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Towards a Lambda-Calculus

for Concurrent and Communicating Systems

Un Lambda-Calcul

pour le Parallélisme et la Communication

(Note)

Gérard Boudol
INRIA Sophia-Antipolis
06565-VALBONNE FRANCE

Abstract.

We introduce a calculus for concurrent and communicating processes, which is a direct and simple
extension of the A-calculus. The communication mechanism we use is that of Milner’s calculus
CCS: to communicate consists in synchronously sending and receiving a value through a shared
port. Then the calculus is parameterized on a given set of port names, which are used in the two
primitives for sending and receiving a value - as in the A-calculus, a value can be any term. We
use two parallel constructs: the first is interleaving, which does not allow communication between
agents. The second, called cooperation, is a synchronizing construct which forces two agents to
communicate on every port name. We show that the A-calculus is a simple sub-calculus of ours:
A-abstraction is a particular case of reception (on a port named 1), and application is a particular
case of cooperation. '

Résumé.

Nous présentons un calcul de processus paralléles et communicants qui est une extension directe du
A-calcul. Le principe de la communication est celui du calcul CCS de Milner: c’est le rendez-vous
entre une émission d’une valeur et sa réception & travers une porte commune. Notre calcul est donc
paramétré par un ensemble de noms de portes, qui sont utilisés dans les primitives d’émission et
de réception - ici, comme dans le A-calcul non-typé, tout terme du calcul est une valeur possible.
Nous introduisons deux autres construction: la premiére est l’entrelacement, qui n’autorise pas de
communication entre les agents. La seconde, que nous appelons coopération, force au contraire
deux agents & communiquer — jusqu’a la terminaison de 1’un d’eux. Nous montrons que ce calcul
contient le A-calcul d’une maniére trés directe: ’abstraction est un cas particulier de réception
(sur une porte nommée 1), et ’application est un cas particulier de coopération, ou ’argument est
explicitement émis (sur la porte X). ‘
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Towards a Lambda-Calculus
for Concurrent and Communicating Systems

(Note)

Gérard Boudol
INRIA Sophia-Antipolis
06565-VALBONNE FRANCE

Abstract.

We introduce a calculus for concurrent and communicating processes, which is a direct and simple
extension of the A-calculus. The communication mechanism we use is that of Milner’s calculus
CCS: to communicate consists in synchronously sending and receiving a value through a shared
port. Then the calculus is parameterized on a given set of port names, which are used in the two
primitives for sending and receiving a value — as in the A-calculus, a value can be any term. We
use two parallel constructs: the first is interleaving, which does not allow communication between
agents. The second, called cooperation, is a synchronizing construct which forces two agents to
communicate on every port name. We show that the A-calculus is a simple sub-calculus of ours:
A-abstraction is a particular case of reception (on a port named A), and application is a particular
case of cooperation.

1. Introduction.

The A-calculus of Church formalizes in a very concise way the idea of functions being applied to
arguments. Despite its simplicity, this calculus provides an astonishingly rich model for sequential
evaluation, see [2]. A challenging problem that has emerged for some time is to devise a similar
framework for concurrent and communicating processes, relying upon some “minimal” concepts
for concurrency and communication. A natural claim is that such a formal model for processes
should contain the A-calculus as a simple sub-calculus ~ this would provide us with the full power
of combinators. This note presents an attempt in this direction.

Regarding communication, our main source of inspiration is Milner’s CCS [4]. Communication
in CCS is a value passing act which two processes perform simultaneously: one of the two partners
sends a value through a labelled port, while the other receives this value on a port labelled by the
same name, say a. Correspondingly there are two communication primitives in CCS, an output
construct and an input construct. The output construct is ae.p, representing a process sending
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e on the port «, and then behaving as p. In this construct, e is an expression belonging to some
outer language. The complementary input construct is az.p, representing a process receiving some
value at the port o; here z is a bound variable, and receiving the value v yields a new process
plz—v], that is p where v is substituted for z. Communication occurs when two concurrent
processes perform matching send and receive actions. Therefore the interaction law may be stated,
using || for parallel composition, as:

(az.p | ae.q) — (plz+—v]] q)

where v is the result of evaluating e. In CCS such a transition is labelled by the communication
action 7.

