this study is the identification of different mechanisms
involved in program understanding by experts, specifically the mechanisms which
cope with novelty. An experiment was conducted to identify and describe the
expert's strategies involved in understanding usual (plan-like) and unusual
(unplan-like) programs. While performing a fill-in-the-blank task subjects were
asked to talk aloud. The analysis of verbal protocols allowed the identification of
four different strategies of wunderstanding. Under "normal" conditions the
strategy of symbolic simulation is involved. Information extracted from the
program allows the activation of schemas and evoked knowledge creates
expectations on what information should be in the program. But when failures
occur additional strategies are required. The authors identified three types of
understanding failures the subject may experience (no expectation, expectations
clashes, insufficient expectations) and the additional strategies invoked in those
cases: (1) reasoning according to rules of discourse and principles of the task
domain, (2) reasoning with plan constraints, (3) concrete simulation. The authors
develop an operational description of these strategies and discuss the control
structure of program understanding in the framework of schema theory.

Key words: Understanding, Programming, Processes and Knowledge.

Résumé

La contribution de eette étude est l'identification des différents mécanismes mis
en oeuvre dans l'activité de compréhension de programmes non familiers par des
experts. Une expérience a été conduite pour identifier et décrire les stratégies
mis en oeuvre par des experts pour comprendre des programmes canoniques et
non-canoniques. Les sujets devaient compléter des lignes effacées dans des
programmes. Il leur était demandé de verbaliser. L'analyse des protocoles
verbaux a permis d'identifier quatre stratégies de compréhension. Dans des
conditions "normales", une stratégie de simulation symbolique est mise en
oeuvre par les sujets. Les informations extraites du programme permettent aux
sujets d'évoquer des schémas de connaissances. Les connaissances évoquées
permetient en retour d'attendre certaines informations dans le programme lu.
Deés que des difficultés de compréhension sont rencontrées, des stratégies
supplémentaires sont mises en oeuvre. Les auteurs distinguent trois types de
difficulté de compréhension: pas d'attente, attentes non satisfaites, attentes
insuffisantes. Trois stratégies supplémentaires sont mises en oeuvre:(1)
raisonner avec des régles du discours et des principes élémentaires du domaine
du probléme posé, (2) raisonner avec des contraintes associées aux schémas, (3)
simulation concréte. Les auteurs développent une description opérationnelle de
ces strategies et discutent de 1la structure de contréle des processus de
compréhension dans le cadre de la théorie des schémas.

Mots clés: Compréhension, Programmation, Processus et Connaissances.

PAPIER RECUPERE ET RECYCLE

1. Theoretical framework and goals

Various approaches to program understanding (Rich, 1981; Soloway, Ehrlich, Bonar
& Greenspan, 1982; Soloway & Ehrlich, 1984) have been developed from Schen}a
Theory. A Schema is a data structure that represents generic concepts stored in
memory. The concept of a schema was developed in Artificial Intelligence (Schax}k
& Abelson, 1977; Schank, 1980) to account for natural language processing and in
Psychology (Bower, Black & Turner, 1979; Rumelhart, 1978, 1981) to explain
results of studies on sentence memorization.

From the perspective of Schema Theory, understanding a program involves the
evocation of schemas stored in memory. To date most authors have sought
principally to identify the knowledge that programmers have and use in
understanding programs. According to this work, experienced programmers
possess "Programming plan", e.g. program fragments that represent stereotypic
action sequences in programming.

Soloway et al. (1982) have formalized different programming plans2 and rules of
programming discourse which experts possess. These rules that are analogous to
discourse rules in conversation specify conventions in programming, e.g., the
name of a variable should agree with its function. Results of previous
experiments have supported the hypothesis that expert programmers have and
use these types of programming knowledge to support program understanding
(Soloway & Ehrlich, 1984).

Knowledge, however, is only one aspect of program understanding, another being
the cognitive mechanisms that use knowledge. In order to develop a more
complete cognitively-based understanding of programming we need to develop a
model that posits cognitive mechanisms that interact with experts' knowledge in
order to produce the behavior of program understanding.

Some researchers (Brooks, 1983; Détienne, 1988a; Détienne 1988b, Letovsky,
1986a; Pennington, 1987) have modeled some of the cognitive mechanisms
involved in program understanding. Détienne has collected and analyzed
protocols which highlight the involvement of schema activation processes in
either a data-driven (bottom-up) or conceptually-driven (top-down) manner in
program understanding by eéxperts.

Our goal is to collect data on the mechanisms involved in program understanding
by experts specifically the mechanisms which cope with novelty. We assume that
understanding a program requires constructing a representation of a program
which consists mainly of plans and goals. This structure of goals and plans used
to achieve the goals represents an explanation of what the program does and
how it is done.

In the theoretical framework of Schema Theory, we can predict in which types of
situation the mechanisms involved in program understanding might differ from
one another. We can distinguish different situations as a function of the match
between the program characteristics and the characteristics of the experts'

2A plan can be formalized as composed of slots (or variables). It includes constraints on the
form in which they can be implemented, i.e., constraints on the values by which the plan's
slots can be instantiated.

knowledge.

In a situation which we will call the "plan-like situation", the plans implemented
in the program are very similar to the mental plans we believe subjects possess.
In this plan-like situation, the activation and instantiation processes might be
sufficient to understand a program: some cues evoke plans and there is a match
between evoked plans and information extracted from the code. In particular,
because program readers can match their internal representation of the plans
very directly with the code in the program, the program reader does not need to
explicitly reconstruct the causal relationships between the pieces of code in the
program. Nonetheless we can expect failures whenever the cues that allow
experts to evoke plans are not available in the code.

