-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Specifying the behavior of graphical objects using
Esterel

Dominique Clement, Janet Incerpi

» To cite this version:

Dominique Clement, Janet Incerpi. Specifying the behavior of graphical objects using Esterel. [Re-
search Report] RR-0836, INRIA. 1988. inria-00075717

HAL Id: inria-00075717
https://hal.inria.fr /inria-00075717
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50449125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075717
https://hal.archives-ouvertes.fr

IRIN

v

UNITE DE RECHERCHE
RIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

® Domaine de Voluceau
Rocquencourt

oo L L]
: tk 8§ *RR 836

Rapports de Recherche

SPECIFYING THE BEHAVIOR
OF GRAPHICAL OBJECTS USING
ESTEREL

Dominique CLEMENT
Janet INCERPI

AVRIL 1988

(]

Specifying the Behavior of Graphical Objects Using Esterel

Dominique Clément and Janet Incerpi

Abstract

Specifying the behavior of graphical objects, such as menus, scrollbars, etc. is not an easy task. This
is because one must deal with multiple input devices such as the mouse and keyboard. This makes the
specification of such objects difficult to write and hard to maintain. We consider these objects as reactive
systems that receive inputs and generate output after updating their internal state. We present here how
one can use the Esterel language to write efficient, clean, and modular specifications of such systems. Esterel
also provides for the reuseability of such specifications.

Définition du comportement d’objets graphiques avec Esterel

Résumé

La définition du comportement d’objets graphiques tels que menus, scrollbars, etc., n’est pas une
opération trés aisée. Cela est dii en particulier a la présence simultanée d’informations provenant du clavier
et de la souris. En conséquence il n’est pas seulement difficile de définir le comportement d’un objet mais
aussi de le faire évoluer. Les objets graphiques sont considérés ici comme des systémes réactifs recevant des
signaux et générant des signaux aprés modification de leur état. Nous présentons ici comment le langage Es-
terel permet d’obtenir de tels systémes & partir de spécifications claires, efficaces, et modulaires. Le langage
Esterel fournit aussi la possibilité de réutiliser des spécifications déja existantes.

H! !D PAPIER RECUPERE ET RECYCLE

1.

Specifying the Behavior of Graphical Objects Using Esterel

Dominique Clément and Janet Incerpi
INRIA - Sophia Antipolis
06565 Valbonne Cedez, FRANCE

Specifying the behavior of graphical objects, such as menus, scrollbars, etc. is not
an easy task. This is because one must deal with multiple input devices such as the
mouse and keyboard. This makes the specification of such objects difficult to write and
hard to maintain. We consider these objects as reactive systems that receive inputs
and generate output after updating their internal state. We present here how one can
use the Esterel language to write efficient, clean, and modular specifications of such

systems. Esterel also provides for the reuseability of such specifications.
Introduction

The use of graphical user interfaces has led to much research on various aspects of
them. Many systems address how one goes about building user interfaces. Typically
these provide graphical objects (such as buttons, menus, etc.) that the user can combine
and interface with his underlying application. Specifying the behavior of these primitive
graphical objects is not easy. This is because one quickly falls to the level of worrying
about how to deal with mouse and keyboard input and various other interaction devices.
While such events drive the comportment of graphical objects, the behavior should be

- expressed at a higher level without concern for the underlying hardware (or low-level

software) interfaces with such events. Here we present how one can specify cleanly and

efficiently the behavior of graphical objects by using the Esterel programming language.

Graphical objects are the building blocks of user interfaces. Graphical objects
include buttons, menus, scrollbars, menubars, browsers, etc. There are many systems
available for using and combining these objects ([8],[12],{10]). These systems allow
the user to “design” new objects. This may include specifying layout when combining
existing objects or specifying the appearance of a new object but for specifying the
behavior of new or existing objects the user is on his own. We feel that specifying the
behavior of such objects is a complex task. It may require handling multiple input
devices and often the notion of time is important. Even if one takes the basic objects
for granted —but where to draw the line- developing higher level objects or dialogs is

still a problem. What is the correct model for specifying their behavior?

We view graphical objects as reactive systems that respond to input events and
generate output events. The implementation of such systems as automata (or state ma-

chines) is very efficient. However, automata are difficult to design and modifications

which are based on concurrency (i.e., the same behavior plus something else happen-
ing in parallel) are difficult to make; often one is better off throwing out the existing
automaton and starting from scratch. While high-level parallel languages, such as Mod-
ula [11] and Ada [1] offer constructs that ease the programming task there is usually
some execution overhead to be paid. Also such languages are usually nondeterministic
and an important property of reactive systems is their determinism. Esterel [2] is a
synchronous programming language designed for implementing reactive systems. It
provides parallel constructs that ease programming and maintenance of such systems.
An Esterel program is compiled into an automaton making for an efficient implemen-
tation. Currently, the automata can be generated in either C or Lisp. Esterel induces
a programming style that promotes modularity and limits runtime testing. Also it
provides a certain degree of reusability or hierarchy for behaviors, for example, the

specification of a menu reuses that of a button.

Ours is not the first attempt in this direction. The “Squeak” language introduced
by Cardelli and Pike [4] works along similar lines. In Squeak channels exist as a method
for communicating between various processors. Squeak is asynchronous however and
is somewhat restrictive in its notion of timing. Recently Hill [9] has introduced the
“event response language” (ERL) as a method of encoding concurrent activities. This
is a rule-based language where the user specifies conditions and flags that must hold
for certain actions to be triggered. The flags are essentially encoding the state of the
system, the automaton, but the user is responsible for generating these local variables.

Modifying such a specification can prove difficult. Also there is currently no modularity
in ERL.

Thus far we have only specified the behavior of low-level objects: buttons (trill,
trigger), menus (pulldowns, pop-ups), sliders, scrollbars, menubars, etc. We would like
to continue specifying higher-level and specialized objects. The results are promising.
The specification is modular and easy to write and maintain. The code is portable, not
dependent on an underlying window system. The resulting automata are very efficient.

More work on connecting the behavior to the graphical objects is, however, necessary.

We begin by a short presentation of Esterel in the following section. This can be
skipped by those readers already familiar with Esterel. Next we present a small example
of a button for discussing behavior of graphical objects and the kinds of events that are
typical for such objects. In section 4, we present more complex examples highlighting
the various aspects in specifying behavior. We then explain how one interfaces the

senoratad ceitacendn 24l Ll aeen
gruriaieu aurviOnliava wWiti iis dSy>

with a discussion of future work.

2.1.

Esterel

Esterel is a synchronous language designed to program reactive systems; it com-
bines the features of parallel languages with the execution efficiency of automata. One
can view an Esterel program as a collection of parallel processes which communicate
instantly via broadcast signals. The underlying synchrony hypothesis is that an Esterel
program reacts instantly to its input by updating its state and generating output. It

is the input and output that determine the behavior of the program.

Broadcast signals are the method by which Esterel communicates: internally using
local signals and with its surroundings using input and output signals. There are two
kinds of signals. With pure signals it is their presence (or absence) which is important.
For example, one can emit a signal, say, “mouse-up” when a mouse button which was
depressed is released. With valued signals there is typically some additional information
which is important. In this case, one can emit a signal, say, “mouse” representing the
mouse’s position whose value would be the mouse coordinates. Signals in Esterel are
simply identified by names. If Sis a valued signal then 7§ is its value. As well in Esterel
there exists sensors which are valued inputs to a program that are solely queried and
never emitted. A typical example of a sensor is the temperature, an Esterel program

could query to find out what’s the current temperature.

There is no notion of absolute time in Esterel. One can treat physical time as a
standard signal. But more importantly one can treat every signal as a “time unit”.

One can introduce time in the form appropriate for a particular problem.

A

Programming with Esterel

In Esterel programming, the module is the standard unit. Data is handled by
abstract type facilities. The user declares types, signals, functions, and procedures.
Valued signals have types, for example, a signal named mouse may be of type point
or coordinate. Statements are of two types: those that are more classical dealing with
assignments, functions, etc., and those that deal with signals.

Here we give a brief sketch of the types of constructs that are available. This is to
aid the reader for the code that will be presented in later sections. Basic statements
in Esterel include: assignment, if-then-else, loop-end (an infinite loop), procedures
calls, and sequences or parallels of statements. The parallel construct requires that
there are no shared variables. It is assumed (due to the synchrony hypothesis) that
all these statements take no time. Also Esterel provides powerful exception handling
mechanisms, in what follows we use a simple trap-exit construct. The “trap” declares
an exception while an “exit” raises an exception. In the simplest case, the body of the

trap-exit construct is executed normally until a corresponding “exit” is encountered:

3

2.2

trap FINISHED in
< statements >
end

Here FINISHED is the name of the exception. If within the statements one encounters
an “exit FINISHED” then the trap terminates and execution continues at the following

instruction.