Let us discuss briefly how one could use CCS’s ideas to find a generalization of the A-calculus.
Milner remarked (cf. [4] p.128) that one may compare a function’s argument places with input
ports of a process. Indeed the terms Az.p of A and az.p of CCS behave quite similarly: both
of them wait for a value to be substituted for z in p. This suggests that one could regard these
two constructs as the same one - A is thus a port name, the only one for the A-calculus (cf. [4]
p.49). Another obvious idea is that application of a function to its argument should be a special
kind of communication (see again [4] p.128), or more precisely that g-reduction should be the
typical instance of an interaction law. Then application appears as a parallel composition, where
the argument is explicitly sent to the function. Regarding the sending primitive, we shall keep to
the philosophy of the A-calculus, where any term is a possible value. Then the sending construct
is ap.q, where p is any agent. In fact we are only interested in the case where ¢ is a terminated
process 1, which is like nil in CCS. Then ap will be an abbreviation for ap.1.

To work out the previous ideas, let us now introduce a first attempt — the calculus we actually
propose will be a little bit more sophisticated. In order to build agents az.p and ap we need a
denumerable set X of variables z, y, z... , and a non-empty set N of port names. We shall use «,
B ... to range over port names. Then the syntax of the tentative calculus is given by the following
grammar: '

p == 1|z|az.p|ap|(p|p)
where a is any port name. We shall use p, ¢, r... to range over terms. As usual, the variable
z is bound if it is in the scope of an az, and some care is needed in defining substitution. For
simplicity, we shall adopt Barendregt’s variable convention ([2]): in any mathematical context
where they occur, the terms p;,...,p, are supposed to exhibit bound variables different from the
free variables. '

In this calculus, communication is given by an obvious adaptation of the interaction law of
CCS, namely:

(ez.p|lag) — (plz—ql || 1)

The term 1 represents a terminated process, and is a unit for parallel composition. Therefore
the term we get after a communication, that is (p[z+— ¢] || 1), behaves like p[z+> q]. Then the
interaction law is similar to B-reduction, and, assuming that N contains a distinguished name A,
we can try to represent A as the subset of terms given by the grammar:

p == z|Az.p|(p| Ap)

We could denote (p || Ag) by (pg) (application), so that the previous rule is the S-rule, up to the
simplification (r || 1) = r. However this simple calculus fails to capture the A-calculus. Let us see
this point in more detail. '

CCS also formalizes the natural idea that parallel composition is commutative and associative,
so that processes need not be contiguous to communicate — unlike A-terms where communication
is sequential application. In other words, the following should hold in our tentative calculus:

(--llezp|l--llagl--) = (--llplz—ql |- 2] --)
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Let us assume for a while that we have two rules stating that parallel composition is commutative
and associative:

(Pl lir)—s F (pll(glir)) —s

(pllg) —s F (qllp) —s
These two rules introduce conflicts, arising from communication (technically speaking, we should
say that associativity introduces overlapping redexes). Asin CCS, there is a possibility that inputs
at the same port may have different sources, and outputs at the same port different destinations.
Then two communications are conflicting if they share the same destination, or the same source,
the typical example being ((az.p || &q) || @r), and solving the conflict introduces non-determinism.
To our view, the non-determinism arising from conflicting communications is a rather pleasant
feature. But there is a negative consequence to the associativity (and commutativity) of parallel
composition, namely that we lose the correspondence with A-calculus application. For instance the
term ((Azy.z)u)v cannot be accurately represented by p = ((Az.Ay.z || Au) || Av) since we have
P ((vlL) ) n).