Most of the time the plans implemented in programs are in various ways
different from the mental plans possessed by experts, SO the - activation and
instantiation processes are not sufficient to account for program understanding.
In these types of situation which we will call the "unplan-like situations3",
either the way the plans are composed is not prototypical (usual) or a plan is
implemented with a value which is not prototypical. Other mechanisms might be
involved in constructing a representation of program.

A way of constructing unplan-like programs is to construct programs that violate
some rules of discourse. These rules set up expectations in the minds of the
programmers about what should be in the program. While understanding
programs which do not conform to rules of programming discourse,an expert
should experience failures insofar as the expectations drawn from his/her
knowledge are not effective. He/she will then need to carry out more mental
processing on the program. In particular, he/she might regenerate the causal
links between the pieces of code, e.g., the programmer might make explicit the
data flow, control flow, and goal relationships between the pieces of unplan-like
code. These types of situation can be described as "no plan situation", i.e. the
expert has no mental plan already constructed to explain the code.

The goal of this study is to identify different strategies involved in program
understanding. As the planliness appears to be a relevant property with regard to
the type of mechanisms which are selected and involved, it is important to
collect data on the mechanisms involved in understanding programs that are
either plan-like or unplan-like.

Our experiment has been conducted to identify and describe the experts’
strategies involved in understanding plan-like and unplan-like versions of
programs. The task of understanding is the fill-in-the-blank task in which
subjects have to infer a blank line in a program. In order to identify different
strategies involved in program understanding we collected data on the real-time
activity of the program understanding. Having subjects talk aloud as they
actively engage in an understanding task provides this sort of window onto
subjects' processing strategies, and, then provide us with a more explicit view of
the processes by which subjects develop their answers. Nevertheless the result
of subjects'’ mental processing, i.e., the correctness of the answer in the fill-in-
the-blank-task might allow us to evaluate the strategies used by subjects, i.e.,

3All situations are probably more or less plan-like. The planliness of a program is matter of
degree on a continuum from sheer plan-like to sheer unplan-like situations.

their effectiveness.

In the remainder of this paper, we present the method we used to conduct our
experiment. The data collected, i.e.,” verbal protocols collected during the
understanding activity and the answer given as the result of the activity, have
enabled us to construct a computational description of how understanding
processes work, i.e., identify the conditions for the selection of a strategy, the
goal the strategy tries to achieve, different characteristics of the strategy as the
characteristics of the constructed representation, and the type of knowledge
used.

2. Methodology
2,1. Subjects

Twenty two experienced subjects4 participated in this study. All of them had at
least two years of experience in programming with Pascal. These subjects were
paid $15 per hour for participating in the experiment.

2.2. Material

Four programs5 were used: Average, Sqrt, Maxnumber, Maxsentence. For each
program, two versions were constructed: a plan-like version and an unplan-like
version (see the Appendix).

2.3. Procedure

The subjects performed a fill-in-the-blank task: one line of the code was erased
and the subjects had to fill the blank line in with a line of code that in their
opinion best completed the program. We did not tell the subjects what the
program was supposed to do. However, since there is only a single blank line per
program, a great deal of context remained.

Five programs were presented successively to each subject. The first one was to
familiarize the subjects with the task. The four other programs consisted of two
plan-like programs and two unplan-like programs. Each subject received the four
different program types but never received the plan-like and unplan-like version
of the same program type. The order of presentation was counter-balanced.

Subjects were told their task was to fill in the blank line with a line of code
which in your opinion best completes the program. They were asked to talk aloud
during the experiment, i.e., talk about what they were
doing/thinking/reading/writing everything that went through their head during
the experiment. They were given as much time to perform the task as they
wanted; almost all finished within thirty minutes. .

4Most of them were graduate students in the Department of Computer Science at Yale
University.

5There are the same programs which were used in the previous experiment by Soloway et
Ehrlich (1984).

Subjects were then asked to rate the program comprehensibility and to rate the
confidence they had in their answer. The points on the scale of program's
comprehensibility were: (1) impossible to understand, (2) somewhat hard to
understand, (3) somewhat easy to understand, (4) very easy to understand. The
points on the scale of confidence with one's answer were: (1) not at all, (2)
somewhat unsure, (3) fairly sure, (4) positive.

The responses in the fill-in-the-blank task were scored by the following
weighting scheme: (0) no reponse was made, (1) incorrect response, (2)
acceptable response, (3) correct response. By correct response, we mean the line
of code that in our judgement best fulfills the overall intent of the program; it
corresponds to the same answer in the plan-like and unplan-like versions of the
same program. However in some case even if the answer is not the one expected,
we have considered it as "acceptable" inasmuch as it completes the program in a
consistent way.

They were four dependent variables: accuracy of the response, time spent to
complete the problem, score of program's comprehensibility, score of confidence
with answer.

3. Main__results

As expected, the programs' planliness had an effect on the subjects' program
understanding activity. Comparing the behaviors of experienced programmers in
a plan-like and an unplan-like situation they performed better in the plan-like
situation. The subjects’ responses on the plan-like versions were significantly
more correct than their responses on the unplan-like versions (Mann-Whitney U
test, z=1.87 , p=.03).

The timing data gathered in the fill-in-the-blank task should be suggestive for a
model of the processing strategies employed by programmers. It is found that
the time spent to perform the task is significantly longer on the unplan-like
versions than on the plan-like versions (F (1/84) =7.85, p<.01). Furthermore, it
took subjects 72% more time to respond correctly to the unplan-like versions
than it did to respond correctly to the plan-like versions. This suggests that more
processing is required to understand an unplan-like program than to understand

a plan-like program6 inasmuch as processing is time-consuming.