Another widely used construct is the copymodule statement. The copymodule
instruction provides for in-place expansion, possibly with signal renaming, of other

modules. This allows one to reuse existing modules.

There is also a class of statements which are temporal! and involve signal handling.

This group includes:
— emit, to broadcast a signal, and await, to listen for a signal.

— a present statement which checks for a signal’s presence activating either a “then”

part or an “else” part.

— a do-upto statement which executes its body until a signal is received at which
point it is aborted. '

— two loop constructs: a loop-each and a every-do-end These both execute the loop’s
body statements and restart at the top of the loop each time a signal is received.
(Note the difference is the first entry into the loop. The “loop-each” body is
entered before the first signal is received, while the “every-do” waits until the first

signal is received.)

Esterel promotes a programming style that is very modular. Modules emit signals
and at the time are unaware who, if anyone, is listening. Thus for a given task one can
write many little modules each of which performs some task. This along with renaming
of signals can lead to a collection of reuseable Esterel modules. Note that Esterel also
encourages transmitting as much information as possible as signals. In many cases one
stays away from the variables and if-then-else style of programming. This is because
signals can store values and the present-then-else construct exists. The main advantage
is that while an if statement always results in a runtime test, a present statement is
compiled more efficiently. For more details regarding the Esterel language the reader
should see [3].

Interface Concerns
As mentioned above, we consider graphic objects as reactive systems. Typically

the input signals correspond to keyboard and mouse events, while output signals are

actions performed by the objects. Timing also plays a role in objects. For example,

! These can be used to handle time and synchronization.

<

4

3.1.

double mouse-click and trill (i.e., auto-repeat) interactors can be easily programmed.

The use of signals allows one to separate the behavior from the graphics and
hardware. Thus the behavior is in no way dependent on the underlying window system.
Although we eventually must worry about this hook up, it is cleaner to program on
a higher level. Also we find that the parallel construct is very natural for graphical
objects.

Efficiency is always a concern for interface components. We find that the generated
automata are small and efficient. One could directly hand-code the automata but we
feel this is a difficult task even for small automata. As well one wins in maintainability
with Esterel. This is again evident with the reuse of modules: a button module can be

re-used in defining the menu module, etc.

A Small Example: A Trigger Button

We present a small example of how to use Esterel for describing a trigger button,
where the associated action is triggered on mouse-up, that is, when the mouse button is
released. This example gives a feel for the style of programming and introduces another

Esterel module, check-rectangle that is useful in specifying many graphical objects.

For every Esterel module it is necessary to have some input and output signals.
The graphical object whose behavior we are describing is given as an input signal. Also
there are input signals corresponding to mouse events (e.g., releasing mouse buttons,
dragging the mouse, etc.) and possibly for handling timing (e.g., clock ticks for auto-
repeaters). The output signals we emit are to request that some action be performed

(e.g., the action associated with the trigger button).

The Button Module

A trigger button behaves as follows: depressing a mouse button inside the button
highlights it; moving out (resp. in) the button keeping the mouse button depressed
causes the button to be unhighlighted (resp. highlighted); finally releasing the mouse
button inside the button performs some action and unhighlights the button; if the
mouse button is released outside of the button then we are done but there is nothing

to do. Here we look at how to specify this behavior in Esterel.

As we mentioned above each module has a declaration part which specifies the
external interface for that module. It includes the declaration of user defined types,
external functions and procedures, and the input and output signals of the module.
For the button module we have the following declarations:

5

module BUTTON .

type COORD,
RECTANGLE,
BUTTON;

function GET_-RECTANGLE (BUTTON) : RECTANGLE;
procedure XOR () (BUTTON);

input BUTTON (BUTTON),
MOUSE (COORD),
MOUSE_UP;

relation BUTTON # MOUSE_UP,
BUTTON => MOUSE,
MOUSE_UP => MOUSE;

output PERFORM.ACTION (BUTTON);

Above we have the declarations for the user abstract data types: COORD (coordinate

or point), RECTANGLE, and BUTTON that will be used in this module. The button
module has three input signals: BUTTON of type BUTTON, MOUSE of type COORD,
and MOUSE._UP (a pure signal). It has but one output signal: PERFORM_ACTION
which is of type BUTTON.

We assume the button can supply, through the external function GET_RECTANGLE,
a rectangle which is its sensitive area. Note that this rectangle can be smaller or larger
than the visual appearance of the button. Also there is one external proceduref XOR
that takes as argument the button to be highlighted. Note that by working with the
button for the XOR function and the PERFORM_ACTION signal we allow for things
like “dormant” buttons (i.e., a button which is currently not active). This is in keeping
with an object-oriented programming style for the objects themselves. In this case, the

state of the button can be checked to see if it is active before doing what’s called for.

The relation section gives information about the relationships among the input
signals. The first states that the signals BUTTON and MOUSE_UP are incompatible
and never appear in the same instant. Thus one cannot begin and end the button
module in the same instant. The other two are causality relations. The former states
that whenever the BUTTON signal is present then a MOUSE signal will also be present.
Similarly the latter states whenever MOUSE_UP is present then MOUSE is also present
(it tells where MOUSE_UP has occurred). These relations represent assumptions about

how signals will be received by the module.

1 Procedures in Esterel have two argument lists: the first is for call by reference arguments,
the second for call by value.

< tell whether inside or out of the button >
< control highlighting of button >

< watch for mouse-up then do what’s necessary >

One could view the behavior for a trigger button as simply the last two tasks, highlight-

ing and handling mouse-up, running in parallel, however, both of these are dependent
on knowing whether one is in or out of the button. Thus it seems natural to separate
such a task and consider it as a third component needed in specifying the behavior of
a button. In the next section we describe the check-rectangle module whose task it is
to say whether the mouse is in or out of some object’s associated rectangle. For now
we assume that there exists such a module that is generating “in” and “out” signals
that are heard by the other parallel tasks.

Consider how one specifies in Esterel the control for highlighting. Recall that
initially the mouse is inside the button (a natural assumption if one clicks in the
button to start). The control is an infinite loop: highlight, wait until the mouse is out
of the button, unhighlight, wait until the mouse is inside the button. In Esterel we
have the following:

loop '
call XOR () (? BUTTON);
await BUTTON.OUT;
call XOR () (? BUTTON);
await BUTTONIN
end

The first call to XOR' highlights the button while the second unhighlights it. The
parallel task mentioned earlier emits the signals BUTTON_OUT and BUTTON.IN.

For handling mouse-up one equally needs to know whether the mouse is inside the
button or not. It is possible to write this component using only the BUTTON_IN and
BUTTON_OUT signals. Here again we have an infinite loop, although slightly more
complicated: if while waiting for the mouse to be out of the button mouse-up occurs
then handle it and exit; if while waiting for the mouse to be inside the button mouse-up .

occurs just exit. This can be presented as follows:

loop
do
< when mouse up perform action then exit >
upto BUTTON_OUT;
do
< when mouse up just exit >
upto BUTTON_IN
end

t Note that “? BUTTON?” is the value of the input signal BUTTON and since this signal is
of type BUTTON it is a valid argument to XOR.

7

3.2.

The do-upto construct executes the statement body until the signal, here either BUT-
TON.OUT or BUTTON.N, is heard. When the signal is received the do-upto aborts
and execution of the next statement begins. In both cases we want to wait until the
MOUSE_UP signal is seen and then do something. Thus the await construct is just
what is needed to finish off this component. In the case where we perform the action

we have:

await immediate MOUSE_UP do
call XOR () (? BUTTON);
emit PERFORM.ACTION (? BUTTON);
exit THE_LEND

end

When there is no action to perform we simply exit:

await immmediate MOUSE_UP do
exit THE_LEND
end

We should mention two technical details with respect to the use of “immediate” and the
“exit” statements. The immediate implies that if the awaited signal is already present
when the test is made then one executes the code. Thus if one of the enclosing do-
upto statements aborts (because either a BUTTON_IN or BUTTON_OUT is present)
and in the same instant a MOUSE_UP is present then we want the appropriate code
executed (without the “immediate”, execution would wait for a later MOUSE_UP
signal). Otherwise one would wait for the next occurrence of the MOUSE_UP. The exit
is part of the trap-exit mechanism of Esterel, thus with a corresponding trap statement

surrounding the three parallel tasks one exits completely the button module.

We find this handling of mouse-up somewhat awkward, but it represents a first
attempt if one can only listen for BUTTON_IN and BUTTON_OUT signals. (Recall
we assume we have a module generating such in and out signals.) There are other
possibilities even with this assumption. One alternative is to have one component
update a variable that tells whether one is inside or not and tests this variable on
receiving mouse-up. This is hardly satisfactory either. What we would really like
is to query the module which is generating the in and out signals at ihe time when
mouse-up occurs to find out the.current state. We return to this after we present the

check-rectangle module.

Check-Rectangle Module

We want to specify a module that generates in and out signals in response to
mouse displacements with respect to a given rectangle. This module is clearly useful

for many graphical objects.

