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RESUME

Une nouvelle classe de réseaux de files d’attente est définie pour ’évaluation des per-
formances de systémes multiprocesseurs multiprogrammés avec parallélisme au niveau des
tiches. Le cas considéré est celui ot les programmes soumis ont tous la méme structure de
graphe de tiches et ot I'ordonnancement est Premier Arrivé, Premier Servi.

Des équations trajectorielles sont établies pour ces réseaux, tenant compte a la fois des
mécanismes d’attente diis & la compétition des taches pour les processeurs et des mécanismes
de synchronisation traduisant les contraintes de précédence entre tiches.

Les conditions de stabilité de ces réseaux sont d’abord établies sous des hypothéses
statistiques générales, ce qui détermine le débit maximal du systéme multiprocesseurs ou
encore le taux maximum de soumissions de programmes garantissant la stabilité d’un tel
systéme. La méthode employée est fondée sur des techniques de théorie des files d’attente et
de théorie ergodique.

Des équations intégrales de base caractérisant le régime stationnaire de ces réseaux sont
ensuite établies. De nombreux critéres de performance tels que la charge stationnaire des
divers processeurs ou les temps de réponse stationnaires des programmes se déduisent de la
solution de ces équations. Un schéma iteratif convergeant vers la solution de ces équations
intégrales est proposé ainsi que diverses bornes supérieures et inférieures qui sont dérivées de
théorémes d’ordonnancement stochastique. 4

Mots clés: Evaluation de performances, graphes de taches, multiprogrammation, archi-
tectures multiprocesseurs, synchronisation, réseaux de files d’attente, condition de stabilité,
théorie ergodique, ordonnancement stochastique.
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Abstract

A new class of queueing models, named Synchronized Queueing Networks, is proposed for evalu-
ating the performance of multiprogrammed and multitasked multiprocessor systems in the case where
the workload consists of parallel programs of similar task graph structure and the scheduling is First
Come First Serve.

Pathwise evolution equations are established for these networks that capture both the queueing
mechanisms due to the competition of tasks for processors and the synchronization mechanisms
translating precedence constraints between tasks.

A general expression is deduced for the stability condition of such queueing networks under general
statistical assumptions, which yields the maximum program throughput of the multiprocessor system
or equivalently the maximum rate at which programs can be executed or submitted. The proof is
based on queueing and ergodic theory considerations.

Basic integral equations are also derived for the stationary distribution of important performance
criteria such as the workload of the queues and the program response times. An iterative numerical
schema that converges to this solution is proposed and various upper and lower bounds on the
moments of these quantities are derived using stochastic ordering techniques.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiprocessors-
parallel processors; C.4 [Performance of Systems]: modeling techniques, design studies;
D.1.3 [Programming Techniques]: Concurrent Programming, D.4.1 [Operating Sys-
tems]: Process Management, concurrency, mulliprocessing, mulliprogramming, scheduling,
synchronization; D.4.8 [Operating Systems]: Performance-modeling and prediction, queuve-
ing theory, stochastic analysis.

General Terms: Design, parallelism, performance, theory.

Additional Key Words and Phrases: Performance Evaluation, task graph, multiprogramming
and multitasking, stability condition, ergodic theory, stochastic ordering, associated random
variables, waiting times, response times.

1 Introduction

This paper is concerned with the performance analysis of multiprocessor systems running parallel pro-
grams. A new queueing network model is introduced that describes multiprogramming and multitasking
within this context, under the assumption that all programs have the same task structure and that the
allocation scheme that is used to map their tasks on the processors is static.

Following [1,2], we shall consider a parallel program to be a set of sequential tasks, the executions
of which are subject to certain precedence constraints. These constraints specify various functional rela-
tionships that can exist between the tasks of the program. For instance, the execution of two tasks, one




of which requires some data produced by the other, will be sequential, while it might be concurrent if
no such relation exists. In parallel langages, these relationships translate into a variety of “synchroniza-
tion primitives”, like Fork-Join or Parbegin-Parend, allowing to control the concurrent execution of the
various tasks that compose a program ([3-5]). A parallel program will hence be described by a directed
graph, referred to as its task graph, where nodes represent tasks and directed edges represent the prece-
dence relations between the tasks. A task that has several outgoing edges corresponds to simultaneous
initializations of further tasks. A task that has several incoming edges corresponds to a synchronization.
The execution of this task is enabled only if all its predecessors have finished their execution. Tasks
which have no direct or indirect precedence relations might execute concurrently, otherwise they have to
be executed sequentially. The type of the task graphs that we consider in this paper are directed acyclic
graph which are capable of describing all possible relationships between the tasks [2,6].

In a general purpose multiprocessor system, different programs could clearly have different task graphs.
As mentioned above the case we consider in the present paper is the one where all programs accessing
the multiprocessor system have the same task graph. Such a situation is frequently encountered in real
time processing applications (e.g. real time parallel signal processing [7]), in linear algebra algorithms (8]
and in certain telecommunication applications [9,10]. In such a case, the various programs accessing the
system may only differ in that corresponding tasks may have different execution times in two different
program instanciations. Such a program variability comes for instance from the differences between the
sizes or values of the data they operate on.

The multiprocessor systems under consideration here have a generic architecture with a finite num-
ber of (homogeneous or heterogeneous) processors, possibly sharing a central memory. Each processor
possesses a local memory. The processors can communicate via a communication medium or the central
memory.

The multiprocessor system is monoprogrammed if there is only one program being executed at a given
time. Multitasking is allowed if the tasks of a program can be processed in parallel on the various proces-
sors in a way that preserves their precedence constraints. The multiprocessor system is multiprogrammed
and multitasked if two or more independent programs can be executed at the same time and if the tasks
of each program are executed concurrently in accordance with the partial order defined on each program.

The present paper is concerned with multiprogrammed and multitasked systems executing a sequence
of programs of similar task structure. In such a case several task assignment policies can be used. A
first class of assignment policies consists in allocating tasks of a newly arrived program following some
adaptive scheme based on the load of the processors. These policies, which are usually referred to as
dynamic assignment, will not be considered here. Another possibility consists in allocating the various
tasks of each program to predefined host processors, according to a fixed assignment strategy. This may
be necessary in the particular case where the various processors have dedicated hardware or software. Re-
dundant task assignment will not be considered here, i.e., a task is assigned to one and only one processor.
Each processor, however, may have several resident tasks belonging to the same program. This is for in-

stance the case if the number of processors in the system is smaller than the number of tasks in the graph.

a senioenco

As the multiprocessor system is assumed to be multiprogrammed, different programs may be exe-
cuted simultaneously in the system. The task assignment policy is assumed to remain the same for each
program. Each processor may hence have several resident tasks belonging to the same or to different
programs. Tasks allocated to the same processor are queued up for execution. The queueing discipline
is FCFS (First Come First Serve) at the level of programs, i.e., tasks of n-th program are queued up
after the tasks of n — 1-th. On each processor, tasks of the same program are queued up in accordance
with the precedence constraints described by the task graph. The executions of all these tasks are then
synchronized according to the following simple rule: A tagged task begins its execution as soon as 1)
all its direct predecessor tasks have completed their executions and, 2) the processor it was allocated to
has completed the execution of all tasks that were allocated to the same processor and that precede the
tagged task in the FCFS order.

Observe that such a static allocation discipline together with the FCFS discipline at the program
level may eventually result in a reduced processor utilization. Compared with the dynamic scheme, static



allocation may indeed create situations where one processor is idle, while another processor has several
tasks queued up. However, a dynamic assignment scheme requires more information on the state of
system than a static one. In addition, dynamic allocation implies a central assignment queue that may
be a cause of contention. Similarly, the FCFS assumption concerning programs may create situations
where a processor stays idle because of task precedence constraints while there are some other tasks of
later programs available for execution on the same processor. The FCFS discipline has however obvious
robustness properties that compensate this drawback. It is beyond the scope of the present paper to
discuss the relative merits of dynamic and static allocation schemes or to compare the FCFS discipline
with other possible scheduling disciplines. The reasons for limiting the discussion to static allocation and
FCFS scheduling are both practical and mathematical: this is the simplest possible case, both in terms
of implementation and in terms of performance analysis.

The communications between tasks that are preceding one another in the task graph can be imple-
mented in two different ways. The first one is based on the use of shared variables (variables that can be
referenced by more than one task) and the second one on message passing. Both types can be represented
in the task graph by adding certain communication tasks to be allocated to specific queues. There exist
in the literature a variety of models for analyzing central memory contentions and the interference due to
the sharing of the communication medium within this context (for references see [11-14]). In this paper
we shall not focus on these problems. Nevertheless these effects can be taken into account by adding to
the task graph adequate communication tasks and memory access tasks for each precedence constraint.
The communication tasks should be allocated to a specific queue representing the communication medium
and the memory access tasks to a specific queue representing the central memory. In fact, neglecting
these phenomenons should only result in slight errors. Jones and Schwarz’s experiences in [15] show that
idleness of processors due to shared variable reference represent less than one percent of time if a data
locking mechanism is used. In the case of message passing, it is enough to introduce for each precedence
constraint a communication task that requires the services of the interprocessor communication medium
and which should then be allocated to a specific queue representing this medium. Bianchini and Shen

claimed in [16] that for many mission-oriented multiprocessor systems interprocessor communication is
* deterministic.