We insist on obtaining the A-calculus as a sub-calculus, without restricting the evaluation rules.
More precisely, our goal is to find a direct generalization of the A-calculus, that is a calculus where
the operational semantics, once restricted to an appropriate subset of terms, gives an exact image
of the B-reduction on A. Then we must abandon the parallel composition of CCS. Our proposal is
to split it into two constructors. The first is the usual interleaving construct (p | ¢), which consists
in juxtaposing p and ¢, without any communication wire between them. This operator represents
concurrency. The second construct, denoted (p ® ¢) and called cooperation, consists in plugging
together p and ¢ — up to termination of one of them. This operator provides for communication,
which can only occur within a (p® ¢). On the other hand, a compound process (p| ) can propose
communications to its environment, and the interleaving operator is commutative and associative
(and satisfies (p] 1) = p). Therefore the interaction law becomes:

o ((...|az,p|...)@(...|aq|...))_,((...lp[z._,q]|...)@(...|ﬁ|...)

Like the operator considered by Milner in [4] (p.21), the operator @ is not associative. Its semantics
will be such that (p® 1) behaves like p. In other words, ® is not a static operator: (p ® ¢) cannot
communicate with another process if p and ¢ are not terminated, but it will be free to do so once
p or q terminates. Then the A-calculus application (pg) may be represented by a combination of
cooperation and output, namely (p ® :\q). To ensure the correctness of this representation, we
must introduce structural rules, which formalize the fact that reduction is compatible with the
constructors. For instance there will be two rules allowing internal computations within a guarded
process: :

p—p' + ap—ap

p—p F az.p— az.p (& rule)
These do not hold in CCS, where the transitions describe the behaviour of a reactive system, rather
than an evaluation mechanism. Processes in our calculus could be qualified as interactive systems
rather than reactive — in fact this is a matter of evaluation strategy.

One should observe that we still have conflicting communications, so that we can represent

a non-deterministic choice, using the standard combinator K = Az.Ay.z, which chooses its first
argument and deletes the second one:

(r®q)= (KO (Ap|Ag))
It is easy to see that we have:
(P®q) > (pO(L]1))=p and (pqu)—**(qQ(Ill 1)) =q
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where = is the syntactic equality, defined in the next section. Then we should say that @ is an
internal choice, meaning that (p @ ¢) may evolve to one of p or g by internal communications. We
also have, due to the structural rules:

p—p => (p®g)—('®q) ad ¢—¢ 2> (pOg—(po¢)

which shows that @ is quite different from CCS sum. This example also shows that the Church-
Rosser property no longer holds for reduction, and that it would be inconsistent to regard the
associated conversion as establishing a notion of equality. We shall adopt an intensional notion of
equality, namely that of observational equivalence of Milner [4], which relies on the communication
capabilities of a process.

To conclude the informal presentation of our calculus, let us say a few words about the binders.
In the A-calculus, these are sequences Az;....Azx. corresponding to application to a stream of ar-
guments. Since in our calculus we may have interleaved arguments, it seems natural to correspond-
ingly generalize the binders, allowing not only sequences of az’s, but also interleavings. Then we
will have terms of the form (a;z; |-+ | axzk).p, meaning that p waits for k unordered values. This
allows us for instance to represent non-deterministic choice as a simple variant of the K combinator,
namely @ =4, (Az | Ay).z.

2. The 4-calculus.

Given a denumerable set X of variables and a non-empty set N of port names, we first define the
binders, which are the terms built according to the following grammar, where « is any port name,
and z stands for any variable:

p = celaz|(p-p)|(r]0)