The external interface for the check-rectangle module is rather straightforward:

8

module CHECK_ RECTANGLE :

type COORD,
RECTANGLE;

function IN.RECTANGLE (RECTANGLE, COORD) : boolean;

input MOUSE (COORD),
CHECK RECTANGLE (RECTANGLE);

relation CHECK_RECTANGLE => MOUSE;
output IN, OUT;

We have two input signals: CHECK_RECTANGLE of type RECTANGLE and MOUSE

of type COORD. The two output signals, IN and QUT, are pure signals. The only
external function is IN.RECTANGLE which returns true or false given a rectangle and
a coordinate (or point). Notice that every CHECK_RECTANGLE signal implies that
a MOUSE signal is present.

To start we have a check-rectangle module with the following simple behavior:
wait for a rectangle then loop forever signalling whenever the mouse moves in or out
of this rectangle. For demonstration’s sake, assume for check-rectangle we are initially
in the rectangle.

await immediate CHECK_RECTANGLE;
loop
emit IN;
< terminate when you move out >;
emit OUT;

< terminate when you move in >
end

Note that awaiting the signal CHECK_RECTANGLE is necessary to have a rectangle
to check (currently modules in Esterel do not take parameters). The idea is to just emit
IN or OUT when the situation changes thus the code in between is testing whether
this has happened or not. Now consider what happens once emitting IN while waiting
to emit OUT. Basically we test with each MOUSE signal received whether we are still
in the rectangle:

% Inside rectangle waiting to move out
trap IN.TO.OUT in
every MOUSE do
if INRECTANGLE (? CHECK_RECTANGLE, ? MOUSE) else
exit IN.TO_OUT
end

end
end

Note that each time a MOUSE signal is heard we use the function IN.RECTANGLE
to test whether the mouse is in the rectangle. If not, then the “else” part is executed.
Thus we execute the exit for the surrounding trap statement. At this point we would
execute the “emit OUT” as we saw above and then using a similar trap construct wait

until the mouse moves in the rectangle.

Of course, for check-rectangle truly to be useful we cannot assume that we are
initially in the rectangle. To handle this we use a local signal FROM_OUT, whose
presence implies that the mouse is initially outside the rectangle. The changes to our
original loop are minimal: we compute whether we are initially out of the rectangle
and then start the loop correctly:

await immediate CHECK_RECTANGLE;
< compute FROM_OUT >;
loop
present FROM_OUT else
emit IN;
< terminate when you move out >
end;
emit QUT;
< terminate when you move in >
end

Note that the present construct permits by-passing the first part of the loop. If
FROM_OUT is present then the “else” part is not executed and thus we emit OUT and
wait until the mouse moves into the rectangle. Computing FROM_OUT is responsible

for emitting the signal when necessary. We can simply test whether the mouse is in

the rectangle to start:

if INRECTANGLE (? CHECK_RECTANGLE, ? MOUSE) else
emit FROM_QUT

end
Thus whenever the mouse is not in the rectangle to start we emit FROM_OUT. Often
we know whether the mouse is inside the rectangle to start and we can emit a signal
to inform the check-rectangle module rather than having the module do the test. In
this case < computing FROM_OUT > would check for outside signals. If there are
no signals then it does the check as shown above. However whenever outside signals
are provided one assumes these are correct. So we can include two new input signals,
CHECK_FROM.IN and CHECK_FROM_OUT and < computing FROM_OUT > is

then as follows:

present CHECK FROM_QOUT then
emit FROM_OUT

olse
present CHECK_FROM.IN else
if INRECTANGLE (? CHECK._RECTANGLE, ? MOUSE) else
emit FROM_OUT
end
end
end;

The use of present statements looks for external signals and emits FROM-OUT if
necessary. Otherwise INNRECTANGLE performs the test. Note that this permits the
calling module to emit the appropriate signal if it knows that initially one is always
inside the rectangle.

10

Thus far the check-rectangle module, after waiting for an input rectangle and
computing FROM_OUT, loops forever emitting IN and OUT whenever the situation
changes. This is useful for many other modules, however, as we saw with the trigger
button we may want at some point to query the module to find out the current status.
That is, an external module can, by emitting a signal, query to find out if the mouse is
in the rectangle; Check-rectangle responds to such a signal by emitting the signal YES

or NO. We can view the check-rectangle module as doing two tasks in parallel:

await immediate CHECK_RECTANGLE;
< compute FROM.OUT >;

< generate IN and OUT >

< answer queries AMIIN >

]

Note that the external interface of check-rectangle must now be extended to have a
new input signal, AM_I_IN, and two new output signals, YES and NO. The behavior of
the query-answering component is again an infinite loop: when a query arrives answer
YES as long as the mouse is inside the rectangle, when a query arrives answer NO as
long as the mouse is out of the rectangle. To start off correctly we can again use the
FROM_OUT signal. In Esterel we specify: .

loop
present FROM.OUT else
do
< answer queries - YES >
upto OUT
end;
do
< answer queries - NO >
upto IN
end

To know whether or not one is inside or out of the rectangle we simply listen for the IN
and OUT signals that are generated in parallel. Notice that it is not necessary to store
the state in a variable. Using the do-upto statement we have all the queries answered
the same until OUT or IN is received. Since a query comes in the form of a signal, we
listen for every such signal and respond by emitting the appropriate response. Thus to

respond YES we have:

every immediate AMIIN do emit YES end

The “every immediate” statement implies that whenever the signal AM_IIN is present
an emit signal will be done. The “immediate” is necessary because if one of the do-upto
statements is aborted (because either an IN or OUT signal is present) and in the same
instant a AM_IIN signal is present then we want that the appropriate YES or NO

11

3.3.

signal is emitted. Note that the code for answering queries, like that for generating IN

and OUT, never terminates.

Button Module Revisited

Earlier we presented the button module as three tasks running in parallel, we
return to this module to show how one uses the check-rectangle module and how one
uses the button module itself. We begin by showing how to run the check-rectangle
module in parallel with the components for controlling the highlighting and handling
mouse-up. We then show how to rewrite the handling of mouse-up by querying the

check-rectangle module.

The component to < tell whether inside or out of the button > can be specified

in Esterel as follows:

emit CHECK_.RECTANGLE (GET-RECTANGLE (? BUTTON));

emit CHECK_FROM_IN;

copymodule CHECK_RECTANGLE [signal BUTTON.IN / IN,
-BUTTON.OUT / OUT]

The Esterel copymodule construct allows one to use other Esterel modules. This
corresponds to an in-place expansion of the check-rectangle module possibly with
signal renamings. Here we rename the IN (resp. OUT) signal to be BUTTON_IN
(resp. BUTTON_OUT). Thus this instance of the check-rectangle module emits BUT-
TON_IN and BUTTON_OUT. Before starting the module we send the necessary sig-
nals: i) CHECK_RECTANGLE signal whose value, given by the external function
GET_RECTANGLE, is the sensitive area for the button; ii) signal CHECK_FROM_IN
because we are assuming when one starts the button module one is already inside the
button. Note that the MOUSE signals received by the button module are also used
by check-rectangle. (Broadcasting signals allows the Esterel code to be modular; one

doesn’t have to know who is listening and anyone who is listening can act accordingly.)

It is no longer necessary to listen for BUTTON_IN and BUTTON_OUT signals to
handle mouse-up. This component waits for mouse-up then queries the check-rectangle

module and after possibly performing some action the button module is terminated. -

await MOUSE_UP do
emit AM_I_IN;
present YES then
call XOR () (? BUTTON);
emit PERFORM_ACTION (? BUTTON)
end;
exit THE_END
end

When MOUSE_UP arrives we simply emit AM_IIN then see if YES, which would be
emitted by the check-rectangle module, is present. If s0, we unhighlight the button and

12

34.

emit PERFORM_ACTION. In any case we use the trap-exit mechanism to terminate
the module.

The behavior for the simple button is almost complete. The only remaining prob-
lem is to have this Esterel module used again and again, each time one clicks in a
button. Here we need a loop whose body is just a copymodule of the button module.
every immediate BUTTON do
copymodule BUTTON
end
This button-loop module has the same input and output signals as the button module.
Note that with every BUTTON signal which is emitted we simply restart the button

module.

Discussion

We now outline how one goes about using this code. This includes what the user
must write in terms of supporting code and what the Esterel provides the user for
finally attaching the behavior to a graphical object. (We return to this later in section
5.)

The user must define the external data types such as COORD, RECTANGLE, and
BUTTON plus two functions for each type, an assignment function and an equality
predicate. Note that Esterel only utilizes these functions and therefore really doesn’t
know anything about the types used in the programs. Clearly, the external functions
and procedures must also be written by the user. -

Attaching the behavior to a graphical object that is a button only requires that
one passes that object as an input signal and that one can manipulate this object via
XOR and GET.RECTANGLE. One must also be able to “coordinate” the other input
signals MOUSE and MOUSE_UP. Functions associated with the input signals and
the automaton itself are provided by the compiled Esterel. Calling the MOUSE_UP
input function followed by calling the automaton is equivalent to having emitted the
signal MOUSE_UP. The user is responsible for writing any output signal functions. An

emission of an output signal translates into a call of its corresponding function..