We now survey briefly the various probabilistic models that have been proposed in the literature
and that are related to the problem considered here. If the multiprocessor system is monoprogrammed
but multitasking is allowed, the evaluation of the statistics of the execution time of a program can be
accomplished by means of the PERT techniques [17-19]. If, however, the multiprocessor system is multi-
programmed and multitasked, the analysis of the performance behavior is much more complex. Initially,
most attention focussed on the simplest case, namely static allocation, programs with fixed task structure
and as many processors as there are tasks in one graph. The first attempt to analyze this problem was
made on the case where the task graph has K nodes without precedence constraints, like for instance
in the case of a program of the form Parbegin T3, ..., Tx Parend, where 77, ..., Tk are K tasks that can
execute concurrently. In this case, exact solutions have been provided for K = 2 in {20,21]. Approximate
solutions, bounds and logarithmic asymptotics have been derived on the mean program response times for
arbitrary values of K in [22-25] and conditions for stability have been presented in [22,26]. More recently,
the class of acyclic Fork-Join queueing networks has been studied in [27]. This last paper generalizes
the results of [25] to the case where the structure of the tasks graph is acyclic. Conditions for stability
are established as well as bounds on the response times of programs under general statistical assumptions.

For the more realistic cases where the number of processors is smaller than the number of tasks in a
program, only approximate models have been considered in the literature (see [28-30]). The approach we
propose in this paper is hence a first attempt towards an exact model within this context. To the best
authors knowledge, all of the more complex problems like dynamic allocation or programs with variable
structure are completely open apart from the case of systems with infinitely many processors ([31-34]).
For instance, [33] focuses on the case of random graph structure, deterministic and fixed task execution
times and infinitely many processors.

The paper is organized as follows. Section 2 is devoted to the definition of a new class of Synchro-
nized Queueing Networks (SQN), which describes the parallel processing systems introduced above. In
this model, the processors (and eventually the communication medium and the memory) are all repre-




sented by single server queues. Customers attended by these queues represent tasks (or communications).
The service of the customers are subject to the precedence constraints specified by the task graph which
is assumed to be acyclic. The main result of Section 2 consists in the derivation of the basic evolution
equations governing the behavior of these networks. The interarrival of the parallel programs and the
service requirements of the tasks will be assumed to be generaly distributed possibly correlated random
variables. This allows to represent asynchronous program submissions and some uncertainty on the actual
value of the tasks execution times (or of communication times) as it is usually done in the modeling of
computer systems.

Section 3 provides the necessary and sufficient stability conditions for such queueing networks under
these general statistical assumptions. In this section the SQN is first decomposed into certain subnet-
works according to the structure of the task graph, and it is shown that the stability condition of the SQN
reduces to the stability conditions of its subnetworks. A general expression is then established for this
condition. This determines the maximum rate at which programs can be executed within this context
or equivalently, the maximum intensity of program submissions that preserves the system stability. This
result is new to the best authors knowledge.

Within this context, the waiting (resp. response) time of a task is defined as the delay between the
program arrival date and the date when the task begins (resp. completes) its execution. The response
time of a parallel program is defined as the delay between the program arrival time and the time when all
its tasks have completed their executions. This last response time can also be expressed as the maximum
of the response times of its tasks. Waiting and response times are important performance criteria of such
multiprocessor systems. Sections 4,5 and 6 are devoted to the analysis of the transient and stationary be-
havior of these quantities. In Section 4, basic integral equations are established for the joint distribution
function of the waiting times under classical renewal assumptions. The exact analytical solution of these
integral functional equations seem very difficult to obtain. However, an iterative numerical schema which
converges to this solution is provided. Sections 5 and 6 are devoted to the derivation of various bounds
on the solution of these equations. Section 5 provides lower bounds based on the notion of stochastic
convex ordering and Section 6 upper bounds based on the notion of associated random variables. Various
numerical algorithms are also provided for the computation of both types of bounds.

2 Definitions and Evolution Equations

The original program task graph will be assumed to be acyclic and will be represented by the couple
Go = (V,, E,), where V, is the set of nodes corresponding to the tasks and E, the set of directed edges
indicating precedence relations between tasks. Observe that Gy depends on the algorithm of the program
to be executed only and not on the system architecture or configurations of the multiprocessor systems
under consideration.

We introduce now a new graph G = (V, E) that takes into account the number of processors in the
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A:V, — {1,---, K} denote the assignment strategy: A(v) is the index of the processor to which task
v €V, is allocated.

By = {vjve V,,A(v) =k}, 1<k<K

denotes the set of tasks allocated to processor k. G = (V, E) is obtained from the initial task graph ’
Go = (V,, E,) as follows:

Vo=V
E = E|JF

where E' is a set of edges indicating certain additional precedence relations required for establishing a
total order on every By, 1 < k'< K. These total orders should be compatible with the partial order
defined by G,. In fact there exist several different ways of constructing such total orders. More precisely,
the set of all total orders on By, 1 < j < K represents the set of all possible task scheduling policies
that are compatible with A and G,. The choice of these execution orders may influence strongly the



performances. The comparison of all these partial scheduling strategies will be the object of another
paper ([35]). In the present paper, it will be assumed that the transformation G, — G is given. It will
also be assumed that there are no redundant edge in G, i.e., if i = j € E , there are no paths of G, other
than the edge i — j from i to j. Note that since G, is acyclic G is also acyclic.

At this point, new notations are introduced on graph G, that will be used throughout the paper.
Pg(%) will denote the set of immediate predecessors of task i in G :

Pe(i)={jlieV,j »i€E}
and IIg(7) the set of predecessors of task i in G :
(i) = {j|j € V, there exists a path of G from j to i}

In other words,
i

(i) = U Pg (i)
where Pg(i) denotes Pg(Pg(- - Pg(3) - - -)). Similarly IT% (i) will denote the n-th iterate of Il (z): M2 (i) =
Mg(Tg(---Tg(5) - --)).
Forni,j € V, P(i,j) will denote the set of paths from i to j in G, if any:
P, 5) = {vl,;--, tm €V, 1<m|V||i=v > v2, -+, 0m1 = vy =j € E}.

We define the length of a path in G to be the sum of the execution times of the tasks situated on the
path.

For reasons which will become apparent later on, it will be convenient to order the vertices of G in
function of the processors they are allocated to and their level in G. Define the level of task i, denoted
by lev(i), as follows :

lev(?) = max lev(j) +1
()= max leo(s)

where by definition, lev(i) = 1 if Pg(i) = 0. N = max;ev lev(i) will denote the level of G.

Let t" 1<k <K, 1< j< N denote the task of level j allocated to processor k if any. Let t¥ (resp.
t*) denote the task of G allocated to processor k (1 < k < K) with the smallest (resp. largest) level value.

Generally speaking, the additional index n > 0 added to one of the objects defined above indicates a
reference to the instanciation of this object in the n-th program. For instance, tj is task t’c in the n-th
program and By, (1 < k < K) is the set of tasks of program n that are allocated to processor k.

The SQN associated with G consists of K queues, one per processor. The behavior of the SQN is
determined by the following three rules:

(i) There is a single external arrival stream with pattern ag =0 < a; < ---<a, < -+- €
R* . The n-th date of this external arrival stream triggers the arrival of a bulk of customers
to queue j (1 < j < K). The set of customers of this bulk is precisely Bj..

(ii) The service discipline of each queue is FCFS in the sense that customers of B; n
(1 £k < K, n>1) are allowed to be serviced iff all the customers in B; n-1 have been
serviced. In addlt.lon to that FCFS rule, customer t" € Brn (1 < i< |V],n 2> 0) can only

be serviced if all the tasks which are its predecessors in G have been serviced. Customer t"
requires 0', » € R* units of processing time.

(iii) There is a single output stream out of this network. Its n-th date coincides with the
latest of the service completions t¥,,1<i<|V|, 1<k < K.




Before establishing the evolution equations of the SQN, we introduce a new network which will be
proved to have an equivalent time behavior.

From task graph G we construct a new task graph, denoted by G = (V, E), by filling up G with new
fictive tasks and by introducing new fictive processors. A fictive task requires no service, the associated
service requirement sequence is thus a series of zeros. A fictive processor receives only fictive tasks as its
resident tasks. G is constructed by the following algorithm, where K’ is the number of fictive processors
and t£ denotes the task allocated to processor 1 < k < K with task level 1 < u < N in G, if it exists.

1. K —0; E~¥

2. V «— V , where every task in V. receives the same service requirement sequence and the same
assignment strategy as in G.

3. for every edge t& — tﬁ: of £,

fu =u+1 ,
then E — EJ{tF - t*)}
otherwise
ifk==*F
then L . .
YV~ ZU{tu+1’tu+2’ T tu'—l}
and
E ~ EU{tﬁ - t£+1’t5+1 - tﬁ+2, e "tt‘:’-—l - tﬁ’}
where ¢ ,,,---,t%,_, are new fictive tasks allocated to processor k.
otherwise
K —K+1

! 1 7

and k K' JK+K K+K' K+K'
K ! K k!
E — E| J{th — 53K (KK gKAK! KK gkl
where tf_"_"lx ', .. -,tf,i‘f " are new fictive tasks allocated to fictive processor K + K'.
endfor
4. Let tk | th o -, t5 be the set of (possibly fictive) tasks allocated to processor (or fictive proces-

sor) k, 1<k<K+K' 1<u <us;<N.
for every k,1 <k < K + K',

k 4k k k k k
14 *_KU{tl’th "‘vtu,—lwtu3+1’tug+2)“ ':tN};

.E.“’E.U{ti‘“’té’ §—+t§,---,t

L
~

] ik ik 1k ik k ko
uy-1 - tu;’iug - tu3+1’t07+1 - lu3+2’ o .’iN—l - INJ’

where t%,- .. ¢k =1t 41, -+, tk are new fictive tasks allocated to processor (or fictive processor)
k.

endfor
In the sequel, the notations that were defined initially for G will be used similarly for
G (resp. G) wiil be added to meniion which graph is referenced. For instance, Pg(i, j) 4
of paths from i to j in G. The following properties are easily proved:

+

G.
enotcs

The index
+

Lemma 1

The task graph G has the following properties :

1. For everyu, 1 <u< N, and every k, 1 < k < K + K’, there ezists one and only one task of level
u allocated to processor k.