Intuitively az represents a reception on the port a, (p- p') represents sequencing of such receptions
while (p]p') represents their interleaving. The term ¢ is an empty binder, therefore we shall consider
binders up to the congruence = generated by the equations:
(p-e)=p=(c-»)
(ple)=p=(e|p)
The congruence = defines the syntactic equality over binders. Any binder p will bind the variables
belonging to the set var(p) defined as follows:
(i) var(e) =0
(ii) var(az) = {z}
(iii) var(p- p') = var(p) U var(p')
(iv) var(p| p’) = var(p) U var(p')
The syntax of the q-calculus is given by the following grammar, where « is any port name of N, p
is any binder, and z stands for any variable:

pu=1|z|ap|(p)p|(pOp)|(r|p)

We denote by T' the set of terms generated by this grammar, and we shall use p, ¢, r... to range
over terms — which will be called agents or processes. For simplicity we shall denote {az).p by
az.p, and we shall omit some parentheses, using for instance (p | p').p instead of ((p] A))ep. A
variable z is bound if it is in the scope of a binder. Then in substituting ¢ for y in p, yielding
ply+— ¢], we might have to rename some bound variables of p. Although this is a standard matter
(see [2], appendix C), it is worth to carefully define substitution. Here we adapt the definitions of
[5]. The set free(p) of free variables of the term p is given by
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(i) free(1) =0
(ii) free(z) = {z}
(iii) free(@p) = free(p)
(iv) free((p).p) = free(p) — var(p)
(v) free(p ® q) = free(p) Ufree(q) = free(p| q)
A term p is closed if free(p) = @. A substitution is any mapping 0: X — I'. We use 0, 0’ . .. to range

over the set § of substitutions. The identity substitution is denoted . The updating operation
on substitutions is defined as follows: let z € X, p€ T and o € §; then the new substitution

o' = (z+ p/o) is given by:
ey P ify==z
a'(y) = { o(y) otherwise

For a binder p and a renaming, that is a substitution £: X — X, the result p[£] of applying ¢
to p is defined in an obvious way, that is by structural induction starting from (az)[£] = af(z).
To define substitution on terms of I, we assume given for each pair V,W of finite subsets of X a
mapping newy,w:V — X — W satisfying:
(i) newy,w is injective;
(ii) newyw(z)=2z ifzeV -W.
This assumption makes sense since X is infinite. Then the result p[o] of applying the substitution
o to the term p is defined by structural induction, the only non obvious case being p = (p).q with
var(p) # 0. In that case, let: 4
V =var(p) = {z1,...,Z,}
W = {v|3z € free(p) v € free(s(z))}
newy,w (z.') =y, for1<s<n
f = [zl Hyl/"'/zn'_’yn/fv]
o = [leyl/" '/In'_’yn/a]
Then we define p[o] to be (p[£1).q[0’']. We shall denote p[z— g/t] by plz+— gl (similarly
plz— y] denotes p[z+— y/1]), and define the composition p e o of two substitutions by:

(po0)(z) = o(z) o]

As usual, we regard terms differing only on the name of bound variables as syntactically identical.
Moreover we also regard 1 as a terminated agent, which should be cancelled from parallel combi-
nations. Then our syntactical equality is the congruence = generated by the following equations:

(pOL)=p=(10p)

(pl1)=p=(1]p)

(e)p=p

(p)p={p)ep ifp=,

(p)ep = (plz+—=yl).plz—yl if z € var(p) and y & free(p) U var(p)

One could prove that = is substitutive, that is p = ¢ = plo] = qlo] for all substitution o (cf.
[51). We shall say that an agent p is terminated, in notation p 1, if p = 1.

To define the semantics, that is the laws of reduction, we shall use Milner’s technique of labelled
transitions. This is the best way to formalize the idea that processes need not be contiguous to
communicate. Let us introduce some technical definitions. The semantics is given by means of

labelled transitions p % p’ where the action a may be @,, which means sending p at port o, or o,
which means receiving p at port a, or the communication action 7. This could be formalized by
saying that the set of actionsis A = (WX T)U(T x N)u{r} (if we regard o, and &, as notations for
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(o, p) and (p, @) respectively). We shall say that a and b are complementary actions, in notation
a ~ b, if a = ap and b = @, or symmetrically ¢ = &, and b = ;. To define the semantics of (p).p
we also need to specify the reception actions allowed by the binder p. To this end we introduce a