The coordination of input signals is an important aspect in using the Esterel code.
For example, above we gave a simple button loop module which each time it sees a
BUTTON signal restarts the button module. This could lead to a problem if a button
signal is emitted and another button signal is emitted before mouse-up occurs. The
problem is that the first button module is instantly aborted (perhaps the button is still
highlighted).

Of course, the issue is how does one connect the Esterel code to the outside world.
We must guarantee that a second BUTTON signal won’t be seen until a MOUSE_UP

13

4.1.

has been received. Depending on the system one may have a filter (or processor) which
translates external events into the correct Esterel signals. Also it is possible to have
the Esterel code deal with this. Consider the button-loop module as two tasks running
in parallel. The first is going to ignore button signals that arrive if there is a running
button module. However it initiates the button module when there is no running

button module. The second task is running the button module.

To initiate the button module we introduce a local signal REAL_BUTTON. This
signal is generated only when there is no button module running.

signal REAL_ BUTTON (BUTTON) in
(

loop
await BUTTON do emit REAL.BUTTON end
do
every BUTTON do emit STUPID_GUY end
upto MOUSE_UP
end

every immediate REAL_BUTTON do
copymodule BUTTON
end

]

end
Notice that the second task starts a button module every time REAL_BUTTON is
emitted. The first task emits this signal when a BUTTON signal is heard but then it
ignores all other BUTTON signals until MOUSE_UP is received. (The STUPID_-GUY
signal is just editorial comment when one tries to start another button without finish-

ing an earlier one.) On mouse-up a new BUTTON signal is awaited before emitting
REAL.BUTTON.

Reuseability and More Examples

We present various examples that show how one can re-use the Esterel modules
to make a hierarchy of behaviors. We begin with a description of a menu, followed
by that of pulldown and popup menus, and finally a menubar. We then show how
to breakdown the behavior for objects such as a scrollbar. Finally we present general
concerns when trying to specify behavior for graphical objects.

A General Menu Module

We now want to specify the behavior for a menu. Graphically a menu is a collection
of buttons - typically appearing as a row or column. The behavior of a menu is not
simply that of, say, a row of buttons. For a menu, while one initially depresses a mouse
buttqn in one of the menu’s buttons to get things started, when moving to another
button it is not necessary to click inside. Thus it is not sufficient to specify the behavior
of a button.

14

e

There is also the question of what kind of menu we want to specify. A fixed menu
that is always on the screen? A pulldown menu or perhaps a pop-up menu? It is clear
that once a pulldown or pop-up menu reveals its selections (buttons) that it behaves
the same as a fixed menu. Thus, the difference is how one initiates the behavior. We
want to write the specification for a menu which works for all three types of menus.
We describe a module, called menu-body, which doesn’t know whether one is initially
in or out of the menu body (buttons). Then we show how this module can be used to

attain the various kinds of menus.

The external interface for the menu-body module introduces a new type, MENT,
and a new input signal, MENU, of this type. As well we have two external functions:
GET MENU_RECTANGLE takes a menu as argument and returns the rectangle asso-
ciated with the menu body, and GET_MENU_BUTTON takes a menu and a point and

returns the menu button which the point is in. The Esterel declarations are as follows:

module MENU :

type COORD,
RECTANGLE,
BUTTON,
MENU;

function GET_ MENU_RECTANGLE (MENU) : RECTANGLE,
GET.MENUBUTTON (MENU, COORD) : BUTTON;

procedure XOR () (BUTTON);

input MENU (MENU),
MOUSE (COORD),
MOUSE_UP;

output PERFORM_ACTION (BUTTON);

relation MENU # MOUSE.UP,
MENU => MOUSE,
MOUSE_UP => MOUSE;

The behavior of the menu can be described as follows: when the mouse is inside
the menu body (i.e., inside one of its buttons) then the selected button is highlighted.
The selected button changes as the mouse moves within the menu body; when the
mouse is outside the menu then no button is highlighted; on mouse-up, if inside the
menu the currently selected button’s action is performed. We specifiy this behavior

with three tasks in parallel:

< tell whether inside or out of the menu body >
< keep track of current button >

< wait for mouse-up then do what’s necessary >

The first task is just an instance of the check-rectangle module. Note that since we

will use the menu-body module for all types of menus (fixed, popup, and pulldown)

15

we cannot make any assumption about the initial position of the mouse relative to the

menu-body. Thus we have:

»

emit CHECK . RECTANGLE (GET.MENU_RECTANGLE (? MENU));
copymodule CHECK.RECTANGLE [signal MENU.IN / IN,
MENU.OUT / OUT]

The task of keeping track of the current button needs to know whether the mouse
is inside the menu body or not. If it is not then there is no current button. Thus
we loop waiting to see when the mouse is in the menu body and then once inside
maintaining the active button until we move out of the menu. This can be expressed

in Esterel as follows:

loop
await immediate MENU_IN;

var ACTIVE.BUTTON : BUTTON in

do
< Maintain and run active button >
upto MENU_.QOUT;

caii XOR () (ACTIVE-BU TTON)
end
end

-

The “await immediate” allows one to start correctly the maintaining of the active
button whether the mouse is initially inside or out of the menu body. The call to
XOR is necessary because the button module which will be running within the do-ﬁpto
statement is instantly aborted on hearing MENU_OUT thus the active button is still
highlighted; only the menu knows this and can thus unhighlight the button.

What is necessary to keep track the active button? Whenever the mouse is inside
the menu body we must loop to see whether the active button changes. The active
button changes when the mouse moves into a new button. At this time we want to
start an instance of the button module running on the new active button. To maintain

the active button we have:

16

loop
ACTIVE.BUTTON := GET.MENU_BUTTON (? MENU, ? MOUSE);
signal BUTTON (BUTTON), BUTTON_OUT in
trap CHANGE BUTTON in

emit BUTTON (ACTIVE.BUTTON);
copymodule BUTTON;
exit THE_LEND

await BUTTON_OUT do exit CHANGE BUTTON end
]

end
end
end

We are assuming whenever we are in the menu then we must be in a button. To
maintain the active button we first use the GET_.MENU_BUTTON function to find
the active button. Then we use a trap-exit statement for controlling when we move
from one button to another within the menu body. This requires running the button
module on the active button in parallel with watching for when the mouse leaves this
button. When BUTTON_OUT is received we know that the menu’s active button
has changed. (When we change the active button, in the same Esterel instant two
button modules are running: with BUTTON_OUT the first module terminates and a
second begins as the loop restarts.) Note that if ever the button module terminates
we terminate the menu-body module by executing the “exit THE_END”. Here again
we are assuming that the three components of the menu-body module are enclosed in

a trap-exit construct.

To use the button module as shown above requires a slight modification. The
BUTTON_OUT signal must be declared as an output signal in the external interface
(declarations) of the button module. This allows it to be heard by other modules.
Otherwise that signal is viewed as local to the button module itself.

The third component of the menu body’s behavior is waiting for mouse-up. There
are two cases to consider; the mouse is either inside or out of the menu. In the former
case we inform the running button module that mouse-up has occurred, while in the
latter case we simply terminate the menu module.

await MOUSE_UP do
emit AM_IIN;
present NO then
exit THE_END
end
end

Recall that if the module BUTTON terminates then we terminate the menu-body

module. There is a button module running whenever we are inside the menu, so there

17

4.2.

is nothing to do when we are in the menu. In the other case, there is no button module

running and thus we “exit THE_END” to terminate the menu-body module.

Special Kinds of Menus: Pop-Ups and Pulldowns

As we mentioned above the main difference in the various kinds of menus are how
one initiates the behavior. For a pulldown, this is done by clicking in what we call the
“title” button. For a pop-up, this is done by depressing a specified mouse button. For

a fixed menu, one simply clicks inside the menu.

To use the menu-body module for a fixed menu one connects the Esterel module
so that it runs whenever a mouse button is depressed inside the menu. Thus, we must
build a menu loop module, similar to the button loop module shown in the previous

section.

every immediate MENU do
copymodule MENU
end

For a pop-up menu the situation is not more difficult: one must draw and erase the

menu-body since it is not always visible on the screen:

every immediate MENU do
call DRAW_MENU () (? MENU);
copymodule MENU;
call ERASE MENU () (? MENU)
end

The declarations for the popup module must, of course, declare the two external
functions, DRAW_MENU and ERASE_MENU. Notice that here we are assuming that

the mouse and the popup menu are in the same system of coordinates.