Every non-fictive task in G is allocated on the same processor as in G.
Every non-fictive task in G receives the same service requirement sequence as in G.

Every non-fictive task in G has the same level value as in G.

Svoh e

Ifvo— vy — - = vy (m>0,v0,v1, -, v, € V) forms a path of G, and if v1, -, Um-1 are fictive
tasks and vg, vm are non-fictive ones, then vy, - - -, vm-1 are allocated to a same fictive processor, and
furthermore, the fictive tasks allocated to this fictive processor, other than vy, have no non-fictive
tasks as their immediate predecessors in G, Symmetrically, the fictive tasks allocated to this fictive
processor, other than vp,._1, have no non-fictive tasks as their immediate successors in G.

6. A fictive task may have at most one non-fictive task and at most one fictive task as its immediate
successors in G. Symmetrically, a fictive task may have at most one non-fictive task and at most
one fictive task as its immediate predecessors in G.

7. There is a path Pl in G from non-fictive task i to non-fictive task j, if and only if there is a path
P2 in G form i to j, where P2 is constructed by removing all the fictive tasks from P1.

8. Precedence relations in G ezist only between consecutive levels, i.e.,

tﬁ—*iﬁ: EE=>u —u=1
The SQN associated with G is defined similarly to the one associated with G. SQN-G is composed of
K + K’ queues, one per server (or fictive server). Let t,’i’n denote the unique (see property 1 of Lemma
1) task of level u, 1 < u < N, allocated by the n-th program, n > 0 to processor k, 1 < k < K + K'. Let
{0,’5’"};‘,10 denote the service requirement of task t¥ . (1 <u < N, 1 <k < K+K’, n > 0). Observe that
aﬁ,n =0(n=0,1,2,--) if t* is a fictive task. The behavior of SQN-G is determined by the following
simplified rules : ‘

(i’) The n-th bulk arrival to queue k (1 < k < K + K’) is composed of customers
k
tl,n’ tg,n) Ty th,n‘

(ii”) Customer t, (1 <u < N,n>0,1<k < K + K’) requires 0%, € R* units of
processing time and begins its service as soon as, for n > 0, all customers tﬁ,n-—l’ 1<u<N
and for n > 0, all customers tf‘_l,n, 1 < i < K, being its predecessors in G have been serviced.

(iii") The n-th (n > 0) departure epoch coincides with the latest service completions of
the tasks t}, ., 1 <k < K + K'.

For n =0,1,2, .. let 7, be the n-th interarrival of the external stream : 7, = Ap41 — Gy, yﬁn be
the workload of queue k seen by customer ¢f, 1 <i < N, 1 <k < K + K'. Similarly, let w* be the
workload of queue k at the n-th external arrival, 1 < k < K + K’, rf be the n-th response time of queue
k defined as the delay between the n-th bulk arrival to queue k and the latest departure of the bulk
customers, and r,, be the n-th network response time defined as the delay between the n-th arrival and
the n-th departure of the system. Within this context, the workload of a queue is understood as the time
it takes to clear this queue of all its customers when stopping further external arrivals. This includes the
service times of the customers present in the queue and the synchronization delays due t6 the precedence
constraints indicated in the task graphs.

Theorem 1

Assume the SQN-G is emply at time 0. For everyn, i, andk (n>0,1<i<N -1, 1<k <K +K'),

e (2.1)
S (2:2)
k . '
Wy n - _max Q’: +0~1 .
T R A (2.9
Unpr = max(0,wh, + 0k, — 7n) (2.4)




where Pg(t¥,,) denotes the sel of immediate predecessors of task t¥,, in G. The n-th response time of

quene k (1 < k < K + K') is given by
If; = .@.’fv,n + va,n (25)

and the n-th network response timer, by

_ k
In = O ko I (2:6)

Proof

The boundary condition (2.1) follows from the initial condition assumption. The fact that tasks of
level 1 have no predecessors in G \(alida,tes equation (2.2). From property 8) of Lemma 1, all the prede-
cessors of tf,, in G have the form ]} ,1 < j < K+ K'. Therefore the right hand side of equation (2.3) gives

the workload of queue k seen by customer tf,, , upon its arrival. Notice that the set { jlt} € Pg(tt,,)}
is never empty from the very definition of the level function.

Observe that va,n + ”fv,n + a,, is the date where the last customer of the n-th bulk completes its
service in queue k. Hence, we have

wh 41 = max(0, why + 0K + Gn — an41)
which is exactly the same expression as (2.4) since T, = Gn41 — @n
Equations (2.5) and (2.6) follow from the definition. O
Theorem 1bis

Assume that SQN-G is emply at time 0. For everyn and k (n >0, 1<k < K + K'),

wf = 0 2.7
Q_:i_’_l = max(0, (w’ + U5 -7, (2.8)
{Jlt’Gnc(i _
3 s I AN
r: = max {(w, + &%) (2.9)
T liengy)) e R
k
= max .
r, L F0EX, o T (2.10)
where _l_-f;" denotes the mazimum of the lengths of the paths from t{ to tf\, nG:
. En-
Bl’ = maXx (0’{’,+0' o +"'+U§:\’l—1,n+afv,n) (211)
(], 4,72, R, t5)ePg(t] 2%,)
and Tg(t%) is the set of predecessors of task t% in G.

Equation (2.8) can be derived from (2.2)-(2.4) as follows. From (2.3), we get

k . h
-wN,n - o “,‘lma‘x ok (wN i, n N—l,n)
{itn_ €Pa(3R))
wki = max (w 2 + o*3 )
WyN- Iin = =N-=2,n N-2n
{kalth2 ,€Pa (15 )}
kn—2 kn-1 kn-1
-w2,n - max (w + Ul n

kano kn—
{knoilt, Ve P8,V 7))




Notice that none of the sets { jlth N-j € Pg(tf\;i; +1)} is empty, from the definition of the level function.
Therefore, we get by replacement,

k k — k
UNntONn = p X (WN_10 + Ry n)FONn
{klltul_lepg(t)v)}
— ( k1 + a.h + ok )
- ,,lma‘x x QN-—I,n N-1,n Nn
{kilt ) €Pa(t})}
= max ( max
{hl‘ 1€Pa(t5)} {kzlt ,GPG('N_,)}
(MN—2,n + a'N—2,n) + aN—l,n + UN,n)
= max max
N—1€Pa(t}, )t 2qu(tN__‘)
(wN 2n+aN 2n+aN-1n+aNn)
and we obtain finally
wk + ok = max max.
ZN,n Nn —

. max
{kllt IGPG(' )} {kzlt QEPG(t 1)} {kN—XIt:N—IGPQ(t:N-n)}
Win + ot e oR o)
Observe that _
EN~1 kn—ay ,EnN-3 kn-3 k1 k — fii4d k
{knv-1lty""" € Pg(t,"7%), 8,7 % € Pg(tsV™°), -, t_; € Pa(th)} = {ilt] € Ng(t)}

The previous equation can be rewritten as

va,,, + oﬁ,’" = max max
. GIHeNMa(R)} {(2f, V=2, ¢%1 | 1k )ePg (] 1%))
(Wl +oah + b0t ok s) (2.12)

In view of the definition of I'*, (2.12) can be rewritten as

yfvn-{-afv,, = max  (w), -}-IJ ") (2.13)
’ ’ {iltieng(tk)}

where the set {j|t] € Iig(t% )} is never empty. Furthermore, using (2.4) and (2.13), we get

k k k
Wpyr = ma.x(O,yN,,, +onn— Tn)

= max(0, max (QJI n +lf;k) —Tn)
{iltjeng(k)}

and using equation (2.2), we get

k i i,k
wy,; = max(0, max wh + 8% —1,)
nH ( {jltieﬂg(t‘,i,)}(_n )=

This proves equation (2.8). Equation (2.9) follows from (2.5) and (2.12). O

The fictive tasks and fictive processors in SQN-G are useful in the formulation of the model. But,
as one may expect, they should not introduce additional synchronization overhead to SQN-G, as it is
established in Theorem 2 below.

Lemma 2

Forall K+1 < j< K+ K and1 <k < K, such that there exists a path of G from t’ to tk,,
then there ezists jo, 1 < jo < K, such that there exists a path of G from t’“ to tk, and for alln > 0,

jo,k J
Bk >k




and

wy 2w,
Proof
Let j and k be as defined in the lemma. And let vo — v; — -+ = v, (Mm > 0,v9,v1,--+,v € V)

form a path of G, where vy, -, vp,1 are fictive tasks allocated to (fictive) processor j, and v, v, are
non-fictive tasks. According to property 5 of Lemma 1, vg and vy, are uniquely defined and vo (respec-
tively v,,,) is the only task not allocated to processor j having an edge directed to (resp. originated from)
one of the fictive tasks of j.