Furthermore, subjects judged the unplan-like programs less comprehensible than
the plan-like programs. (Mann-Whitney U test, z=4.05, p<.00003) and they are
less confident with their answer for unplan-like programs compared to plan-like
programs (Mann-Whitney U test, z=2.71, p<.0034).

It appears that four different strategies account for the behavior of subjects. In
Figure 1, the strategies are roughly described and illustrated by protocols'
excerpts. These different strategies involved in program understanding have
been identified by the analysis of the verbal protocols collected while subjects
performed the task. For each subject in each condition we have characterized
his/her activity of understanding by identifying the different strategies he/she
used to perform the fill-in-the-blank task. These data are displayed in Figure 2 in

6The results presented above replicate previous findings of Soloway & Ehrlich (1984).

which we present for each condition how many subjects exhibited the use of a
certain combination of strategies’.

Figure 2 makes it clear that the strategy called "symbolic simulation" is involved
in all conditions. In fact, we have observed that this is the first strategy applied
in program understanding. What differs according to the condition is the type of
the additional strategies used.

As expected, extra processing is involved when the programs are unplan-like,
i.e., other strategies are involved in addition to the symbolic simulation. The
strategy called "reasoning on plan characteristics”" is only involved in unplan-like
situations: for the Maxnumber program, this strategy is used significantly more
often in the unplan-like condition than in the plan-like condition (Chi-squared
test=15.23, p<.001). The strategy called "rules of discourse and goal plausibility"
is mostly involved in unplan-like situations: for the SQRT program, this strategy is
used significantly more often in the unplan-like condition than in the plan-like
condition (Chi-squared test=8.25, p<.01). The use of these strategies may
therefore be related to, and even possibly triggered by, the failures subjects
experience when the code does not conform to their expectations.

Another finding is that the use of a particular strategy seems to be dependent
not only on the program planliness. Some strategies are used only for certain
program types. For example, the strategy "concrete simulation” is mostly used
only to understand the program type called "Average". In fact it seems that even
in what we have called "plan-like situations” subjects may experience failures.
This suggests that a more precise characterization of situations which entail
failures must be made to account for the selection of each strategy by the
subjects. This account will be the focus of the next section.

4. A ional description of eoi

Symbolic simulation is the strategy used as long as the subject does not
experience any understanding failure. Our data suggest that, inasmuch as no
failure occurs, this strategy leads to the integration of information extracted
from the code into a goal/plan representation. As soon as understanding failures
are experienced, additional strategies are invoked.

A kind of failure which we call "no expectation" may be experienced whenever no
plan can be evoked or plans evoked are too genmeric to account for the code in a
definite enough way. The subject must construct a new plan to account for the
code. We will illustrate later on that the strategy which appears to be involved in
this case is the one called "reasoning according to rules of discourse and
principles of the task domain". The subject builds up a new plan from elementary
principles in the programming domain and in the task domain and also from
generic programming plans8.

Another kind of failure which we call “insufficient expectations" may be
experienced when an activated plan must be integrated into a representation

TThe "not categorized” category of Figure 2 corresponds to four protocols in which the subject
has not verbalized enough to allow us to analyze his/her actiuvity.

8A generic plan represents a very general structure of a programming object.

which is a composition of plans about which the subject judges he/she does not
have enough expectations according to certain criteria. We will describe a
situation in which one plan of this composition has non-prototypical values and
another plan is a count plan. In this kind of situation, the subject seems to judge
he does not possess enough information based on the goal/plan representation to
check for unforeseen interactions between plans or, in other words, to evaluate
the external coherence between plans. This triggers the use of a strategy called
"concrete simulation".

The values implemented in a plan are dependent not only on the constraints
internal to a plan but they must be, in some way, dependent on the context in
which this plan is implemented. Evaluation the external coherence between plans
consists in checking whether or not there are interactions between plans and
between goals and if they create any constraints on the implementation of plans.

A third kind of failure may be called "expectation clashes". This is experienced
whenever a value of the code contradicts the constraints on the instantiation of
a plan. The subject sees in the code a value which is not expected and sometimes
even contradicts what he expects to see. In this case, we will illustrate that the
kind of strategy which is exhibited is the one called "reasoning on plan
constraints”. In these circumstances the subjects spend more processing effort
to evaluate the internal coherence of the activated plan which lead them either
to keep this plan, with some modifications, or to activate an alternative plan to
account for the code. '

Plans can be formalized as composed of slots (or variables). They are assumed to
include constraints on the form in which they can be implemented, i.e.,

constraints on the values by which the plan's slot can be instantiated?. Evaluating
the internal coherence into plans consists in checking whether or not the values
instantiated in plan satisfy the constraints on the instantiation of the plan's slot.

In the following paragraphs we develop, for each strategy, an operational
description which makes explicit the conditions for the selection of a strategy in
terms of the kind of failure the subject experiences and the goal achieved by the
strategy. This is summarized in Figure 3. The description of the strategies was
given earlier and can be found in Figure 1. Each strategy will be illustrated
through excerpts of verbal protocols. Based on our data we also attempt to
evaluate the effectiveness of each strategy.

4.1. Symbolic simulation

4.1.1. Conditions for the selection of the strategy

This strategy is the first one used by subjects to understand a program and so is
not triggered by understanding failures of all types. On the contrary, this
strategy leads to different kinds of failures depending on the situation. As we
have seen previously, this strategy is involved in the understanding activity
whatever the program planliness and type are (see Figure 1), but these situations

91Instraslot constraints define a set of values allowed to instantiate a slot and interslot
constraints define a subset of values which can instantiate a slot if another slot has been
instantiated by another value. For instance, in a Count-plan, an intraslot constraint may bear
on the form of the updating of the count-variable: "the updating must be an incrementation”.

differ depending on whether or not this strategy is used alone. In the plan-like
situation, the use of symbolic simulation represents 93% of the observations. In
77% of these observations, this strategy is the only one used. On the other hand,
in the unplan-like situation, subjects use this strategy in 95% of the observations
and this strategy is used alone in only 40% of these observations.