In the case of a pulldown menu it is clear that we want to run the menu-body
module given above on the pulldown’s menu. We can easily access this through the
addition of an external function, GET_MENU_BODY. The situation for the pulldown
is more complex. Since a pulldown menu is activated by clicking in the “title” button,
we feel it is natural to assume the mouse and the title button are in the same system
of coordinates. However, our menu-body module assumes that the mouse and the

menu-body are in the same system of coordinates.

We solve this by introducing a local signal “MENU_MOUSE” whose value is the
mouse coordinates relative to the pulldown’s menu. To go from coordinates relative

to the title button to those relative to the menu body we use an external function,
MENU_BODY_-COORD. The external interface for a pulldown module is:

18

module PULLDOWN:

type COORD,
RECTANGLE,
BUTTON,
MENU,
PULLDOWN;

function GET_'MENU_BODY (PULLDOWN) : MENU, '
MENU_BODY.COORD (PULLDOWN, COORD) : COORD;

procedure DRAW_MENU () (MENU),
ERASE.MENU () (MENU);

input PULLDOWN (PULLDOWN),
MOUSE (COORD),
MOUSE_UP;

output PERFORM-ACTION (BUTTON);

relation PULLDOWN # MOUSE_UP,
PULLDOWN => MOUSE,
MOUSE_UP => MOUSE;

Note that the GET_.MENU_BODY takes a pulldown as argument and returns its asso-
ciated menu. The function MENU_.BODY_COORD takes as arguments the pulldown

and the mouse coordinates and returns a new coordinate relative to the pulldown’s

menu.

The behavior for the pulldown has two components running in parallel: one is
generating MENU_MOUSE signals for every MOUSE signal received, the second is
running the menu-body module described above plus handling the drawing and erasing
of the menu-body. The latter task draws the menu body, emits the menu-body before
doing the copymodule of menu-body. When the menu-body module has terminated,

on mouse-up, one simply erases the menu-body and terminates the pulldown module.

await immediate PULLDOWN;
signal MENU (MENU), MENU.MOUSE (COORD) in
trap THE_END in

every immediate MOUSE do
emit MENUMOUSE (MENU_BODY.COORD (? PULLDOWN, ? MOUSE))
end

var MENU := GET.MENU_BODY (? PULLDOWN) : MENU in
call DRAW_MENU () (MENU);
emit MENU (MENU);
copymodule MENU [signal MENU_.MOUSE / MOUSE J;
call ERASE MENU () (MENU);
exit THE_LEND
end
]
end
end

Note that for the copymodule of MENU we jus_t rename the MOUSE signal to use the
local signal MENU_MOUSE. To use the pulldown module we again make a pulldown

19

4.3.

loop module similar to what we did above for the menu-body.

Menubar

A menubar can be viewed as a grouping of pulldowns in much the same way that
a menu is a grouping of buttons. There is again the slight behavioral difference from
a row of pulldowns that once one clicks inside one of the title buttons that represents
the menubar then it is enough to move into another title button to see the new menu

displayed.

The external interface requires the introduction of a new type MENUBAR and a
signal of that type. As well we introduce functions for getting the menubar’s associ-

ated rectangle, a title’s associated rectangle, and the current pulldown. The complete

interface is given below:

module MENUBAR.:

type COORD,
RECTANGLE,
BUTTON,
PULLDOWN,
MENUBAR;

function GET.BAR.RECTANGLE (MENUBAR) : RECTANGLE,
GET.TITLE_.RECTANGLE (MENUBAR, COORD) : RECTANGLE,
GET-MENU (MENUBAR, COORD) : PULLDOWN;

procedure ERASE_PULLDOWN MENU () (PULLDOWN);

input MENUBAR (MENUBAR),
MOUSE (COORD),
MOUSE.UP;

relation MENUBAR => MOUSE,
MOUSE_UP => MOUSE,
MENUBAR # MOUSE_UP;

output PERFORM_ACTION (BUTTON),

At a high level the behavior of a menubar is similar to that of a menu. That is,
one needs to know if one is inside or out of the menubar. When inside the menubar
itself one selects a title button which reveals the corresponding menu. By watching
the title buttons we keep track of the current pulldown. This happens while awaiting

mouse-up which terminates the behavior of the menubar. Thus we have:

< generate inside or out of the menubar >
< keep track of current pulldown >

< wait for mouse-up then do what’s necessary >

The easiest component for the menubar is, of course, generating whether one is inside

or not. This is simply an instance of the check-rectangle module.

20

emit CHECK_RECTANGLE (GET-BAR.-RECTANGLE (? MENUBAR));
emit CHECK FROM_IN;
copymodule CHECK.RECTANGLE [signal MENUBAR.IN / IN,
MENUBAR.OUT / OUT]
As usual we assume that the mouse and the menubar are in the same system of
coordinates. Again this seems natural since the behavior is triggered by clicking in the

menubar.

Maintaining the current pulldown, however, is not as simple as maintaining the
active button of a menu. While it is true whenever the mouse moves within the
menubar from one title button to another that the current pulldown changes, this
pulldown remains the current pulldown when one is no longer in the menubar. Recall
for the menu there is only a selected (active) button as long as the mouse is inside
the menu but for a menubar this is not the case. There is always a current pulldown
until mouse-up occurs. In fact, one must move out of the menubar in order to select a

button on the current pulldown.

Thus the code for keeping track of the current pulldown is actually two tasks in
parallel. The first watches when the mouse is in the menubar to see if the title button

changes. The second runs the pulldown module on the current pulldown. We have:

var ACTIVE_PULL : PULLDOWN in
{

< Maintain current title button >

< Run current pulldown >
]

end

The variable ACTIVE_PULL contains the pulldown which corresponds to the currently
selected title button. Thus it is the first task that knows which is the active pulldown

while the second runs an instance of the pulldown module for this pulldown.

Maintaining the current title button is similar to keeping track of the current
button in the menu-body module. That is, when inside the menubar we watch for
the mouse to enter a new title button. Each time the title button changes we have a
new current pulldown. Once out of the menubar we wait until we enter again. This

behavior can be specified as follows:

% Assuming:
% - if you’re in the menubar then you’re in a title button
loop

await immediate MENUBARIN;

do

< Find current pulldown
Maintain current title button >

upto MENUBAR.OUT;

end

21

To find the current pulldown we make use of the external function, GET_MENU.
We emit a signal of type PULLDOWN which will be used by the component which
runs an instance of the pulldown module. To maintain the current title button we
‘again use an instance of the check-rectangle module. Here again we use a trap-exit to

see when we leave the current title button.

loop

signal CHECK_RECTANGLE (RECTANGLE), IN, TITLE.OUT, YES, NO,
AMIIN, CHECK.FROM.IN, CHECK_FROM.OUT in

emit PULLDOWN (GET-MENU (? MENUBAR, ? MOUSE));
trap CHANGE_TITLE in

[
emit CHECK.RECTANGLE
(GET_TITLE_.RECTANGLE (? MENUBAR, ?MOUSE));
emit CHECK_ FROM.N;
copymodule CHECK_RECTANGLE [signal TITLE.OUT /OUT]

await TITLE_OUT do exit CHANGE_TITLE end
]

end

end
end

The function GET.TITLE_RECTANGLE provides the rectangle associated with the
title button that the mouse is currently in. Whenever the mouse moves outside the
title button and yet is inside the menubar then we must have a new current pulldown
and the loop restarts. Thus with each change of the title button we must find what is

now the current pulldown and then watch to see when we enter a new title button.

The component which runs the pulldown module for the current pulldown is, of
course, listening to the signals emitted by the code above:

loop
ACTIVE PULL := ? PULLDOWN;

do
copymodule PULLDOWN;
exit THE_END

nTYT T

upto PULLDOWN;
dcall ERASE PULLDOWN.MENU () (ACTIVE_PULL)
en

Here we set ACTIVE_PULL to the emitted PULLDOWN signal then run the pulldown
module. This module is aborted when a new PULLDOWN signal is emitted (i.e., when
the mouse is in a new title button). The ERASE_PULLDOWN_MENU is needed
because the aborted pulldown module will not have erased the menu which was drawn
by that module.-It is the menubar that knows this old active pulldown should be erased
before starting a new instance of the pulldown module. If ever the PULLDOWN module

22

»

—ar

terminates, which it does on mouse-up, then we want to terminate the menubar module.
Here again we are assuming an enclosing trap-exit around the three components for

the menubar behavior.

This completes the maintaining of the current pulldown. What remains is the
handling of mouse-up. Is there something for the menubar to do when mouse-up
occurs? At all times there is a running instance of the pulidOwn module and when the
pulldown module terminates, the menubar also terminates. Thus there is no special

handling for mouse-up that the menubar must do and this component is unnecessary.

With the menubar behavior specified as shown above we found a problem when
one exits and re-enters the menubar in the same title button. In this case the current
pulldown menu is erased and then redrawn; this is not acceptable esthetically. The
reason this happens is that the current pulldown has not changed so another PULL-
DOWN signal is emitted resulting in: i) the pulldown module being aborted and the
current pulldown erased; ii) a new instance of the pulldown module being started (re-

drawing the same pulldown). To correct this problem we would like to put in a check

that the new current pulldown is not the same as the.old current pulldown.