transition relation p 4 p' between binders, where a has the form a,,. This transition relation is
the least one satisfying the following rules:

a
pel + az—%¢

p5p (o p") S (0 p")
p=e&pDp" F (p-p)2p"
p50 F (pl0") S (0] 0")
pSp (0" 0) 5 (0" 6
The transition relation — on agents is the least subset of I' X A x I' satisfying the rules given

below (where, as usual, we denote (p,a,p’) € — by p-Sp'). The first two rules introduce the
communication actions:

~ ap
output R1: Fap—1

o a !
input R2: p—=%p" F (p)p—5 (p)plz+q]

One may observe that, due to R2, the sort of a process — that is the set of port names through

which it may communicate — can evolve dynamically: if p 4, p’ the sort of p’ is not necessarily a
subset of the sort of p. There is another rule concerning input, when the binder is empty:

input R3: p=c&kpp + (ppSp
The interaction law is given by:
communication R4 (v): pp', q S, d&a~btF (pog DoY)

The following rules state that the transition relation - is compatible with all the constructors,

and that % is compatible with interleaving for any a € A:

output R5: p5p + apLap

input R6: p5p F (p)p Do)y’
cooperation (left) RT: pop F (pog D(po q)
cooperation (right) R8: ¢5g + (pO 9) > (pog)

—_
S0 - (ple) S |9

interleaving (right) R10: q—b+ ¢ F (]9 LA (»ld")

interleaving (left) R9:

"

Our last two rules formalize the fact that cooperation only holds up to termination of one partners:
cooperation (right unit) R11: p Lo, qt + (poq) Sy
cooperation (left unit) R12: q 5, ¢,ptF (poOJg) L q

One can readily see from these rules that (p® ¢) can only perform 7 actions when p # 1 # ¢, while
communication between p and g¢ is forbidden within the construct (p | g). We shall mostly denote
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pL p' by p— p’, and by definition this is the 4-reduction between terms of I

Our first purpose is to show that the 4-calculus contains the A-calculus, up to syntactical
equality. Then we first have to check that syntactical equality is consistent with the operational
semantics. Formally speaking, this amounts to show that = is a bisimulation. Our notion of
bisimulation is a slight extension of Park and Milner’s one, in three respects: first we wish to define
bisimulation for non-closed terms. Then we shall say that p and ¢ are similar if any instances
plo] and ¢lo] of p and ¢ have similar behaviours. Second we must regard the actions — made
out of agents — up to bisimulation, and third we must take into account the potential termination
of agents. We shall use two notions of simulation: the first one, called strong, is relative to the
transition relation — . We will see the second (weak) one latter. Let R C T x I be a relation on

terms; we define its extension R C A X A on actions as follows:
aRb ¢4 a=bordacN3IpgqpRe&ka=a, &b=a,

Arelation RCI'xTIis

(i) a strong simulation if it satisfies

SI: pRq&plol Sy = 3b.aRb3g. p' Re' & qlo] D¢’
S2: pRq&pt = ¢t
(ii) a strong bisimulation if it is a symmetric strong simulation.

The first property defining a simulation is a refinement of the usual one: (instances of) strongly
similar agents must perform similar actions. Note that since p[.] = p we have

pRe&pSp = Ib.aRb3¢.p'Re & q—ll»q"

The second property states that strong simulation preserves the termination property. This prop-
erty, that is p = 1, should not be confused with the property of being a normal form, that is
~y-irreducibility (p is v-irreducible if {g|p— ¢} = 0): to our view a term such as az.z is not
terminated since it can perform some actions — namely a,. One should note that every strong
simulation is substitutive:

FACT. If R is a strong simulation then p Rq = plo] Rqlo] for all substitution o.
This holds because (plo1)[p] = plp e 0] (cf. [5]1).
PROPOSITION. The congruence = is a strong simulation on T'. y
The proof is straightforward: one proceeds by induction on the proof of p[o] = ¢lo] (using the
fact that = is substitutive), and then by induction on the proof of the transition p[s] % p’ to show
that 3¢’ = p’ ¢lo] % ¢'. In the case of R4, one must show that:

[ '

p=bp&a=q > I p=p kpTrp"

One must also prove that = satisfies:

a . .
po - ph & po = p1 = 3pi. ph = pl & p1 S}
The details are omitted =

This result allows us to define the transition relation — on I'/=. We shall abusively write transi-
tions between simplified terms (obtained by cancelling 1 from parallel combinations), as for instance
in a special case of the y-rule: (az.p ® ag) — plz— ¢].

7



§

Now we can show that the y-calculus contains the A-calculus — which we assume to be well-known.
The syntax of A is given by the following grammar:

{
\

M = z|dz.M | (MM)

The rules for S-reduction, denoted M — N, are:
R'1(f): (Az.M)N — Mz N]

R'2: M—-M F Az.M—Az.M'
R’'3: M—-M + (MN)—(M'N)
R'4: N—N'F (MN)—(MN')
Assuming that A € N, we define the translation 8 from A to I' as follows:
b(z)==z

6(Az. M) = (\z).0(M)

6(MN) = (6(M) ® A8(N)).
We assume that substitution is defined for A-terms as it was defined for 4-terms, so that the
translation preserves substitution, that is:

VM,NeA 6(M[z— N1)=6(M)[z—8(N)]

PROPOSITION. For all A-terms M and N:
(i) M—N = 3Fp=04(N).6(M)—p
(ii) (M) —»p = INeA. M >N &O(N)=p

PROOF: let M, N € A such that M — N. We proceed by induction on the proof of this transition
to show that 3p = 6(N) (M) — p. If this transition is an instance of the f-rule , then we have
= (Az.P)Q, N = P[z— Q] and 0(M) = ((Az).6(P) © A0(Q)). Using R1 and R2 we have

20(Q) -2 1 with a = Xy(g) and (Az). 0(P) (€).0(P)[z+ 6(Q)] with b = Ag(g). Therefore using
the 4-rule (R4) we have GzM ) — ((€).0(P) [z 8(Q)] ® 1) = §(N). All the other cases are trivial.

Conversely let us assume that (M) — p. We proceed by induction on the structure of M to
show that AN € A M — N & 0(N) = p. We cannot have M € X, since a variable cannot perform
any action. If M = Az.P then (M) = (Az).0(P), and the transition (M) — p must be proved
usmg R6 (since the action is 7). We easily conclude in this case using the induction hypothes1s If

= (PQ) then 6(M) = (6(P) ® X6(Q)). The transition §(M) — p cannot be proved using R11
or R12 (since 6(P) # 1). If it is proved using R7 or R8 (and then R5) the result follows from

the induction hypothesis. If it is proved using R4, we have 8(P) % p’ and XG(Q) — ¢’ with a ~ b;
hence a # 7 # b, and the second transition can only be proved by means of R1. This 1mphes
that b = Aa(q) (and ¢’ = 1), and therefore a = = Ag(@)- It is easy to prove that for all P € A if

6(P) —-»p then P = Az. P! & p' = (¢).0(P') [z s]. Consequently we have M = ((Az.P')Q), and
O(N)=6(P)z—0(Q)1 = ((e).0(P)[z—0(Q)I1O1L) m
This result allows us to regard the A-terms as a special kind of 4-terms. To simplify the notations,
we shall use (pg) as an abbreviation for (p ® Ag) - recall also that Az.p is a notation for (Az).p.
We shall keep the usual notation for the standard combinators, cf. [2], chapter 6. For instance K
is the (v-)term Az.\y.z, or more simply Azy.z.