Observe that all paths from t{ to % include node v, and have necessarily the form:
t{ e U] = s = Uy _pvm_p..._.)tfv

Let jo (1 < jo < K) be the index of the processor to which task v is allocated. It is easy to see that
the following path from t]° to tk;:

t{o_p...._)vo_)vl — = Ume] ~ Uy _)..._.ptjkv
is also a path of G. Hence we reach the conclusion that the relation
pok > ik
holds for all n > 0.

We show now the inequality

N

0 > wl,

by induction on n.

It is obvious that the property is satisfied for n = 0. Suppose

Lo

o
Wn Wn

v

holds for some n.

Let lev(vg) = u. The fact that as soon as v terminates its execution, all its successors allocated to
fictive processor j are enabled and complete their execution immediately, entails

W = Wh_yp = Wiy S0 0 S0l < S,
Hence
Wy = max(0,uf, + 0N, — )
> max(0, Wy, + N, — )
w41
By induction, the inequality ) '
wl > wl,

holds for all n > 0. O

We are now in position to derive the evolution equations of SQN-G. For SQN-G, denote as wf‘,,, the
workload of queue k seen by customer tf’n 1<i< N,1<k<Kifit exists. Similarly, let w® be the

workload of queue k at the n-th external arrival, 1 < k < K, rf be the n-th response time of queue k
and ry, the n-th network response time.

10



Owing to Lemma 1 and Lemma 2, we get for SQN-G the same type of results as for SQN-G.
Theorem 2

Assume that SQN-G is emply at time 0. Then, for everyn and k (n >0, 1 <k < K),

Wt o= 0 (2.14)
wk,, = max(0, {JeA(Hg(t"))}( wh + %) = 1) (2.15)
= jeallls (t*))( h ) (219
™ = llsriaéxxrl‘, (2.17)

where A(X) denotes the set of processors to which tasks of set X are allocated, li* the mazimum of the
lengths of the paths from t] to t* in G, namely

ik k ohm-
I'rii - ‘rl’;,n ma.x . (Uu:,n + - u',:_;,n) + ae n

{(tulv ) :)E‘P(t‘;xt")}

= max . (0’:: nt u,,. n) (218)
{52, thmyep@i ey " '

and Og(tX) is the set of predecessors of task t* in G.
Proof

Observe first that foralln >0and 1< j,k < K,
Indeed, for all 1 < j,k < K, equation (2.18) is obtained from (2.11) by removing the fictive tasks in
PG(tJl»tN )-

Lemma 2 implies that for all 1 < k < K,

wiyy = max(0, (—-n 85— 1)
{Jlf’eﬂa(t

= max(0, max ( I+ 85— 7,)
{il1<ji <K, t’el'[c(t

max(0, wl + I’ *y
( (e eno(t*)}( ) )

or equivalently, for all 1 < k < K,

wk,, = max(0, w + ¥~ 1) 2.19
“ © iy ) (219)

We now show by induction on n that for all 1 < k < K, the workload vector in G, w} is given by
w,’ﬁ = ﬁ (220)
It is obvious that (2.20) holds for n = 0. Assume it holds for n > 0.

g

We prove first by induction that for all 1 < k < K, and all 1 < u < N such that ¢ exists in G,
n S WS, (2.21)

so that
n+1 < wn+1 (222)

For 1 < k < K, let t§ = t§ . From the fact that tasks t¥ ¢, ...tk _, are all fictive tasks allocated to
processor k with no other precedence constraints than t& — ¢%¥_ ;1 < u < u; and from (47), ('), it

11




follows immediately that wf,h,, = LU..'ﬁm, so that property (2.21) holds for all t! €G, 1< k< K. Assume

now that (2.21) holds for all predecessors of task t. Owing to properties 3 and 7 of Lemma 1 and to
(#6), (3"), it follows that (2.21) holds for t¥ which completes the proof of (2.21) and (2.22).

On the other hand, observe that

ko> 0 ax  (wh +P5) - 2.23
Wpy1 2 ma'x( 1{“‘{2‘"0(':)}(—» n ) ﬂ) ( )

Indeed, for all j such that t{ € Ha(tf } and owing to the induction assumption, processor k cannot become
available for attending customer t§ . before date a,+w}, +1*, which readily implies (2.23). Comparing
(2.19) and (2.23) yields

w:“ > w"’_'_1 (2.24)

so that equations (2.22)-(2.24) complete the proof. O

3  Stability Condition

This section is devoted to the construction of the stationary regime of the networks under consideration.
In particular, we provide a general expression for the stability condition. The discussion will be organized
in three steps. First, we define the decomposition of a given SQN into a set of subnetworks. It is then
established that the stability condition of the SQN reduces to the intersection of the stability conditions
for the subnetworks. Lastly, we analyze the stability condition for the subnetworks, when the service
requirements of the tasks and the interarrival times are stationary and ergodic stochastic sequences.

Throughout this section, a SQN will be assumed to be given, characterized by its graph G and its
allocation policy A in relation with a K processor-multiprocessor system.

The Processor Graph (PG) associated with these data is defined as G = (V,£), where
v={1,2,---,K}
and
& = {(k1, k2)|3i; — iz € E, iy, iy are respectively allocated to processors k1, k2}

Observe that although G is acyclic, G can be cyclic.

Consider now the decomposition of G into its maximal strongly connected subgraphs. Recall that a
strongly connected graph is a directed graph in which the existence of a directed path from vertice v; to
vertice v, implies the existence of another path from v; to v;. A maximal strongly connected subgraph
of a graph G is a strongly connected subgraph of G such that no other subgraph of G covering it is
strongly connected ([36]). Let g be the number of the maximal strongly connected subgraphs in G, and
G1 = (V1,8&), -+ Gy = (Vy,&,) be the set of all these subgraphs. It is easy to prove that the above set
of subgraphs is uniquely defined and that

vilJ--Uv v, (31)
alJ---UJé £ 3.2)

N

and for every i and j,1 <i< j<g,
vi(lvi = 0, ' (3.3)
&N& = 0 (3:4)

As we shall see later on, if i and j € V belong to the same strongly connected subgraph of G, then
certain services in queues ¢ and j of SQN-G are constrained by one another. On the contrary, if 4 and
j belong to different strongly connected subgraphs, the constraint is oneway. These properties will be

12



made precise in Lehma 3 and Lemma 7 below.
Define the System Graph (SG) of G,’ which is denoted by G, to be G = (17,5), where
V={1,2--,9}
(91is the number of maximal strongly connected subgraphs of G defined above) and
£ ={(v1,v2)|v1,v2 €V, k1 — k2 €E, k1 €G,,, ks €G,}

The SG describes the relations between the maximal strongly connected subgraphs.
Lemma 3

G is acyclic.

Proof

The proof follows immediately from the definition of the strong connectedness. See [37] for details.
O

Let G1 = (W, E1),---,Gy = (Vg, Eg) be the subgraphs of G composed of the tasks respectively
allocated to the set of processors Vy, - - -, V,; more precisely

Vi = {ili € V, i is allocated to processor k,k € Vj}
En={GNi,j€ Vs, i-jeE}
where 1 < h < g.

Similar to.(3.1)-(3.2), we have

Vi U.'..UVg =V, (3.5)
EllJ---UE, ¢ E, (3.6)
and forevery ¢ and j, 1 <i< j <y,
vi(lv; = (3.7)
E(\E; = 0. (3.8)

Let SQN-G, - - -, SQN-G, respectively denote the SQN’s associated with the graphs G3,---,G,. In
these new networks, the tasks receive the same service requirement sequence as in SQN-G and have
the same arrival pattern {a,}3° . wh* (1 <k < K, n =0,1,2,---) denotes the workload of queue k
(k € Vi,1<i<g)in SQN-G; at the n-th arrival.

Corollary 1

Assume that SQN-G; is empty at time 0. For everyn (n > 0) and k (k € V),

wht = 0 (3.9)
k’i el .:i j)k —
Wnit1 mu(o’jerggfék)(wil + In ) Tn) (310)

where ¥ is given by (2.18).
Proof

In view of Theorem 2, the only property to be shown is that for k € V; and J € Ilg,(k), the values
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of 1:¥ coincide when computed in G and G;, namely, with obvious notations, Pc(j k) = Pg.(4, k).
Observe first that for £ and j as above, j belongs necessarily to V;. Hence, the existence of a vertice
v of G such that v belongs to one of the paths of P(j, k) implies that v € V;, which completes the proof. O

Since IIg, (k) = A(Ilg, (t¥)) C A(Tlg(t¥)) , we get immediately
Corollary 2

Foralln>0and k €V; )
wk > wk

Proof
The proof is by induction on n. O

Definition 1

In the sequel, a queue, say queue k, of the SQN-G (resp. G;) is said to be stable if wk (resp. wk)
converges weakly to a finite Random Variable (RV) wk, (resp. wk) when n goes to co. The network is
said to stable iff all its queues are stable.

We are now going to establish the relation between the stability condition of SNQ-G and that of
SNQ-G1, -+, SQN-G,. This relation is stated in Theorem 3 below which indicates that for analyzing the
stability condition of SQN-G, it is enough to consider the networks SQN-Gy, -+, SQN-Gj in isolation.
The stability condition of SQN-G is simply the intersection of the stability conditions of all these net-
works. The discussion is organized in preliminary lemmas of independent interest that will be referenced
in the sequel.

Throughout the section, the following assumption will be made as the basis for our discussion on
stability conditions.