This requires modifying the component that maintains the current pulldown. This

can now be seen as three tasks in parallel:

var ACTIVE_PULL : PULLDOWN in
[

< Propose pulldowns and maintain current title button >
< Run current pulldown >

< Check out proposed pulldowns >
]

end

The first task is only slightly modified: instead of emitting PULLDOWN each time
the mouse enters the menubar we emit a new local signal, PROPOSED_MENU, which
is of type PULLDOWN. The third task is going to verify that the proposed menu is
different from the currently running pulldown before emitting the PULLDOWN signal.

In fact we have the third component occupy itself with keeping track of the active
pulldown since it does the check of the proposed menu. Thus the second component is
simplified:

loop
copymodule PULLDOWN;
exit THE_.END
each PULLDOWN
The third component behaves as follows: emit the active pulldown, whenever a pull-

down is proposed then check if it is different. If it is then there is a new active pulldown,

23

4.4.

so we erase the old pulldown and emit a new pulldown signal:

% Assuming: you are in the menubar to start

loop
trap CHANGEMENU in

ACTIVE_PULL := ? PROPOSED MENU;
. emit PULLDOWN (ACTIVE_PULL);
every PROPOSED MENU do
< check if new active pulldown >
end

end
end

The trap-exit is used whenever a menu changes; that is a new active pulldown. The

check is as follows:

if ? PROPOSED MENU = ACTIVE_PULL else
call ERASE_ PULLDOWN_MENU 0 (ACTIVE_PULL);
exit CHANGE MENU

end

The “else” part is executed only when we have a new active pulldown. Thus we erase

the old one and then restart the loop (resetting the ACTIVE_PULL and emitting a
real PULLDOWN signal). It is interesting to note that this is our first runtime test;
all other tests have involved only signals.

To use this menubar module, we need to make it run every time one clicks inside
the menubar. For this we make a menubar loop module that does a copymodule of the
menubar for every MENUBAR signal received. This is similar to what we have done
for both button and menu.

Compound Objects

Thus far we have presented specifications where the global graphical object has a
behavior. For example, the menubar module should be attached to the graphical object
which is the menubar. For compound objects, which are composed of subobjects, it may
be more desirable to attach behaviors to different subcomponents of the graphical object
rather than to the object itself.

Consider for example a scrollbar. As a graphical object, a scrollbar consists of two
trill buttons (which incrementally scroll up and down) and a center component. This
center component provides an “index” (or thumb) to position oneself in the object that
is being scrolled over. Additionally, if one clicks outside of the index one scrells up (or
down) until the index is at the clicked position.

Now with this representation it is clear that the trill buttons have their own in-
dependent behavior. It is the action associated with the buttons that is different ~it

does the scrolling over some object. One could argue that a basic scrollbar doesn’t

24

4.5.

need trill buttons. But the main question is does one specify the behavior of the center

component as one Esterel module or two?

Let’s say we want to write one behavior for the scrollbar (where by scrollbar we
now mean just the center component). The Esterel module is simply an if-then-else
with a test that finds out whether or not the mouse is in the index. Depending on
the result, one calls a module to control the index or one call a module to control the
area surrounding the index. This is much the same as a dialog box. If the dialog box
contains, say, three buttons do we specify the behavior of the box or just attach to
each ‘of the buttons the button-loop behavior.

Clearly one can do this either way, depending on how one attaches the behavior
to graphical objects. The code generated by separating the behaviors is somewhat
smaller. Even if one chooses one specification, it is always best to make modules out
of the separate components. This way they can be used for other specifications if need
be. Note that the module which would control the “index” of a scrollbar is exactly
what is needed for a “slider”. A slider is a graphical object which is used to gauge
some data. Physical examples of a slider include a thermostat, the sound control on
a stereo, etc. A graphical object slider may be used to control the brightness of the

screen, for example.

Discussion

Clearly we feel that the check-rectangle module plays a major part in specifying
the behavior of many graphical objects. We think it is very important that such a
component is not attached (hard-wired) to the underlying graphics or window system

when describing behaviors.

With each object we’ve specified we have always written a “driving” loop function:
every immediate BLAH do copymodule BLAH end. This is because to use the Esterel
again and again we must restart the module. We would like to define a global loop which
can be parameterized but currently such parametrization is not available although it
is foreseen in future versions of Esterel. The same type of problem can be seen with
the grouping of objects. We group buttons into a menu and pulldowns into a menubar -

each time the code is similar. Here we think parameterization could also be helpful.

The reuseability of Esterel code is an essential feature. It allows one to build a
kind of hierarchy of behaviors and also to provide others who want to write Esterel
code a library of simple modules. Of course, this reuseability is at the Esterel code
level not at the compiled code level. One cannot link to some already compiled Esterel
module. Another important feature is the quality of the compiled Esterel code. Esterel
code is compiled into automata that are very smallf and very efficient.

T The menubar’s automaton has 10 states and its octal code representation is 1014 bytes.

25

5.1.

5.2.

Using the Esterel Code

Using Esterel for specifying the behavior of graphical objects permits one to ab-
stract the behavior from the underlying graphics or window system. Esterel permits us
to describe cleanly and easily the behavior and gives a level of portability. Eventually
one must attach the behavior to the graphical objects themselves. Here we present how
one goes about using the Esterel modules for graphical objects. This includes what the
user must write to interface with an Esterel module as well as how the user activates
the resulting automaton. Finally, we mention issues regarding the use of Esterel and

how we currently use the specifications shown above.

There are two aspects to interfacing with an Esterel module. The first is the
abstract data manipulation performed in that module. What is a button? How to
get a button’s associated rectangle? etc. The second concerns how one actually uses
the code. How does one start the automaton? How to generate an input signal? We

discuss each of these aspeéts below.

The Handling of Data

For a given Esterel module the user must define the data types and the exter-
nal functions and procedu‘res. This is typically written in some other host language
such as C, Ada, or Lisp. Note that within our Esterel code the data manipulation
is done mainly using the objects. For example, the menu module manipulates AC-
TIVE_BUTTON which is retrieved using an external function, GET_MENU_BUTTON.
Even for the menu one receives a signal whose value is a menu object. For user defined
data types, such as BUTTON, one must also provide two functions: an assignment
function, -assign. BUTTON, and a test for equality function, .eq_ BUTTON. These are
needed when one has a signal or variable of a specific type or when one has a test inside

the code itself.

Mapping Events to Esterel Signals

The compilation of Esterel results in the generation of an automaton. To use this
automaton one emits an arbitrary number of input signals and then calls the automaton
which, updates its state and in turn generates an arbitrary number of output signals.
Note that all input signals emitted before a call to the automaton are considered
simultaneous. One call to the automaton results in one state transition. That is, one
does not call the automaton associated with a module just once. One emits some input

signals, calls the automaton (perhaps some output signals are generated), emits some

The compilation process generates a number of functions that allows one to emit
input signals and to call the automaton. Compiling an Esterel module, M, generates an

automaton that can be called by a function of the same name. For each input signal,

26

.

5.3.

S, compilation produces a function, IS, that is to be used each time one wants to emit
the signal S. For output signals it is the inverse situation, the Esterel code (not the
user) emits these signals and it is the user who must provide a function that is called
at each emission. Thus for each output signal, S, the user must write a function O_S
which the automaton calls each time it wants to emit the signal. For example, for the
simple trigger button the user calls, say, _LMOUSE_UP but he must write the function
O_PERFORM.ACTION. (Note that for valued signals the values are just parameters

to the corresponding functions.)

The interfacing is complete once the user decides how and when to emit the input
signals and when to call the automaton. For example, to use the menu-body module

given above, one would like the following situation:

~ When one clicks in the menu-body, send input signals I_MENU and I_.MOUSE and

then call the automaton.

— Each time the mouse is moved, send input signals . MOUSE and call the automa-

ton.

~ When one releases the mouse button, send input signals IMOUSE_UP and I MOUSE

and call the automaton.

It is at this level, and only at this level, one must worry about connecting to any

underlying hardware or low-level software.

Discussion

When one is trying to connect an Esterel module to the outside world, the handling
of input and output is very important. Recall the synchrony hypothesis assumes that
the Esterel program reacts instantly to its input signals by updating its state and
generating output signals. This translates practically to being reasonably fast. This
requires that emitting signals and calling the automaton, and therefore any functions

it calls, be reasonably fast.

Thus one must guarantee that emitting signals and external function calls are
quick. Input signals are broadcast from the outside world and during the time the
automaton is called one must make sure that no other input signals are lost. This can
be done with a simple queue for such signals. In our case, we have found execution
speed is not a problem for external functions. However, the time taken by the output
signal, PERFORM_ACTION is dependent on the action to be performed. Instead of
directly performing the action one can just note that there is something to do and after
the call to the automaton returns do what needs to be done. Again this is handled by

a simple event queue.