We already saw that the y-calculus is strictly more powerful than the A-calculus: the term
(Az | Ay).z (non-deterministic choice) does not have any image in A. Let us see another example,
showing that we find in ' “parallel functions” (which we do not intend to precisely define) which
are not definable in A. It is known that K, which could be denoted also T, and F = Azy.y may be
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regarded as the truth values. One can define in the A-calculus a combinator representing the left
sequential disjunction, namely V = Azy.(zT)y. This combinator is left-sequential since one cannot
reduce (VM)T into T without evaluating M. From Berry’s sequentiality theorem (cf. [2]), one can
show that there is no A-term representing a parallel disjunction O, such that (OM)T and (OT)M
can be reduced into T without evaluating M. On the other hand, this combinator is definable in

- the y-calculus: this is just a parallel variant of V, namely

0 =4er (Az | Ay)-(zT)y

Then it is easy to show that:

Vpel (Op)TET and (OT)p-5T

since the combinator O can choose what argument eventually needs to be evaluated first:

(Op)¢=(pT)g and (Op)g-5(gT)p
Obviously we also have:
(OF)F & F

Let us see another example, showing that we can retrieve in the 4-calculus some of CCS’s ideas
about concurrent processes. One of Milner’s intentions in designing CCS was to formalize the idea
that a process performs possibly infinite sequences of communications with its environment. One
may wonder whether it is possible to describe in the 4-calculus a system made out of processes
continuously exchanging messages. The answer is positive, thanks to the existence of endlessly
reducible terms. In the A-calculus, the typical example of such terms is Q = AA, where A = Az.zz
is the usual duplicator, for we have Q@ — (1. Using this feature we can define a process which
repeatedly accepts a message on a port o and then sends on port 8 a response elaborated using a
“method” ¢. Let

§=Ay.az.(Bg|(y@Ay)) and w= (60N
These terms could be written more simply § = Ay.az.(8¢ | yy) and w = (66). Then we have:

w— az.(Bg | w) =2 (Bqlz — p] lw)i(ﬁrlw)fb(nlw)

We should say that evaluating w repeatedly creates the communication channels o and 8. We

could obviously have written a term receiving the “method” ¢ on some port, and then applying it
to several arguments.

Now let us return to the semantics of our calculus. We shall adopt Milner’s observational
equivalence [4] as our notion of equality. The observational equivalence is defined with respect
to a transition relation where one abstracts from internal communications (i.e. 7 actions). This

transition relation = is the least subset of I' x A X I containing — and satisfying the following
rules:

O1: - p——T=>p
02: p——£>p",p”=T>p'I-p——g>p'
03: p=p’,p'Lp t ptyp
It should be clear that p=a>p’ tffa=r&p'=por

(D) & (L)



A relation RCI'xTis _
(i) a weak, or observational simulation if it satisfies

W1 pRq&plo] =% p' = 3b.aRb3¢. p'Re & qlo] =5 ¢’
W2: pRq&pt = 3¢'. 1= q &q't
(ii) a weak, or observational bisimulation if it is a symmetric weak simulation.

Note that the we have: ;
pRq& plolt = 3¢'. qlo]l = ¢' & ¢'t

since p[o] N plol, hence there exist ¢” such that ¢[o] =<5 ¢ and plol Rq", therefore there

exists ¢’ such that ¢’ { and ¢" =5 ¢', hence glo] = ¢'. Consequently any observational simulation
is substitutive:

FACT. If R is an observational simulation then p Rq => plo] Rqlo] for all substitution o.