A1 @ The sequence {my,05,1 < i < |V[}P on (RY)™V forms a stationary and ergodic
sequence of integrable RV’s on the probability space (2, F, pP).

The basic idea for analyzing the stability conditions of the SQN will consist in generalizing the schema
of Loynes for the response time of a G/G/1 queue [38], to the waiting times w¥, 1 < k < K, in SQN-G
and wk®, k € V; in SQN-G;. We assume that the sequence {r,,0%,1 < i < |V|[} is the right half of a
certain bi-infinite sequence {r,,0},,1< i < |V|}*, on (Q, F, P). (Q, F, P) is assumed to be the canon-
ical space of these sequences. Let 8 denote the leftshift operator on this canonical space. Within this
framework, our stationarity assumptions translate into the hypothesis that P is f-invariant (stationarity)

and f-ergodic. For more details on this formalism, see [39).

Let 7 = 1, and ¥* = IJ'*. Consider the schemas {M}},,1 <k < K and {M})}2,, k eV
defined by

ME = 0 (3.11)
Mk o8 = ma.x(O,jeAr(rl}Ia(;}%‘:))(M,{ + Uk 1) (3.12)
and,for ke V;,1<i<y,
M;’"‘ = 0 (313)
Moo = max(O,jeA(r?I:f(tt))(M,{’i + Uk 7)) (3.14)

Lemma 4
For every k, (1< k < K), the sequences {M¥}2, and {M¥4}32, (k € Vi) are increasing in n.

Proof

14



k< K), Mf > 0= M¢.
< K). Then for any k,

We prove the assertion by induction on n. It is clear that for every k, (1
Assume now that for some n > 1, M¥ > M%_, holds for every k, (1 <
(1<k<K),

<
k

MY 06 = max(0, max (MI+4+UP*_7
n+1° m ( jGA(HG(i:))( n ))

> max(0 (MJ_, +¥*—r))=Mrop

e AQa(es))

By induction, the RV’s {M¥}22 are increasing in n. The proof for {M¥#}2, is similar. O
Similar to Corollary 2, we have

Corollary 3

For everyn andk, n>0,1<k< K, keV;,

Mg > MY+

Proof
The proof is by induction on n. O
Lemma 5

For everyn and k, n> 0, 1<k < K,
wﬁ:M,’,‘of)”

and
wf," = M,’f" of"

Proof

The proof is by induction on n. It is based on the fact that 7, = 7o 6", and Uk = li* o 9" for
n>0.0

Lemma 6

Foreverynandk,n>1,1<k<K,

m
MF = max(0, lzn”?%(n(H,ﬁ - Z T007%)) (3.15)
- = i=1
where . .
H, = 1rgr,l1'ang H} (3.16)
and
m
HiF = max (D PetrogT (3.17)
{61, ma))li1=], ima1=k, i, €AHa(tS 1))} ;
Proof

We show the property by induction on n. For n = 1, (3.15) follows from (3.11) and (3.12). Suppose it
holds for n. Then, we get from equation (3.12)

Mi, = max(O,jeAl(I;I??)E‘:))(M,Z 08l 4k op ~r0h71Y)
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And by the inductive assumption, we obtain

M,’f+1 = max(0,

max  max(0, max
j€A(Ta(t)) 1Sm<n
m+l . .
(Hi 067" =3 " r007)) + k0™t~ 1007Y))

i=2

= max(0, max  max
j€A(g(ty)) 1<msn

m+41
(H, 007! 4+ 1iFop~? — Z 7007 —1087Y),ik0h" — r0g?)
i=2

= max(0, max  max
1<m<nj€A(Tig(}))

m+1
(Hi, 00 '+ VF*o0p? - Z 7007%), 0¥ 097l — 10671
=1
m+1 )
= max(O,lin'Sa((n(H,',‘,,H - Z r007%), Hf —70671)
== i=1

m
— m __ -3
= max(0, 152134-1(1{" ; T067%))
Therefore the equation holds for n + 1, which proves the lemma. O

Let M}, (resp. M%) be the limiting value of the increasing sequence M* (resp. ME+*) when n goes
to co.

From Lemma 4 and equations (3.12) and (3.14), we get the pathwise equations satisfied by the limiting
variables M% and M% :

o © max(O,je A'(?ﬁ’ﬁ:g))( L+ 7)) (3.18)
and, for ke V;,1<i<y,
MEios = max(0, max (MIf 4+ Uk 7)) » (3.19)

jEA(Ilg,(18))

Furthermore, from Lemma 6 we have
Corollary 4

For each k, 1 < k < K, the event {M~ = oo} (resp. the event {ME} = o0}) is 6-invariant.

POy
roul

The fact that M} 1 0o is equivalent to

vX >0 Pl [ {ME>X)=1
n20m2n
which, according to the expression of MY given by Lemima 6, is equivalent to
VX >0 P [) {MEoo>X)]=1
n>0m>n

in view of the f-invariance of P. O

Corollary 4 together with the ergodicity assumption on P immediately imply
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Corollal:y 5

For each k, 1 < k < K, the event {M% = oo} (resp. the event {ME} = oo}) is either of probability 0 or 1.
From equations (3.18) and (3.19) we also obtain the following two corollaries:

Corollary 6

For everyi, 1<i<g, either ME < oo for ;zll k, k € Vi, or ME = oo for allk, k € Vi.

Proof

Suppose there is a k, k € V;, 1 < i < g, such that ME = oo, then for all h, h € V;, we have

ME oo max(0, (ML, + PP~ 7))

max

j€A(Tig(t}))
> max(0, (Mg, +1°* — 7))

so that M2 0§ = co. Corollary 4 yields M2 = oo, which completes the proof. O

Corollary 7

For every i, 1 <i < g, either ME* < 0o for allk, k€ V;, or ME# = oo for allk, k € V;.

Proof

The proof is similar to that of the preceding corollary. O

Lemma 7

Assume A, holds. Then, in SQN-G, for every i, 1 < i < g, either all the queues i, € V; are stable,
or they are all unstable.

Proof

The proof is based on Corollaries 5 and 6. Let k € V;. Owing to Corolléry 5, either P[M% = o] =1or
P[ME = oo] = 0.

If P[M% = oo] = 1, Corollary 6 entails P[,¢y,{M& = 0}] =1, so that almost surely (a.s.), Mp
tends to infinity with n. This together with Lemma 5 and the assumed f-invariance of P show that none
of the RV’s w?, h € V; converges weakly.

If P[M% < oo] = 1, it follows from Corollary 6 that P[0,y {M& < o0}] = 1, which in turn entails
that all queues of V; are stable, since for all h € V;, wﬁ is equivalent in law to M,’,‘ which converges a.s.
to a finite limit. O

Corollary 8

Assume Ay holds. Then, in every SQN-G;, 1 < i < g, either all the queues of SQN-G; are stable,
or they are all unstable.

Proof
The proof follows from Lemma 5 and Corollary 7. O

Lemma 8
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Leti, 1 < i< g be fized. Assume that for allk € V; and for all §, j € A(Ilg(tX) — Mg, (t¥)), Mi, < 0.
If for allk € V;, MEf < 00, then ME < co.

Proof

If A(Tlg(t¥) — Mg, (t5)) = 0, the conclusion is obvious since M¥ = M¥# holds for all n > 0 and for
allk € V.

If A(Tlg(tf) — Ig,(t%)) # 0, we prove the lemma by reduction to absurdity. Suppose ME = co. By
Lemma 4 and Corollary 6, M 1 co holds true for all h, h € V;.

By assumption, Mj T M, < oo holds for all j, j € A(Tlg(t%) — Ilg,(t*)). On the other hand,
A(Tlg,(t¥)) C Vi. Therefore there exists a Z such that for every n > Z, and every h € V;,

M+ VP < MEGUR, je A(g(tE) - Tg ()

Thus for every h € V;, and n > Z,

h —_ j ik _
M 00 = ma‘x(o’ju’(‘x‘ﬁ’&g))(M" +1 7))
= 0, M+ Uk r
max( jeAf?rgf(t:»( " 2

Let U = maxaey, (M2 — M2*), we get

. .
M§+n+1 0f = ma.x(O,jGAE}l]g.)‘((ﬂ.))(Méi_rl Ny LS))
< 0, MPpL +U+ bR
< max( J_“(gg:fm»( Zin T U+ )
< U + max(0, (MES, + Uk — 1))

max
j€A(Tlg,(12))
= U+Mpj o8

so that ) o
M§+1005U+Mg’;_100

We can easily prove by induction that for n > 0 and h € Vi,
M3, 00" SU+ My}, of"
so that for all X > 0

P[M3,,>X] < P[U+Mp}, 00> X]

X P X
PlU > Z)+ PIMp;, > =]
& &~

IN

Letting n go to oo in the preceding relation yields

X . X
PIMl>X] < PlU> S+ P[Mhi > 5]
where we have used the increasingness of the Loynes’ schemas to permute the limits and the expectations.
QOwing to the assumntion shat Afh — o _ 0 12 Fllawee dhind 1o DIAFh o V1 — 1 Qivailanle thae
YRIAE VUV vl ucaulupuvu uviiav .lV.lw = VAJ GDey LU LULIVWD viIOU 12X 00 4 llVlw ~ l\.] — L UIIIIIIGLI], viav
finiteness of the RV U entails limy_, oo P[U > %] = 0, so that taking the limit in X in the last equation
yields

P[ME} = co] = Jlim P[MY > X]=1
X—00
which contradicts our assumption that ME T MES < o0 as..