Currently we use the behaviors specified above for graphical objects which are

27

running under Le_Lisp [6]. Thus we compile the Esterel modules into a lisp code. Our
system is event-driven, making use of the Le_Lisp virtual graphics system. This system
provides an event queue where the graphics system posts events for mouse and keyboard
inputs. It is through this queue that we manage the input and output signals to the
Esterel code. For example, a button object must be able to respond to a “down-event”,
where a mouse button has been depressed inside the button. Its response is a sequence
of Esterel input signal calls followed by a call to the associated automaton. Conversely,
the perform action signal simply posts a “perform-action-event” to the queue and the
buttons responds to this event by performing its associated action. For more details
see [7].

6. Conclusion and Future Work

We have presented here how one can use Esterel to specify the behavior of graph-
ical objects. We believe that the reactive systems model is correct for such interface
components. Esterel permits one to describe behaviors at an abstract level. Thus
a surprisingly complex task is now much easier. Since our specifications are not de-
pendent on any underlying graphics system they are rather portable. As well Esterel
modules give a certain level of re-useability that permits one to build from previous
modules. Finally since Esterel code is compiled into automata, the resulting behaviors

are extremely efficient.

Thus far we have only concentrated on low-level graphical objects: menus, menubars,
scrollbars, etc. We are very encouraged with our results. We would like to specify more
sophisticated and customized objects. We also feel that Esterel could be used to specify
the interface of full “applications” rather than singular objects. An application such
as a paint program could be specified which watches for mouse and keyboard input

simultaneously.

Acknowledgements

We would like to thank Gérard Berry for introducing us to Esterel and for many
helpful discussions and his encouragement in this work. As well we thank both Gérard

Berry and Gilles Kahn for proofreading this paper.

References

1. ADA, The Programming Language ADA Reference Manual, Lecture Notes in
Computer Science, Springer- Verlag, (155), 1983.

G. BERRY, P. COURONNE, G. GONTHIER, “Synchronous Programming of
Reactive Systems: An Introduction to ESTEREL” Proceedings of the First France-
Japan Symposium on Artificial Intelligence and Computer Science, Tokyo, North-

Holland, October 1986. (Also as INRIA Rapport de Recherche No. 647.)
3. G. BERRY, F. BOUSSINOT, P. COURONNE, G. GONTHIER, “ESTEREL

[\

28

10.
11.
12,

v2.2 System Manuals” Collection of Technical Reports, Ecole des Mines, Sophia
Antipolis, 1986.

L. CARDELLI AND R. PIKE, “Squeak: a Language for Communicating with
Mice”, Proceedings of SIGGRAPH 19(3), San Francisco, 1985.

L. CARDELLI, “Building User Interfaces by Direct Manipulation”, Research Re-
port # 22, DEC Systems Research Center, October 1987.

J. CHAILLOUX, ET AL. “LeLisp v15.2:Le Manuel de Référence, INRIA Technical
Report, 1986.

D. CLEMENT AND J. INCERPI, “Graphic Objects: Geometry, Graphics, and
Behavior”, In preparation.

M. DEVIN ET AL., “Aida: environnement de développemnt d’applications”,
ILOG, Paris, 1987.

R. HILL, “Supporting Concurrency, Communication, and Synchronization in
Human-Computer Interaction — The Sassafras UIMS” ACM Transactions on
Graphics, 5(3), July 1986.

MACINTOSH TOOLKIT Apple Computer Corp.
N. WIRTH, Programming in Modula-2, Springer Verlag, 1982.
X11 TOOLKIT MIT project Athena, February 1987.

29

APPENDIX — The Esterel Code

. $Header: check.strl,v 1.2 88/02/25 11:11:49 jmi Exp $
Check Rectangle Module runs forever. It emits signals IN/OUT depending if you are in a rectangle or not.
It only emits such signals at the start of the module or when the situation changes.
module CHECK_RECTANGLE :

type COORD,
RECTANGLE;

function IN_RECTANGLE (RECTANGLE, COORD) : boolean;

input MOUSE (COORD),
CHECK_RECTANGLE (RECTANGLE),
CHECK_FROM_IN,
CHECK_FROM_OUT;

output IN, OUT;

relation CHECK_RECTANGLE => MOUSE,
CHECK_FROM_IN => CHECK_RECTANGLE,
CHECK_FROM_OUT => CHECK_RECTANGLE;

This module also answers AM.LIN signals by emitting YES/NO
input AM_I_IN;
output YES, NO;

Getting started
await immediate CHECK_RECTANGLE;

% Assuming:
% -- The rectangle and mouse are in the same coordinate system.
' % Thus the IN_RECTANGLE function is rather straightforward.

signal FROM_OUT in

% Compute initial situation by generating the local FROM_OUT signal.
% Assuming

* % -- If CHECK_FROM_IN/CHECK_FROM_OUT is present then no check needed

present CHECK_FROM_OUT then
emit FROM_OUT
else
present CHECK_FROM_IN else
if IN_RECTANGLE (? CHECK_RECTANGLE, ? MOUSE) else
emit FROM_OUT
end
end
end;

[
% Generating IN and OUT
* % Only emit a signal each time the situation changes
loop
present FROM_OUT else
emit IN;
trap IN_TO_OUT in
every MOUSE do
it IN_RECTANGLE (? CHECK_RECTANGLE, ? MOUSE) else
exit IN_TO_OUT
end
end
end
end;
emit OUT;

-

end

trap OUT_TO_IN in
every MOUSE do
it IN_RECTANGLE (? CHECK_RECTANGLE, ? MOUSE) then
exit QUT_TO_IN
end
end
end
end

X Generating YES and NO
% Only emit a signal vhen AM_I_IN is received (i.e., only when asked)
loop
present FRON_OUT else
do
every immediate AM_I_IN do emit YES end
upto OUT
end;
do
every immediate ANLI_IN do emit NO end
upto IN
end

A2

b

P

v

$Header: button2.strl,v 1.2 88/02/25 11:11:36 jmi Exp $
A simple trigger button : if mouse-up occurs when inside then the button’s action is performed.

module BUTTON :

type COORD,

RECTANGLE,

BUTTON;
function GET_RECTANGLE (BUTTON) : RECTANGLE; % Mouse-sensitive rectangle
procedure XOR () (BUTTON); % Does highlighting/unhighlighting

input BUTTON (BUTTON),
MOUSE (COORD),
MOUSE_UP;

relation BUTTON # MOUSE_UP,
BUTTON => MOUSE,
MQUSE_UP => MOUSE;

output PERFORM_ACTION (BUTTON);

Need this output signal when we want to use this module in a menu
output BUTTON_OUT;

An input button is needed at the start
avait immediate BUTTON;

signal CHECK_RECTANGLE (RECTANGLE), BUTTON_IN,
CHECK_FROM_IN, CHECK_FROM_OUT, AM_I_IN, YES, KO in

trap THE_END in
[
% Check the button rectangle
% Assuming: .
% -- you are in the button to start
% -- the button and mouse are in the same coordinate systes

emit CHECK_RECTANGLE (GET_RECTANGLE (? BUTTON));

emit CHECK_FROM_IN;

copymodule CHECK_RECTANGLE ([signal BUTTON_IN / 1IN,
BUTTON_OUT / oUT}"

loop
% Controlling the highlighting of the button
' % Assuming:
% -- you are in the button to start
call XOR () (? BUTTON);
await BUTTON_OUT;
call XOR () (? BUTTON);
await BUTTON_IN
end

% On mouse-up see if inside the button rectangle
% Then unhighlight and perform the associate action
await MOUSE_UP do :
emit AM_I_IN;
present YES then
call XOR () (? BUTTON);
emit PERFORM_ACTION (? BUTTON)
end; .
exit THE_END
end

end
end

A3

$Header: mbody3.strl,v 1.5 88/02/28 14:32:45 jmi Exp $
A general-purpose menu module.
module MENU :
type COORD,
RECTANGLE,
BUTTON,
MENU;
function GET_MENU_RECTANGLE (MENU) : RECTANGLE,
GET_MENU_BUTTON (MENU, COORD) : BUTTON;

procedure XOR () (BUTTON);
input MENU (MENU),

MOUSE (COORD),

MOUSE_UP;
output PERFORM_ACTION (BUTTON);
relation MENU # MOUSE_UP,

MENU => MOUSE,
MOUSE_UP => MOUSE;

An input menu is needed at start
await immediate MENU;

signal MENU_IN, MENU_OUT, AM_I_IN, YES, NO,
CHECK_RECTANGLE (RECTANGLE), CHECK_FROM_IN, CHECK_FROM_OUT in
trap THE_END in

% Check the menu rectangle
% Assuming:
% -- the menu-rectangle and mouse are in same coordinate system

emit CHECK_RECTANGLE (GET_MENU_RECTANGLE (? NENU));
copymodule CHECK_RECTANGLE [signal MENU_IN / IN,
MENU_OUT / oUT]

loop

% menu works whether you are inside or outside to start
await immediate MENU_IN; % Potential wait to enter the menu
var ACTIVE_BUTTON : BUTTON in
do % upto MENU_OUT
loop

% Maintaining the active button
% Assuming:
% -~ if in the menu then must be in a button!