4.1.2. Goal

Our observations lead us to the conclusion that the goal of this strategy is to
construct a goal/plan representation of the program. The fact that this strategy
leads to the integration of information extracted from the code in a goal/plan
representation is obvious in the following excerpt recorded after a subject has
used this strategy in a plan-like situation:

(Maximum plan-like, subject 1)

...That looks like a maximum algorithm of some type, it looks like it loops ten
times, reads a number, compares the number to maximum and sets Max to Num if
something is true, then this must be, oh | guess "greater than"

After having used a symbolic simulation the subject is able to make explicit the
different subgoals of the program ("loops ten times, read a number") and he
evokes a programming plan for computing a maximum ("it looks like a maximum
algorithm of some sort"). When the symbolic simulation is successful, i.e., has
allowed the construction of a goal/plan representation of the program, then
inferring the missing line is quite straightforward and rapid as in the excerpt
above ("I guess greater than").

In some protocols, it is made explicit how the representation constructed as a
result of the symbolic simulation allows the subject to infer the role of the
missing line. This is explicit in the protocol of some subjects for the Average
program as in the following excerpt.

(Average unplan-like, subject 1)

....OK, Sum is initialized, Num doesn't need to be because you get it then you add
it...and Count, oh Count has not been initialized, OK, I was looking for something
to be initialized, Count should be initialized...

After having performed a symbolic simulation of the program, the subject. draws
the inference that the role of the missing line is the initialization of a variable
and then checks which variable has not been initialized yet. In this case the
subject seems to use two types of knowledge: knowledge of the role structure of
the program (input, calculate, output) and knowledge of specific programming
plans (a count plan in this case). Then he relates them together: the role of the
missing line is "input" which can be related to the slot "initialization" of a
variable plan. One constraint of initialization for a Count-variable might be: the
initialization must be an assignment by 0, +1 or -1, 0 being the most prototypical
value. Then this constraint may be used in order to infer the missing initialization
of a Count-variable.

4.1.3. Empirical evaluation

When used alone, this strategy is effective for inferring the missing line in the
plan-like situation and leads to correct reponses in 94% of the observed cases.

However, when wused alone in an unplan-like situation, it leads to correct
responses only in 41% of the observed cases. This confirms that in these cases a
symbolic simulation is "not sufficient to construct a correct goal/plan
representation of the program.

4.2. Reasoning according to rules of discourse and principles of the
task domain

4.2.1. Conditions for the selection of the strategy

This strategy, involved in 34% of the observed situations, is used when subjects
experience a failure which we have called "No expectation". It is used by
subjects for the Maxsentence program whatever version it is and for the unplan-
like version of the Sqrt program (see Fig 1).

In the Maxsentence program, even in its plan-like version, it seems that the plan
implemented in the program (RESET to boundary condition PLAN) cannot be evoked

by the subjects and even confuses the subjectslO. In this situation, therefore,
we can say that the condition for the selection of this strategy is that no mental
plan and no goal account for the program Maxsentence. The fact that subjects
cannot evoke the RESET PLAN can be explained in two ways: (1) the RESET PLAN is
not familiar to subjects, which is unlikely for experienced subjects, or (2) the
RESET PLAN cannot be evoked because the missing line is the most informative
line in this plan of the program and thus, what Brooks (1983) would call a beacon.
The fact that no plan accounts for the program is clear in the following excerpts,
recorded before some subjects start using this strategy.

(Maxsentence unplan-like, subject 19)

...I don't know what they want to do with "while sentence greater than
Maxsentence”...

(Maxsentence unplan-like, subject 15)

...What the program is for?...

For the unplan-like version of the Sqrt program, no goal accounts for the
program. The subjects judge that the goal which is "to compute the square root
of the same number ten times' is not plausible and, so, reject this goal.

(SOQRT unplan-like, subject 1)
.If it would be doing this around ten times it would not doing anything...

4.2.2. Goal

The goals of this strategy are to construct a new plan and to evaluate the
internal coherence of this plan. The subjects construct a new plan by the
evocation of rules of discourse, principles of the task domain and also the
evocation of generic programming plans.

For. the sqrt unplan-like version the construction of a new plan is made on the
basis of a generic plan that has been modified (specialized). Most of subjects

1050me subjects try to activate familiar plan as for example a Maximum-search-loop-plan but
this misleads them and they realize this is wrong because a value in the code is inconsistent
with this plan, i.e., the fact that Max is a constant and not a variable.

10

seem to have evoked a very generic plan "input data and compute data". T_his
generic plan is sufficient in the plan-like situation to infer the role of the mi§s1ng
line. As the variable Num is computed in some way, then it must be input
somewhere and a protypical way to do this is via a read statement. But in the
unplan-like version, both of the slots of this generic plan are filled in as the Num
variable is initialized via an assignment. The subjects realize that it makes the
goal of the program implausible inasmuch as this would compute the square root
of the same number ten times.

The subjects try to infer the subgoal (or role) achieved in the program by using
rules of discourse ("if there is a loop then something must change at each
execution" or " if there is a test for a condition then the condition must have the
potential of being true"). This allows the subject to infer a modification of the
goal and then a subgoal which would be more plausible, which is "modify data".
In those situations, the programmer generates the causal links between the
pieces of code, e.g., he makes explicit the goal relationship between the pieces
of code.

4.2.3. Empirical evaluation

This strategy is relatively effective. It leads to errors in only 20% of the observed
situations.