Hence we reach the conclusion that M% < oo for every k € V;. O
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Corollary 9
If for every k, 1 <k < K, Mg;" < 00, then for every k, 1 <k < K, M% < co.
Proof

According to Lemma 3, G is acyclic. We can therefore label the nodes of Gasl,.- *, 90, 90 + 1,---,9
in such a way that i — j € £ implies i < j, and nodes 1, - - -, go have no predecessor in G.

The proof of the corollary is by inductionon i, 1 < i< g.

Consider all 4, 1 < # < go. Since i has no predecessor in G, for every k € V;, k has thus no other
predecessor than the elements of V; in the processor graph G. Therefore ¢ (t¥) = I, (¢*). From Lemma
8, we obtain M% < co.

Consider now i, go < i < g, assume that for all j, j < i, MY < oo is true for all k € Vi. Then
the fact that for all k € Vi, M¥ < oo is an immediate consequence of Lemma 8 due to the fact that
A(Tg(t5) — Dg,(t¥)) € {1,2,---,i ~ 1}. The assertion is thus proved. O

Now we are in position to prove the following important result.
Theorem 3
Assume A, holds. Then SQN-G is stable iff for all1 < i < g, SQN-G; is stable.
Proof
The assertion of the theorem follows immediately from Corollary 9, Corollary 4 and Lemma 5. O

It is well known ([39]) that, under the foregoing assumptions, if SQN-G; consists of a single queue,
say queue k, then the stability condition reads

El Y ol<E[lr]
{ilAG)=F}

where A(j) denotes the index of the processor to which task j is allocated. From this we get
Corollary 10

Assume Ay holds. If G is acyclic, and for every k, 1 < k< K,
E[ ) J<E[],
{ilAG)=k}
k

then w;; converges weakly to a finite and integrable RV wk, when n goes to oo.

The remainder of this section is concerned with the stability condition of SQN’s whose processor
graphs are strongly connected. Owing to Theorem 3, such stability condition will provide immediately
the stability condition of SQN-G. Without loss of generality, it will be assumed that G is strongly con-
nected.

Let L"** (1 < j,k < K) be defined as
. K-1
L* = max , {Poitett o =2 (3.20)
{i,s=0, K io=j,ix=k,i,€A(lc(t.*+*)} =0
Let n
- Vi, Vig1 —iK
@n E[lﬁvhgl,s'nx-HSK(iz_; L o0 )] (3'21)
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where the finiteness of Qn follows from the integrability assumption on the service times (use the fact
that max(a, b) < a + b), and

1
Un = _Qn- (3-22)
n
Lemma 9
U, tends to a limit v when n goes to oo :
3 lim U, =« (3.23)
n—o0

-

Proof
For all n > 1, and all p,¢ > 1 such that p+ q¢ = n, we have

Qn = E[ max (E LVvitr o e-iK)]
i=1 -

1<vy, - vn41 SK 4

IA

4
Vi,Vig1 B—iK
E[ISul,Tgfusx(Z; L ° )

+E| max ( Zn: Lvovi+1 o g=iK)y]

lsvp+1:'“y”n+lSK i=p+1
p .
= E[, max (3 LU0
101, vppr SK 4t

g
ViVigr —K 0—pK
Bl K, D B 007 0 07K

P
— Vi,Vig1 -iK
- E[ISvl’rgngK(;L 0 §7K)]

q
ViVis1 —iK
+E[15v1,~r-n-,%f+xSK(’z_;L °f )] .
= Qp+Q

which yields
@n < Qp + Qq

The function @, is hence sub-additive. It is well known that this property entails that U, = Q,n~!
tends to a limit when n goes to oo, as stated in (3.23). For a simple proof, see for instance [33]. O

Now we are in position to prove the main results of this section.

Theorem 4

Assume Ay holds, and that the processor graph of G, G, is strongly connected. If
v < KE[7]

where v is defined in (3.23). then the distribution functions of the RV’s W, converge weakly to a finite
RV Wo, when n goes to oco. If
v > KE|[r]

then, the RV’s W, converge a.s. {0 co.
Proof

In order to prove the first part of the theorem, it is enough to prove that under the first condition,
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the RV’s M, increase pathwise to a finite limit Moo when n goes to oo (W, and M, are equivalent in law
for all n > 0).

From Lemma 7, either M¥ t ME < coas. forall1< k< K,or M¥ tooas. foralll <k < K.

Assume we are in the later case. From (3.12), we get the following relation holding for all N > 0 and
n>1

k - ik g—1 -1
Myn = max(0, o (:*))( Nano1 087 +PF0f7l) —T067)

Owing to the assumption M¥ 1 oo, there exists an Ng such that for alln > 0 and 1 < k < K, the last
relation reduces to

: -1 i,k -1 -1
My,in eA(nc(gk))( No+n-1 00"+ 007 —10077)

After simple manipulations on the above equation, we get by induction on n that
. . n ‘
Mbyn = (M, 007" + HI¥) =3 rob

jeA(Tta(e) s

for all n > 0, where the function II% was defined at the beginning of section 2 and HZ* in Lemma 6.
As G is strongly connected, we have, for all 1 < k < K,
A () = {1,---, K}

when n > K. so that forn > K

n
k _ i op- j kY —i
Mpy4n = 1r<r}aZXK(MN 007" + H}") Z;"'°0 )

This implies that

IA

n
Mf o0 max M,’V 08"+ max Hi* Zroﬂ"

max
1<k<K 1< <K 1<5,k<K

which can be rewritten as

n
max Hi* Zro&" >

max M}, o6™"
1<5,k<K o

k
max M -
= 1<k<k T Notn T Gilk

Hence

08" > limsu ma.x
l<J,k<K Z = p( k<

MY, — max Miog™™
Nesoo kNt TGk TN )

One gets from (3.12) that for all N > 0,

max MN+1< max M} o6 '+ max IFog™?
1<k<K <i<k 1<j,k<k N

which implies that for all n > 1, the RV’s

k J n
max M — max My o6~
{1SkSK N+n = 0% }¥=o0

are uniformly bounded in N by an integrable RV, so that owing to Lebesgue’s Theorem,

hmsupE[( max MN+,, — max M}, 067™)] < E[llmsup( max

MFY,, - max Miof"
Nevco 1< <k NI TGk TN )
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Owing to the integrability of the RV’s M, we also have

koo J -n\] ko i
E[(xg}cangMN“ ax M} o0 )]_E[(lrsr}caéxKMNﬂ pax M) >0

where the last inequality follows from the increasingness of M} for all1 < k < K. hence,

- k 5] -
0 < hn}vsupE[lg}cangMN+"—12}a§)§(MN 0f™"]
< E[limsup( max Mf,, — max M} of6~"

< El N p(15k5K N+n = %% nof™)]

n
E[ max Hi* -3 rofp~i

<
- 1<5,k<K ‘
- =1
We obtain finally
n
Jk _ —i
E[lsr?g.gx H} ‘.E-I T007'1>0 (3.24)

Consider now the expression of maxi<jk<x Hi*. Let n = mK + ¢, where m 20,0<¢c<K.
maxi<; k<K Hi* can be rewritten as

n

max Hi* = max [oriesr g g=s
1<j. k<K " {iala=1, n 41,6, €A (14 )} &
mK n
= max _ (E Periediog=2 4 Z et g g=2)
{".Is=1,---,n+1,i.€A(ﬂa(tl'+')} =1 s=mK+41

Observe that

ik i k .k
max H}' < max H/* < max HJ .
1<5,6<k ™K S aGksk T S g k<k T (mADK (3.25)
and that maxi < k<K H;’,;’}( is expressed as
_ m—-1 (h+1)K
1<1“12.}<(K }Y;Jr;’;{ = max ' AN Z Pedetn G(]x-s)
=482 {isls=1, mK+1,i,€ea(lic(t." )} 10 s=hK+1
Using the fact that for all 1 < h < m,
. i
{1: Ty R} = A(P(I?((tc(h-ﬂ)x))
we can rewrite maxi<; k<K H,’,;’}{ as follows
) mK
(ax HIG = max DL i T
FINESR Hisls=1, - mK+1,i,€A(lg(t' )} 521
= .. max max .
{1ginik4r,imr41 K} {{isls=hK 41, (h+1)K, h=0,--,m~1, i,€A(Tlg(ts"+*)}
m~-1 (h+1)K
= 5 mner
h=0 s=hK+1
m-1
= . max >
{1<is,ik 41, imk41 <K} h—o
: (h+1)K
max Iiay£:+l o 0"‘
{{isls=hK+1,-,(h+1)K, h=0,-- ,m~1, i, A(TIg(t.* 1)} s=hK+1
m-1 .
= _~ max Z LV ¥h+1 o g—hK
/{'1'500."1r"n”m$1\'}

h=0
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so that

jlk —
. Bl 2% Hokc] = Om
Using (3.24) and this lastequation, we get
lim lE[ max H3* = lim —I—E[ max H*%
nooon 1< k<K " m—oo mK  ‘i<j k<K ™K
. 1
= A arOn
S
K

where 7 is defined in (3.23).

Using the 6-invariance of P in equation (3.24) yields

ik _ |
Bl gro, Hi11 = 2 Bl 2.0

Dividing by n each side of the last inequality, we get

E[maxig; i<k Hi¥]
n

—E[r]>0
This inequality is preserved when n tends to oo:

lim lE[ max Hi*| > Elr]
n—oon’ 1< k<K

which entails
7 2 KE[r].