ACTIVE_BUTTON := GET_MENU_BUTTON (? MENU, ? NOUSE);

signal BUTTON (BUTTON), BUTTON_OUT in
trap CHANGE_BUTTON in
[
. emit BUTTON (ACTIVE_BUTTON);
copyrodule BUTTON;
exit THE_END ¥ If button finishes so does menu
I

]
end
end
end
upto MENU_OUT;
% Outside of menu rectangle; unhighlight the active
% vutton and back to the maim loop to wait for MENU_IM
call XOR () (ACTIVE_BUTTON)
end

awvait BUTTON_OUT do exit CHANGE_BUTTON end

A4

end

11 -
' % When MOUSE_UP occurs outside menu, terminate this module

awvait MOUSE_UP do
emit AM_I_IN; % The menu rectangle
present NO then
exit THE_END % Finished with mouse-up outside the menu
T end
end
)|
end
end
I

AbS

Ve

$Header: pull.strl,v 1.2 88/02/28 14:33:28 jmi Exp $
A Pulldown has the title button which when clicked inside causes the menu-body to appear. Once the body
appears it runs just like the MENU module.

module PULLDOWN:

type COORD,
RECTANGLE,
BUTTON,
MENU,
PULLDOWN ;

function GET_MENU_BODY (PULLDOWN) : MENU,
MENU_BODY_COORD (PULLDOWN, COORD) : COORD;

procedure DRAW_MENU () (MENU),
ERASE_MENU () (MENU);

input PULLDOWN (PULLDOWN),
MOUSE (COORD),
MOUSE_UP;

output PERFORM_ACTION (BUTTON);
relation PULLDOWN # MOUSE_UP,
PULLDOWN => MOUSE,
MOUSE_UP => MOUSE;
Here we are waiting for input pulldown.
avait immediate PULLDOWN;
signal MENU (MENU), MENU_MOUSE (COORD) in

trap THE_END in
(

% Transform mouse coordinates to be relative to menu’'s body

% Assuming: .
% -- the mouse and title are in the same coordinate system
% (This is because the pulldown is activated by the title)

every immediate MOUSE do

emit MENU_MOUSE (MENU_BODY_COORD (? PULLDOWN, ? MOUSE))
end

% Here we draw the menu-body and then use the MENU module
% This runs to completion and then we erase the menu-body.
% Note: we rename MOUSE to MENU_MOUSE since MENU assumes that
% the menu and mouse are in the same coordinate system.

var MENU := GET_MENU_BODY (? PULLDOWN) : MENU in
call DRAW_MENU () (MENU);
emit MENU (MENU);
copymodule MENU [signal MENU_MOUSE / MOUSE];
call ERASE_MENU () (MENU);
exit THE_END

end

end
end

A6

1.

$Header: mbar2.strl,v 1.4 88/02/28 14:32:35 jmi Exp $
A menubar (a group of pulldowns)

module MENUBAR:
type COORD,
RECTANGLE,
BUTTON,
PULLDOWN,
MENUBAR;
function GET_BAR_RECTANGLE (MENUBAR) : RECTANGLE,
GET_TITLE_RECTANGLE (MENUBAR, COORD) : RECTANGLE,
GET_MENU (MENUBAR, COORD) : PULLDOWN;
Procedure ERASE_PULLDOWN_MENU () (PULLDOWN);
input MENUBAR (MENUBAR),
MOUSE (COORD),
MOUSE_UP;
output PERFORM_ACTION (BUTTON);
relation MENUBAR => MOUSE,
MOUSE_UP => MOUSE,
MENUBAR # MOUSE_UP;

Need a menubar to start
avait immediate MENUBAR;
trap THE_END in

signal PROPOSED_MENU (PULLDOWN), PULLDOWN (PULLDOWN),
MENUBAR_IN, MENUBAR_OUT, AM_I_IN, YES, NO,
CHECK_RECTANGLE (RECTANGLE), CHECK_FROM_IN, CHECK_FROM_OUT in
(

% Check the menubar rectangle

% Assuming:
% -- you are in the menubar to start
% -- the menubar and mouse are in the same coordinate system

emit CHECK_RECTANGLE (GET_BAR_RECTANGLE (? MENUBAR));
emit CHECK_FROM_IN;
copymodule CHECK_RECTANGLE [signal MENUBAR_IN/IN, MENUBAR_OUT/QOUT]

% Keep track of current pulldown

% Assuming:
% -- if you’re in the menubar then you’'re in a title button
% -~ you are in the menubar to start
var ACTIVE_PULL : PULLDOWN in
[
% Maintain current title button & Propose Pulldowns
loop
await immediate MENUBAR_IN;
do
loop

signal IN, TITLE_OUT, CHECK_RECTANGLE (RECTANGLE), NO,
CHECK_FROM_IN, CHECK_FROM_OUT, AM_I_IN, YES in

emit PROPOSED_MENU (GET_MENU (7 MENUBAR, ? MOUSE));
trap CHANGE_TITLE in
[

emit CHECK_RECTANGLE

(GET_TITLE_RECTANGLE (? MENUBAR, ? MOUSE));
emit CHECK_FROM_IN;
copymodule CHECK_RECTANGLE {[signal
: TITLE_OUT/OUT]
I

await TITLE_OUT do exit CHANGE_TITLE end
]

A7

end
end
end

upto MENUBAR_OUT

end
]

% Every time we emit PULLDOWN we start it running
loop

copymodule PULLDOWN;

exit THE_END
each PULLDOWN

I
% Check out proposed pulldowns

% Assuming:
% -- you are in the menubar to start
loop

trap CHANGE_MENU in

ACTIVE_PULL := ? PROPOSED_MENU;
emit PULLDOWN (ACTIVE_PULL);
every PROPOSED_MENU do
if ? PROPOSED_MENU = ACTIVE_PULL else
call ERASE_PULLDOWN_MENU () (ACTIVE_PULL);
exit CHANGE_MENU
end
end

end
end

end

end
end

A8

e

$Header: bloop.strl,v 1.4 88/02/26 15:25:01 jmi Exp $
A simple loop around a button. Everytime you see a button signal restart the button module.

modulae BUTTON_LOOP:

type COORD,
RECTANGLE,
BUTTON;

input BUTTON (BUTTON),
MOUSE (COORD),
MOUSE_UP;
output PERFORM_ACTION (BUTTON);
relation BUTTON # MOUSE_UP,
BUTTON => MOUSE,
MOUSE_UP => MOUSE;
signal BUTTON_OUT in % Output signal of BUTTON module but not of this
every immediate BUTTON do
copymodule BUTTON

end
end

$Header: mloop.strl,v 1.3 88/02/26 15:26:08 jmi Exp $
A simple loop for a menu that says each time you see a menu signal then run the menu module

module MBODY_LOOP:

type COORD,
RECTANGLE,
BUTTON,
MENU;

input MENU (MENU), .
MOUSE (COORD),
MOUSE_UP;
output PERFORM_ACTION (BUTTON);
relation MENU # MOUSE_UP,
MENU => MOUSE,
MOUSE_UP => MOUSE;
every immediate MENU do
copymodule MENU
end

A9

$Header: ploop.strl,v 1.2 88/02/28 15:06:23 jmi Exp $
This is a loop for a pulldown menu.

module PULLDOWN_LOOP:

type COORD,
RECTANGLE,
BUTTON,
MENU,
PULLDOWN ;

input PULLDOWN (PULLDOWN),
MOUSE (COORD),
MOUSE_UP;

output PERFORM_ACTION (BUTTON);

relation PULLDOWN # MOUSE_UP,
PULLDOWN => MOUSE,
MOUSE_UP => MOUSE;

every immediate PULLDOWN do
copymodule PULLDOWN
end)

$Header: loop.strl,v 1.3 88/02/26 15:25:28 jmi Exp $
A loop calling the MENUBAR module

module MBAR_LOOP:

type COORD,
RECTANGLE,
BUTTON,
PULLDOWN,
MENUBAR;

input MENUBAR (MENUBAR),
MOUSE (COORD),
MOUSE_UP;

output PERFORM_ACTION (BUTTON);
relation MENUBAR => MOUSE,

MOUSE_UP => MOUSE,
MENUBAR # MOUSE_UP;

every immediate MENUBAR do
copymodule MENUBAR
end

Imprimé en France

ar

p -
I' Institut National de Recherche en Informatique et en Automatique

I

T

~

Wl

o~