4.3. Concrete simulation

4.3.1. Conditiops for the selection of the strategy

The strategy of concrete simulation is used whenever subjects experience the
kind of failure which we have called "insufficient expectations": an activated
plan must be integrated in a composition of a plan about which the subject
judges that he does not have enough expectations according to certain criteria.

The strategy of concrete simulation is used for the Average plan-like and Average
unplan-like versions. What is specific to those programs is-that a loop is used
with a counter. This leads us to say that the presence of a count plan can trigger
this strategy. In this kind of situation, the subject seems to judge that he does
not possess enough information based on his goal/plan representation to
evaluate the external coherence between plans. This is shown in the following
excerpt in which the subject justifies why he has used a concrete simulation.

(Average plan-like, subject 8)
-.The problem is making sure that you're not off by one, the option is setting by
zero, -1, +1 and you have to make sure...

In the unplan-like condition, the simulation is run with the sentinel value by 6
subjects whereas this is done only by 2 subjects in the plan-like condition (this
difference approaches conventional levels of significance by Fischer's exact test
(p=.07). The unplanliness of the program affects the initialization value of the
sum plan (running-total-variable plan), which is not prototypical. This value also
represents the sentinel value of the loop plan. In this case, this value is used for
the mental execution of the program, so the unplanliness of the program triggers
a more specific strategy which is mental execution of a sentinel value. That
means that the strategy of concrete execution which is unspecified when the

11

program is plan-like, is used in a more specific way when the program is unplan-
like.

4.3.2. Goal

Our observations lead us to say that the goal of this strategy is to evaluate the
external coherence between plans. i.e., to check for unforeseen interactions. The
kind of representation which supports this strategy is dynamic. More exactly, the
subject seems to shift from a static representation in terms of plan to a dynamic
representation in terms of data flow.

The strategy of concrete simulation is used regardless of the planliness of the
program. This suggests that the experts know by experience that the use of a
count plan in a program often causes unforeseen interactions and that the best
way to check for these interactions is to execute the part of the program with
the count.

4.3.3. Empirical _evaluation

The strategy of executing sentinel values is effective in the plan-like situation; it
leads to correct responses in 100% of the observed cases. Surprisingly, it is less
effective in the unplan-like situation, in which it leads to correct responses in
only 57% of the observed cases. It does not permit the detection of an
initialization of the count variable with a prototypical value, which is zero, when
that value is wrong. This result underlines some limits of expertise inasmuch as
the experts seem to trigger a specific strategy in a specific situation, a strategy
which is often thought as particularly useful, but which strategy is not effective
in this situation.

4.4, Reasoning with plan constraints
4.4.1. Conditions for the selection of the strategy

This strategy of reasoning with plan constraints seems to be used after the
subjects have experienced an understanding failure which we have called

"expectation clashes". This strategy is used in approximately 20% (9/44) of the
observed situations.

This strategy is used only to understand the unplan-like version of the
Maxnumber program., What characterizes this situation is that the program uses
a very familiar plan (Max plan) but the plan is implemented with a non-
prototypical value for the initialization of the variable (99999 instead of 0) and
that this value discriminates between a Max plan and a Min plan. Thus, a value of
the code contradicts the constraints on the instantiation of the Max-plan so the
subject sees in the code a value which is not expected and even contradicts what
he expects to see. This kind of failure is shown in the following excerpts.

(MaxNumber unplan-like, subject 4)

...the line Max:=99999 is a little obscure... I don't see why the maximum is
initialized like that I would have initialized it to zero...

(MaxNumber unplan-like, subject 16)

...Usually this kind of initialization would be a very small number to try to find a
larger number...

12

44.2. Goal

The goal of this strategy is to evaluate the internal coherence of an activated
plan. A Maximum-search-loop-plan is activated but the subjects notice that the
value of initialization is unusual and could even activate an alternative plan, the
Minimum-search-loop-plan. In this situation they either try to keep the
activated plan (Maximum-search-loop-plan) and to customize the goal achieved
by this plan so it is consistent with the value of initialization (in this case, this
particular Maximum-search-loop-plan computes the max of numbers over
99999) or to activate the alternative plan (see excerpt displayed in figure 1).
Some subjects find a way to explain why the discourse rule "a variable name
should reflect its function" has been violated (a programmer has modified this
program and forgotten to change the variable's name, for example).

4.4.3. Empirical evaluation

This strategy is effective. It leads to correct responses in 78% of the observed
cases (7/8) and acceptable responses!l in 22% of the observed cases (2/9).

4.5. Remarks

We have observed another strategy which could be called “"reasoning driven by
parallelism between plans". Although we have only one sample of this strategy
which has been used only by one subject in the average plan-like condition, it
seems noteworthy. This strategy can be characterized by a reasoning process
which is supported by a parallelism drawn between two plans. In the observed
case, the parallelism is drawn between the function of the initialization in two
variable plans, a count plan and a sum plan (running-total-variable plan)
implemented in the Average program. This is illustrated by the following excerpt:

(Average unplan-like, subject 1)

...Ok, Count should be zero. However they add Num, they add Num into the. Sum
and then substract it (he points out the initialization of Sum), so Count should be
one off. 1 want to make count one bigger, I mean one smaller, so at the end it's
less. So 1 assume it should be negative one...

This strategy is used in the same situation as the concrete simulation strategy
and seems to achieve the same goal, which is to evaluate the unforeseen
interactions between plans, e.g., to evaluate the external coherence between
plans. In contrast with the strategy of concrete simulation which uses a dynamic
representation of the program, this strategy uses a static representation and is
driven by parallelism between plans. The subject draws an analogy between the

function of the initialization of the Sum plan and the function of the initialization’

of the Count plan. However, he uses a concrete simulation afterward, so as to
check the external coherence in another way.