Now taking the contrapositive of this argument, we see that

v < KE[7]

is sufficient to have M, the limiting value of random vector M,,, finite almost everywhere. This com-
pletes the proof of the first part of the theorem.

As for the second part of the theorem, assume
v > KE[r]
Let § = F —E[r] >0 and e = % > 0. From Lemma 9, there exists integer Z) such that for all n > 7,

Qn Y
1% ~x! <€

Let Z2 be the smallest integer satisfying the relation

2 7

= . L«
Zs K — ¢
or equivalently
Z> 2
2= K
Now let Z = max(Z;, Z3), and Hi* be defined as (3.17). Then for all 1 <k < K,
EHg( 1
(Z+2) — E Lk,vo JALES! g—K co g V212 ~-ZK
K(Z+2) R(Z 727 150k, L H L0670 4t °f

+L'% o 0—(Z+1)K)
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! E max

K’(Z + 2) 1<vg, ,vz<K
Qz ¢

K(Z+2)
Qz _Z
KZ Z+2 +2
> X _ 2¢

K

6
= §+E[T]

(Lvo,vl og-K + ... 4 [V3-1vz 4 o—ZK)

or simply
E[Hy(;. ) ]
ng+2) [
Kiz+2) ~Fll>5>0
In addition, using Lemma 6, we get

n
M,’,‘ZH,‘;'—ZTOH"
i=1

which implies that for all n > 1,

nK(Z+2)
k k -
Muk(z+2y 2 Hpk(ze2)— E Tof
=1

nK(Z+2) nK(Z+2)

= max Lvivits o g=iK _ rof™

1<vo, - Wnk(z42) S K g E
nK(Z+2)

~hK(Z+2) _ -

> EHI:K(Z+2) 08 ( Z Tof

i=1
or
. o . n-1 1 nK(Z+2)

nX{(Z+2)

—2TL s =\ gkk ~hK(Z+2)
nK(Z+2) = nK(Z+2) 112;3 Hygz4n 00

* ~i
nK(Z+2) ; Tof
Owing to the ergodicity assumption, we get
1 n~1
-hK(Z+2)
S, nK(Z +2) & Z HhK(Z+2) of ————K(Z T2) E[HK(Z.,.;,)]

and
nK(Z+2)
s T PO c—r -
m ——— ' =F
e nK(Z +2) L‘.ﬂ To¥ trl

Together with (3.26) and (3.27) we get

which implies

The proof is therefore completed. O
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In case the service requirements of the tasks are deterministic, there is a finite expression for +.

Theorem 5
Assume that the service pattern {0, 1 < i < |V|}%, is deterministic, namely o, = 0%, 1 < i <
V], n>0. Then :
r=v
where
— 41,83 ix—1,8k i4,61
v.o= 1<d<K(d 1<y, ,a4<K(L +oo+ L +L%R))
Proof

See Appendix 1. O

4 Distribution Functions of Waiting and Response Times

This section is devoted to the analytical characterization of the transient and stationary distributions of
the waiting and response times. Throughout this section, it will be assumed that

Ay

The RV’s {r, }5%, are i.i.d.

The RV’s {a',,},, o are i.i.d. forall1 <i<|V|.

{mn,0%,1 <i<|V|}, is a set of mutually independent RV’s.

Denote as If (1 < ¢ < |V|) and T the respective common distribution functions of the RV’s %, and
. Let
A=Alyr1, - ¥k, YKK)
be the joint distribution function in R? of the Q RV’s lIi¥ (1 < j,k < K, j € A(llg(tF))), where

Q=Y ekl 1 <j < K, j € Alg(t*))}]- Note that this joint distribution function can be
obtained by PERT techniques. We give below a simple integral representation for A:

A(y1,1,---,yj,k,"',yx,x)=/"’Adzl(m)--'dz'v'(ww)

where @ is the following convex subset of R

vl

¢ = (Nuz20 N N (Q_ up: S 312))

=1 (G EIP(1,t2)#0} {vp, . vp,, EP(2],15)} $=1

This integral representation can be proved as in Theorem 6 below.

For sake of simplicity, it will be assumed that all the distribution functions ¢, (1 < i < |V|) have
a density on R** and have no mass at the origin. Observe that in view of the precedmg integral repre-
sentation, this entails that A has a density on R**9 and no mass on the boundaries of this domain. It
is important to notice that the various distribution functions that were introduced so far are defined as
distribution functions on the whole real line (or space) although their support is actually on the positive
part of the line (or the positive orthant).

Now let
Wn = Wn(zl) i 'ya“K)

and
D, = n(zl;"';zK)




denote the distribution functions on RX defined by the the following set of integral equations
Wo(zl,"',ZK) = U(zl;”':xk) (41)
o0 o0 oC .
Wosi(z1, -+, 2Kx) = U(:cl,---,zx)-/ (/ / Wa(by, -+, bk)dA)dT (4.2)
~00 J—0o —~00

Da(z1, -, 2x) = U(xl,m,sx)'/ (/ / Waler, - ck)dA)dT  (4.3)
-0 J—-o0 -0

where U denotes the step function:

Ulth,---,tk)=0, 3Jj:t <0
U(tl’...,tx)z 1, V], tj >0

and

o b, )
dA: A v Yk YK, B
i1 Oyix Oykk (411 ik YK.K)
dT = dT(u)
and for 1 < j < K,
b; = min T — Uik + U
’ {kIJ‘eA(na(t';))}( k= Yk )
' c; = bj —u

Theorem 6

Foralln > 0, Wy, and Dy, are the joint distribution functions of the RV’s (wh, -, wk) and (r},.--,7K),
respectively.

Proof

We prove the assertion by induction .

Forn=10 (2.14\ and (4.1) vielde that W, is the ioint dictribntion unction of RV’ I wEK\
¥y A /TR AR Ry gAANS RUSL VVE S RS gLy WQISLNIDRNI0n unction of Vs (wg, 320 /.

Assume for some n > 0, W, obtained from (4.1) and (4.2) is effectively the joint distribution function
of the RV’s (wj, - -, wX). Then for all ¥ 7, > 0 (1<j,k<K),and all 2y, ,zx > 0, from (2.15)

1 K
P[wn+1 <z, Sy Wnyt < zK]

K
= P[ﬂ max(0, max  (wl + &% — 1)) < z]

) fieAllio(t)))
K
- . - »4 ke Y - -
= P w+EE - <
" GeatliatyWn T~ ) S 3l

(wh + 1% — 1) < 4]

i
]
=
D)

k=1{jeA(la(%))}
K . .
= PN () @ +B* ) <z
i=1{kljeA(lla(t*))}
K
= P[[) N (Wi <z + B - 1))

J=1{k|jeA(Tig(tk))}

K 3
= P[[)(wh < b))
j=1




which implies that W,, 41 defined by (4.2) is also the joint distribution function of the RV’s (w} ;, -, wX,;)
Therefore, for all n > 0, the function W, defined by (4.1)-(4.2) is the joint distribution function of the
RV’s (w},---, wK).

Using this fact and the similar arguments, we can prove that for all n > 0, D, is the joint distribution
function of the RV’s (r3,---,rK). O :

Remark

Observe that Theorem 4 actually provides the condition under which the random vector @, converges
weakly to a finite limit ., when n tends to co. Indeed, under the conditions specified there, W, =, M,
where M,, converges a.s. to a finite limit. This entails that the distribution functions W,, and D,, respec-
tively converge weakly to finite distribution functions W, and Do, when n goes to co,

The remainder of this section is devoted to the characterization of the limit distribution functions.
Theorem 7

Assume Az holds, and that the stability condition of Theorem 4§ is satisfied. Then, the distribution

function on RK of the random vector oo, which will be denoted as Weo(21, -+ -, 2K) satisfies the integral
equations
o0 o0 {o o]
Woo(21,---,2k) = U(zy,- - zK) / (/ / Woo(b1,---,bk)dAYIT  (4.4)
-0 J-0 —00 _
o0 (>} o0
Deo(er, k) = Uarenzn) [ ([ oo [ Waloryo o emimar a9)
—00 J-00 )

where U denotes the step function:

U(zy,--,2x) =0, Jj: z; <0
U(.’Bl,--',xx)=1, Vi, zj >0

and

7] 5 Py |
dA = A Yk e,
Oyin  Oyix  Oyk.k (y1.1 Yik YK K)
dT = dT(u)
and for 1 < j < K,
b: = . o
5= (e dR ey (36~ Bkt )

Similarly, the the distribution function on RX of the random vector ¥, which will be denoted as
Do (21, --,zK) is given by

Doo(z1, -+ 2K) = U(zl,---,zx)-/_oo(/_m /_w Weo(c1, -+, cx)dA)dT (4.6)

where
c;=bj—u

Proof

- Using the pathwise equations satisfied by the limit RV’s

wh, 00 = max(0, max (wl +¥*—7))
J€A(Tlo(1}))
kol = 0, wi, + Uk
R T R
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and the arguments of the proof of Theorem 6 yield immediately the results. O

Remarks
1. Observe that the distribution functions Wy (zy,: -, zk), which are given by the recursive integral
schema (4.1), (4.2) converge weakly to W (21, -,2x) when n goes to co. This provides a direct nu-

merical schema for computing the solution of (4.6).

2. The distribution function of the n-th program response time is given by Rn(z) = Dy(z,---,2). Simi-
larly, the stationary distribution function of programs response times is given by Roo(2) = Deo(z, - - ‘ 2).