The following characterization of observational simulations is useful:

LEMMA. A relation R C T X T is an observational simulation if and only if
(i) R is substitutive: pRq => Vo€ § plo]l Rqlo]

(i) pRg & pSp' = 3b. aRb3¢.p'Rq & q-g>q'
(iii) pRg & pt = 3¢'. ¢ == ¢' & ¢'1

PROOF: it is clear that any observational simulation satisfies these properties. Let us assume that
R satisfies (i)-(iii). We have to prove

pRq& plo]l =5 p' = Jb.aRbI¢. p'Rq & qlo] =b>q'

Since R is substitutive, it is enough to prove this for & = ¢. We proceed by induction on the proof
of p =25 p': if this transition is p-% p', then we conclude using (ii). The point is trivial if p == p’
is an instance of O1, since p’ = p, a = r and q = ¢ (by O1). The two other cases easily follow
from the induction hypothesis m
The observational equivalence that we regard as our semantic equality is the coarsest weak bisim-
ulation. Such a coarsest bisimulation exists, and is an equivalence, since we have:
DEFINITION and FACT. Let us define:

P~ q ©ges JR CT xT weak bisimulation such that p Rq
Then = is a weak bisimulation. Moreover » is an equivalence.

(the proof is omitted — the only point to check is that the composition of two weak simulations is
a weak simulation).

A consequence of the previous lemma is that any strong simulation is also a weak one. Then
for instance we have = C ~. This lemma also allows us to prove some algebraic properties of the
operators with respect to =, as for example:

(rog)~(¢0p)
(ro1)~pm~(10Op)
(rllglN=~(rla)]r)
(pla)=~(a]p)
(pla)~pm(2]p)

Note that the cocperation operator is not associative (up to =): for instance
(Az.z © Ap) © Aq) % (Az.z © (Ap @ Aq))
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since the first term — which is (1 p)g, where | = Az.z is the usual identity combinator — can be
reduced to (pg) (up to =) while the second one, which could be written 1 ® (Ap ® Ag), cannot
perform any computation.
- We conjecture that the observational equivalence = is a congruence. A consequence would be
that we cannot define in the y-calculus the CCS sum (p + ¢), whose semantics is given by:
P2 F (p+g) Sy
¢2q F prg by
More precisely, if s is a congruence then there is no y-term r such that (rp)g = (p+ q) for all p
and g, since = is not a congruence with respect to CCS sum - for instance we have (11) ~ 1 but
4+ (1) % | + 1. Note that in general we have (p @ 1) # p — take for example p = I.
To conclude this note, let us briefly discuss the relationships between observational equivalence
and some A-theories (¢f. [2]). First we should note that observational equivalence — which is
consistent on A: | % (1 - is not extensional. This means that the equation 5 (on A-terms)

Az Mz =M z not free in M

is not valid for ~ — for instance Az.0lx s (2, since the first term has a possible communica-
tion with its environment, while the second has no communication capability. For what regards

p-convertibility =g of A-terms, one could prove that p-convertible A-terms are observationally
equivalent, that is

VM,NeAM=g N = (M)~ 0§(N)
This implies a restricted kind of n-conversion: if M is really a function, that is if there exists N such

that M > )z. N, then we have A\z.Mz ~ M (for z not free in M). The converse of the previous
implication is not true: observational equivalence is strictly weaker than B-conversion. To see this,
let us say that a y-term p is locked if it has no communication capability, and can never terminate,
that is if p N P = a=r & p'# 1. It is easy to see that any two locked terms are equivalent —
note that if p is locked and p = p’ then p’ is locked as well. Then for instance we have YY = Q,
where Y is the standard fixed point combinator Af.(Az. f(zz))(Az.f(zz)), while YY and © are not
convertible. One should note that the two terms 02 and YY are unsolvable (cf. [2] for this notion).
But an unsolvable A-term is not necessarily locked, and observational equivalence does not equate
all the unsolvables — for instance Az.Q is unsolvable, but not locked, and we saw that Az.Q % Q.
Then the observational equivalence of A-terms is quite different from the usual semantics of the
A-calculus, and one may wonder whether it is too discriminating. On the other hand, it seems to
be very close to the semantics given by Abramsky in [1] (and to the one given by Lévy in [31),
and the relationship between observational equivalence and Abramsky’s applicative bisimulation
should be established. This question is left for further investigation.
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