11Here, we consider the answer > as acceptable whenever the subject explains at the same time
that the program computes the maximum of numbers over 99999. In contrast, we consider the
same answer as an error whenever the subject explains that the program computes th
maximum of , numbers. :

13

S. Discussion

This experiment gives us information for modeling the goals experts have in
understanding programs. The structure of these goals guides the selection and
use of strategies. According to our data, several goals are prevalent in the
understanding activity: the construction of a goal/plan representation, the
construction of new plan, the evaluation of the representation, i.e., the
evaluation of the internal coherence into plans and the evaluation of the external
coherence between plans.

The “"construct or expand a goal/plan representation" goal refers to the
construction of the current representation of the program. As far as possible the
construction of the representation is based on the evocation of plans already
constructed. This is based on the extraction of cues in the code that evoke some
plans. For example, the name of a variable called Max is likely to evoke a
Maximum-search-loop-plan. Whenever no plan acounts for a part of the program,
the subject constructs a new plan.

When a plan is already in memory and evoked to account for the code, the
"evaluate internal coherence into plans" goal consists in checking whether or not
the values instantiated in plan satisfy the constraints on the instantiation of the
plan's slots.

Constraints must exist on the way plans may be implemented. For instance, one
of these constraints for a Maximum-result-variable-plan might be: the
initialization must be an assignment to a small number which is prototypically
zero. Then reading the code "Max:=0" satisfies this constraint; on the contrary,
reading the code "Max:=99999" contradicts it. When the plan which is being
evaluated has just been created, the subjects reasoning might not bear on
constraints which do not exist yet but might bear on rules of discourse.

The "evaluate external coherence between plans" goal consists in checking
whether or not there are interactions between plans and between goals and if
they create any constraints on the implementation of plans.

The values implemented in a plan are dependent not only on the constraints
internal to a plan but they must also be in some way dependent on the context in
which this plan is implemented. For instance, the way a count-variable must be
initialized varies according to the relationship between the count-plan and the
loop plan in which it appears, as well as according to the kind of loop plan. With a
Repeat-loop-plan, the count-variable counts the last number entered in the loop
which represents the sentinel value (except if we add a valid-data-entry plan in
the loop). With a while-loop-plan, the count-variable does not count the last
number tested which represents the sentinel value. So if we want the count-
variable not to count the sentinel-value, the Count-variable must be initialized to
-1 in a repeat-loop-plan context and to 0 in a while-loop-plan context.

Our data suggest that the achievement of each goal involves a different strategy
and that, to cope with novelty, more than one strategy is used. To construct a
model of program understanding based on achieving program understanding
goals, this research should be extended in the following directions.

First, it is likely that strategies different from the ones described. in this paper

14

are involved in the activity of program understanding. In particular, it is possible
that different strategies can be used to achieve the same goal. For example, we
have noticed that two strategies may be involved to achieve the goal "evaluate
external coherence": concrete simulation and reasoning driven by parallelism
between plans. These strategies differ according to the type of representation on
which they work, which is either dynamic or static.

Second, it is likely that some strategies are easier to use and more efficient in
certain contexts. For instance, in function of a characteristic of the program, like
its length and of tools available, one of the strategies involved to achieve the
goal "evaluate external coherence” may be easier to use than other one. In large
programs, there are potentially more problems of interactions between plans.
There are also interactions between parts of the code which can be very far from
one another, as in "delocalized plans" (Letovsky, 1986b). Using a strategy of
concrete simulation in this case seems very difficult unless some tools support
this activity. Using a strategy of reasoning driven by parallelism between plans
seems a priori more useful in this case inasmuch as information on delocalized
plans and interactions between parts of code are made explicit in the
documentation.

It is also possible that one strategy is more useful than another according to
characteristics of the task inasmuch as a particular task might require the
subject to achieve one particular understanding goal of understanding. For
example, a debugging task requires careful evaluation of the representation
constructed from a program. In such a situation a strategy more likely to be
useful might be a concrete simulation. Littman and al's empirical data (Littman,
Pinto, Letovsky & Soloway, 1986) show that a strategy of simulation is usefull in
an enhancement task and that there is a strong relationship between using this
strategy to acquire knowledge about the program and modifying it successfully.

To conclude, our experiment supplies important information for developping tools
to support the understanding activity: the structure and the content of the
representation on which the experts work while understanding programs. Two
types of representation have been identified: one representation is in terms of
goals and plans and another representation is in terms of data flow. This means
that it could be useful to supply the subject with information structured in those
ways: abstraction of the program text structured in terms of goals in the
programs and associated plans and abstraction of the program structured in
terms of the multiple transformations of the data objects. In the same way, it
would be important to find a format for a representation which allows to go
easily from one abstraction to the other, i.e. to shift representations, so as to
facilitate linking multiple representations.

References

Bower, H. H., Black, J. b. & Turner, T. (1979) Scripts in Memory for Text. Cognitive
Psychology, 11, p 177-220.

Brooks. R. (1983) Toward a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18, 543-554.

15

Détienne, F. (1988a to appear) Program Understanding and Knowledge
Organization: The Influence of Acquired Schemas. In P. Falzon, J-M. Hoc, N.
Streitz & Y. Waern (Eds): Psychological foundations of Human-Computer
Interaction, Springer, Cognitive sciences series, NY.

Détienne, F. (1988b to appear) L'application de la théorie des Schémas 2 la
Compréhension de programmes, Le travail Humain, special issue
"Psychologie ergonomique de la programmation".

Letovsky, S. (1986a) Cognitive Processes in Program Understanding. In E. Soloway
& S. Iyengar (Eds): Empirical Studies of Programmers. Proceeding of the
first workshop. Norwood, N.J.: Ablex Publishing corporation.

Letovsky, S. & Soloway, E. (1986b) Delocalized Plans and Program Comprehension,
1IEEE Software, 3 (3), 41-49,

Littman, D. C.,, Pinto, J., Letovsky, S. & Soloway, E. (1986) Mental models and
Software Maintenance. In E. Soloway & S. Iyengar (Eds): Empirical Studies
of Programmers. Proceeding of the first workshop. Norwood, N.J.: Ablex
Publishing corporation.

Rich, C. (1981) Inspection methods in Programming. MIT AI Lab, Cambridge, MA,
Technical report TR-604.

Pennington, N. (1987) Comprehension Strategies in programming. In G. Olson, S.
Sheppard & E. Soloway (Eds): Empirical Studies of Programmers. Proceeding
of the second workshop on empirical Studies of Programmers. Norwood,
N.J.: Ablex Publishing corporation.

Rumelhart, D. E. (1978) Schemata: the Building Blocks of Cognition. University of
California, Center for Human Information Processing, San Diego, California.

Rumelhart, D. E. (1981) Understanding Understanding. University of California,
Center for Human Information Processing, San Diego, California.

Schank, R. (1980) Language and Memory. Cognitive Science, 4, 243-284.

Schank, R. & Abelson, R. (1977) Scripts-Plans-Goals and Understanding. Laurence
Erlbaum Associates, Hillsdale, NJ.

Soloway, E. & Ehrlich, K. (1984) Empirical studies of programming knowledge, IEEE
Transactions on Software Engineering, SE 10 (5), 595-609.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J, (1982) What do novices know
about programming? in A. Badre & B. Schneiderman (Eds): Direction in
human computer interaction. Norwood, N.J: Ablex Publishing Corporation.

16

mboli imulation: .
The subject simulates the different steps in which the program is executed.
(Max plan-like, subject 3) »
..Max equal zero, for I equal.1 to 10 do read Num...
(Average plan-like, subject 10)
...read a number, if number different from 99999 add to the sum, count....

The subject's reasoning is supported by the evocation of rules of discourse and/or
principles of the task domain concerning the goal plausibility.

(IfiWhile unplan-like, subject 2) _

“ This is a constant (he points out Maxsentence) and this is a variable (he points out
Sentence again), so I suppose, if you check if this thing (Sentence) is greater than this one
(Maxsentence), you just want to decrease the sentence...”

(If/While unplan-like subject 17)

".We're gonna make sure that the sentence is not bigger than the maximum sentence
because we don't want to give somebody a sentence longer than he’s able to live...”

The subject mentally runs the program with values, e.g., boundary values.

(Average unplan-like, subject 1)

Count:=-1, Ok, now I check if it works.

Count is negative one, I set the number with one number which is five so the number
should be five, so the average should be five, I put five in Sum, add 1, Num is not 99999,
enter 99999 to get out, Sum is now five, Count is one...

(Average unplan-like, subject 15) :

Ok, 99999 (he points out the initialization of Sum) is the sentinel value...(he
mutters)...presumably...initialization is zero...plus one, then Sum equal zero... '

R : 1 o

The subject evokes some plan constraints in order to keep or reject this plan as a part of
his/her program representation.

(Maxnumber unplan-like, subject 14) :
Except why the Max is initialized to be 99999, it's a pretty big number... so I can think of
two possibilities, one is that, this is less than. it's actually computing the minimum and
someone called the minimum variable Max, or it's greater than and it's computing the
maximum of numbers and you know that the numbers will to be greater than 99999 for
some reasons.

(Maxnumber unplan-like, subject 10)

I assume that this computes the maximum of len numbers. Oh, no! If you're computing the
maximum, you must initialize the maximum to zero, not to 99999...

PROGRAMS
AVERAGE MaxNumber | SQRT Maxsentence
Plan }anplan Plan Unplan | Plan |UnplanjPlan | Unplan
STRATEGIES like }like |like |like like | like like | like
SYMBOLIC SIMULATION (SS) | 6 4 10 2 10 5 7 6
alone
SS + CONCRETE 4 6 0 0 0 0 0 0
SIMULATION
SS+ REASONING ON
PLAN CHARACTERISTICS 0 0 0 8 0 0 0 0
SS + RULES OF DISCOURSE and
PRINCIPLES OF TASK 0 0 0 0 0 5 4 5
- DOMAIN
SS + RULES of DISCOURSE ...
+ CONCRETE SIMULATION 0 0 0 0 Y 1 0 0
REASONING ON PLAN
CHARATERISTICS alone 0 0 0 1 0 0 0 0
NON IDENTIFIED 1 1 1) 1 0) 0
Figure 2,
Numt £ subj .

STRATEGY INVOLVED GOAL OF THE STRATEGY FAILURE CHARACTERIZATION
CONSTRUCT GOAL/PLAN
Symbolic simulation REPRESENTATION No failure
Reasoning according No expectations, l.e.,
to rules of discourse CONSTRUCT NEW PLAN either no plans
and principles of the or no goals
task domain
Concrete simulation |EVALUATE EXTERNAL COHERENCE Insufficient expectations
Reasoning on plan EVALUATE INTERNAL COHERENCE Expectation clashes
constraints
Figure 3:
ization j

L]

APPENDIX

PLAN-LIKE VERSION
PROGRAM Grey (input, output)
Var Sum, Count, Num: INTEGER
Average REAL
BEGIN
Sum:=0;
Count:=0; * line to fill in
REPEAT
READLN(Num);
IF Num<>99999 THEN
BEGIN
Sum:=Sum+Num,;
Count:=Count+1;
END;
UNTIL Num=99999;
Average:=Sum/Count;
WRITELN(Average);
END.

UNPLAN-LIKE VERSION
PROGRAM Orange(input, output)
VAR Sum, Count, Num: INTEGER;
Average: REAL;
BEGIN
Sum:=-99999;
Count:=-1; * line to fill in
REPEAT
READLN(Num);
Sum:=Sum+Num;
Count:=Count+1;
UNTIL Num=99999;
Average:=Sum/Count;
WRITELN(Average)
END.

DESCRIPTION (extract from Soloway et Ehrlich, 1984)

This program calculates the average of some numbers that ar¢ read in; the stopping
condition is the reading of the sentinel value, 99999.

The plan-like version accomplishes the task in a typical fashion: variables are initialized
to 0, a read-a-value/process-a-value loop is used to accumulate the running total, and the
average is calculated after the sentinel has been read.

The unplan-like version was generated from the plan-like version by violating a rule of
discourse: don’t do double duty in a non-obvious way. That is, in the unplan-like version,
unlike in the plan-like version, the initialisation actions of the COUNTER VARIABLE
(Count) and RUNNING TOTAL VARIABLE PLANs (Sum) serve two purposes:

-Sum and Count are given initial values

-the values are chosen to compensate for the fact that the loop is poorly constructed and
will result in an off-by-one bug: the final sentinel value (99999) will be incorrectly -
added into the RUNNING TOTAL VARIABLE, Sum, and the COUNTER VARIABLE, Count, will
also be incorrectly updated. ‘

APPENDIX
Program MAXNUMBER

PLAN-LIKE VERSION
PROGRAM Magenta(input, output);
VAR Max, I, Num: INTEGER;
BEGIN
Max:=0;
FOR L=1 TO 10 DO
BEGIN
READLN(Num);
IF Num>*Max THEN Max:=Num line to fill in
END;
WRITELN(Max);
END.

UNPLAN-LIKE VERSION
PROGRAM Purple(input, output);
VAR Max, I, Num: INTEGER;
BEGIN
Max:=99999;
FOR I=1 TO 10 DO
BEGIN
READLN(Num);
IF Num<*Max THEN Max:=Num line to fill in
END;
WRITELN(Max);
END.

DESCRIPTION (extract from Soloway et Ehrlich, 1984)

In the plan-like version, the program finds the maximum of some numbers. It uses the
MAXIMUM SEARCH LOOP PLAN which in turn uses a RESULT VARIABLE PLAN. The
RESULT VARIABLE is approprietly named Max.

In the unplan-like version, the program finds the minimum of some numbers. It uses the
MINIMUM SEARCH LOOP PLAN in the RESULT VARIABLE is inconsistent with the plan's
function: the program computes the minimum of some numbers using a variable name Max.
A rule of discourse is violated: a variable’s name should reflect its function.

“

APPENDIX

PLAN-LIKE VERSION
PROGRAM Gold(input, output);
CONST
MaxSentence=99;
NumOfConvicts=35;
VAR
ConvictID, I, Sentence: INTEGER;
BEGIN
FOR I:=1 to NumOfConvicts DO
BEGIN
READLN(ConvictID, Sentence);
IF Sentence>Maxsentence
THEN Sentence:=MaxSentence;* line to fill in
WRITELN(ConvictID, Sentence);
END;
END.

UNPLAN-LIKE VERSION
PROGRAM silver(input, output);
CONST
MaxSentence=99;
NumOfConvicts=5;

VAR
ConvictID, I, Sentence: INTEGER;
BEGIN :
FOR I'=1 to NumOfConvicts DO
BEGIN
READLN(ConvictID, Sentence);
WHILE Sentence>Maxsentence
DO Sentence:=MaxSentence;* line to fill in
WRITELN(ConvictID, Sentence);
END;
END.

DESCRIPTION (extract from Soloway et Ehrlich, 1984)

The program tests to see if some variable contains a number that is greater than a
maximum, and if so, the variable is reset to the maximum (RESET PLAN). The plan-like
version uses an IF statement, the unplan-like version uses a WHILE statement.

The unplan-like version was generated from the plan-like version by violating the
following discourse rule: An IF should be used when a statement body is guaranteed to be
executed only once, and a WHILE used when a statement body may need to be repeatedly

executed.

APENDIX

PLAN-LIKE VERSION
PROGRAM Beige (input, output);
VAR Num: REAL;
I :INTEGER;
BEGIN
FOR I:=1 TO 10 DO
BEGIN
READ(Num);* line to fill in
IF Num<0 THEN Num:=-Num;
Writeln (Num, Sqrt(Num)),
(*Sqrt is a built-up function which returns the square root of its argument*)
END;
END.

UNPLAN-LIKE VERSION
PROGRAM Violet (input, output);
VAR Num: REAL;
I : INTEGER;
BEGIN
Num:=0;
FOR I:=1 TO 10 DO
BEGIN
READ(Num);* line to fill in
IF Num<0 THEN Num:=-Num;
Writeln (Num, Sqrt(Num));
(*Sqrt is a built-up function which returns the square root of its argument*)
END;
END.

DESCRIPTION (EXTRACT from Soloway et Ehrlich, 1984)

This program produces the square root of Num. Since N is in a loop which will repeat 10
times, 10 values will be printed out. A DATA GUARD PLAN is used protects the Sqrt
function from trying to take the sqrt of a negative number.

In the unplan-like version, the VARIABLE PLAN for Num starts off with an assignment
type of inmitialization (Num:=0). This is due to the violation of several rules: (1) don‘t
include code that won't be used (the line of code "Num:=0" is not usefull in the program),
(2) a variable that is initialized via an assignment statement should be updated via an
assignment statement (as the Num variable is initialized via an assignment statement, it
should be updated via an assignment statement).

Imprimé en France
par .)
I' Institut National de Recherche en Informatique et en Automatique

)

»