3. Owing to Little’s formula, at the steady state, the mean number of programs in queue k at program
arrival epochs, E[N;], is given by

Erg)]
E[r]

E[Ny] = (4.7)

5 Lower Bounds for Waiting and Response Times Based on
Convex Ordering

Exact analytical solutions to the basic integral functional equation (4.6) seem to be rather difficult to
obtain. However, computational lower and upper bounds can be derived on the solution of (4.6) as well as
on the recursive system (4.1)-(4.5) using simple stochastic ordering techniques. In this section we discuss
lower bounds on waiting and response times based on convex ordering.

Recall that two non-negative and integrable RV’s b; and b, are stochastically ordered in the convex
increasing sense: ’
by <ei b2

iff for all convex increasing functions f : Rt — R* such that the expectation exists,
E[f(b1)] < E[£(b2))-
For more detail on the notion of convex ordering, see [40].

Consider the SQN-G described by rules (i)-(iii). We assume that all the RV’s {m}%o and {#*,1<
3,k < K}3%, are defined on the probability space (Q, F, P) and are all integrable, and that A, holds.

Let {f2}32gand {H* 1< j k< K }nxo be the set of ”smoother” inter-arrival and service requirement
processes on (£, F, P) in the sense that there exists a sub o-algebra say H of F such that for all n > 0
and all 1< j k< K,

Ta = E[m[H] a.s.
= EEH]  as.
These new varibles are smoother than the initial ones in the sense that they have the same first moment

as the initial ones but higher moments are always smaller for the new ones than for the initial ones.
Indeed let b and b be two non-negative and integrable RV’s on (2, F, P) such that

b=E[BH] a.s.

then, for each convex increasing functions f : R¥ — R* such that the expectation exists, we have, owing
to Jensen’s inequality for conditional expectations,

F(®) = f(EDBIH) < E[f(b)|H]  a.s.

which entails

E[£(b)] < E[f(5)).
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Observe that the above relation implies that for all n > 0 and 1 < j, k < K,
Tn <ci Tn

and . ‘
Ii.'k <ei I'z;'k

Let ®%, 7% and #, be the waiting time and response time variable obtained with the new arrival and
service pattern {7,}5%, and {#*,1 < j, k < K},.

It is immediate from the evolution equations (2.14)-(2.17) that &%, #% and 7, are integrable for all

n> 0 and 1 < j, k < K. The following lemma establishes the basis of our discussion in this section.
Lemma 10

Foralln>0and1<j, k<K,

@k < E[wkH]  as. (5.1)
F<E[rkH]  as. (5.2)
Fn < E[rq|H] a.s. (5.3)

Proof

As inequalities (5.2), (5.3) are direct consequences of (5.1), we only show inequality (5.1). The proof
is by induction on n.

Consider the case n = 0. For all 1 < k < K, it is clear that ¥§ = 0 = wf = E[wf|H].

Assume that (5.1) holds for some n+ 1. Then applying Jensen’s theorem for conditional expectations
to (2.15) yields
E[wk > , E[w] BFH) - E
(wralH] > max(0 jeAx(IIIIa:%t:))( [whH] + E[I;"[H] - E[m|H])
> 7 3,k -
2 max(0, max (@ + E[°|H] - E[r|H])

Thus by induction (5.1) holds for all n > 0. O

Remark
Lemma 10 remains true under the weaker assumptions

Tn 2 E[m|H] n>0 a.s.
B*<E[l*M] n>0,1<j,k<K as.

Corollary 11

Foraln>0and 1<k <K,

W <o wh (5.4)
7 <a T (5.5)
Tn Sei Tn (56)

The next corollary shows that the transient bounds (5.4)-(5.6) extend to steady state in the sense of
Theorem 3 and Theorem 4.
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Corollary 12

Assume that A, holds for both {r,li*,1 < j,k < K}, and {%,, 0% 1 < j k < K}, and that
for all1 < j,k < K, wk and W} converge weakly to finite RV’s wk, and D, respectively. Then for all
1<k<K,

"Z’go <ei w!:o (5'7)
Eo<u (53)
oo Lei Too (59)

Proof

Let Mf = wf o6~ and M} = &% 0 ~" (see Lemma 4, Lemma 5). The weak convergence of w}
and &% to finite RV’s yields

M,’f < Mfo <00 a.e.
ME < ME <o a.e.
Let f: R* — R* be a convex increasing function. Assume f(M~) and f(ME) are integrable. Then
it is easy to show that f(w!) and f(wF) are both integrable for all n > 0. Hence Corollary 11 entails

that
E[f(My)] = E[f(£)] < E[f(w})] = E[f(M¥)] < E[f(M~)]

Letting n goes to oo in the inequality

E[f(M})] E[f(ME)]

IN

yields
E[f(ML)] < E[f(ME))
which implies (5.7). '

It is clear that under the above assumptions, the RV’s rE FE rn, T converge weakly to the finite RV’s

rE 7 oo, Foo Tespectively. (5.8) and (5.9) follow directly from (5.7). O

Let

7 = E[r], n>0
PE=E[Z}, n>01<jk<K

Let wf, 7%, 7, (n>0,1< k< K) be defined as follows

wE = 0 (5.10)
" i me L
= 0, @, + k) - 5.11
W41 max(0, eA'(’ﬁi’%t:))( +P5) - 7) (5.11)
o= max (@} + P¥) (5.12)
jeA(Tig(14))
= =k
fa = max 7, (5.13)

R Yy N I N 3 o
and wg,rq, 1, (n 20,1 < k < K) be defined as follows

B = 0 ‘ (5.14)
i = 0 Pky — .15
Wy 41 maX(O,j c Ar(rll]%,:))(u’i. + %) =) (5.15)

" AR .

= IJ’ 16

" jeAr(Irllt)Etz))(wz' ) (5.16)

v _ vk '

o= max 7 (5.17)
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Lemma 10 and Corollary 11 entails
Theorem 8

Assume the set of RV’s {1,}3%, and the set of RV’s {d},,1 < i < |V|}S%, are mutually independent.
Then foralln >0 and1 < k< K,

@ <o WE <u wh (5.18)
7_': <es fﬁ <ei 7': (519)
PTn <ei Ta S ™ (5'20)

Proof

Observe that the difference between w% and %% originates from differences between interarrival times
only. Applying Lemma 10 and Corollary 11 to the SQN generated by (5.14)-(5.17) with # equal to the
trivial o-algebra ( with H = o(I*¥,1 < j, k < K,j € A(Tlg(t*)) ) ) yields immediately that for all n > 0
and 1 <k <K,

vk
Wy, <e Wy,
=k ~k
Pn S Ty
Ty S ot Fn

Similarly applying Lemma 10 and Corollary 11 to the SQN generated by (2.14)-(2.17) with H = o ({m }20)
yields:

~ k k
U, < n
wk k
Tn S ci Tq
¥n <eéi Ta

The proof is thus completed. O
Corollary 13

Under the assumption of Theorem 8, if for all 1
RV wk, then for all1 <k < K,

IA

k < K, the RV’s wf, converges weakly to a finite

¥, <o wE <4 wh (5.21)
Foo Sei T <a rh (5.22)
Too Sci Too Zei Too (523)

Proof
The proof is similar to that of Corollary 12. O

Theorem 8 and Corollary 13 provide lower bounds for waiting and response times. It is obvious that
the stability condition for these lower bounds is weaker than the initial one. Indeed, let 3 be defined by

(3.23) with 1:¥0f~" replaced by F'-*, it is easy to see that ¥ < v using the same type of techniques as above.

The remainder of this section focuses on the computation of such bounds. As 7% and 7, can be
obtained immediately from @} (1 < k < K), we will only discuss the method for computing w¥ .

Lemma 11

Assume A, holds and that G is strongly connected. Assume in addition that the RV’s wk (1 < k < K)

4

converge weakly to finite RV’s wk,. Then there exists a deterministic integer Ny such that foralln > Ny,

@ = My, | (5.24)
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where _ .
1}, = max(0, max. (A% - mE(r])

and m

HE = max (Z l—'"i'+‘)

{isle=1, M imp1=k i, €A(Hg(t. 1)} =1
Proof

From Theorem 4 and Theorem 5, the weak convergence of the RV’s @} to the finite RV’s @, is en-
sured by the condition

VvV = (iil"’ + - + iik—l;ih + Eid'il)

max —~  max
1<d<K d 1<y, -, i4<K
< KE[7]

where Li*#++ is defined in (3.21) with ¥ 0 9" replaced by Pt

Let M} be defined by (3.11)-(3.12) with ¥ = ¥ and 7 = 7, i.e. M¥ = @£00 " (1< k< K,n>0).
From Lemma 4 we know that Mf T M% < co. Using Lemma 6, M* can be rewritten as

M, = max(0, max (Hy, —~ mE[r]))

Let _
Xp, = HY, — mE[r]

Then

vk k
M, = mM(O,lgl"a‘ust,1 Xm)

Let Np be the integer satisfying the relation

v+ K -max; <y o<x LY
KE[r]-v

No =] +1]-K

where [z] denotes the integer part of the real number z. For all m > No, let m = my K + my, where
0<my < K, we get

BY < max A%
1<k<K

m

IA

frk
< O Hmi+1)x
my

max E LVevet
1Svo, 0m; 41K

3=0

It follows from Appendix 1 (equation (8.3)) that

miy

max LY+ <(my+ 1w+ K- max L%
15"0»""”"\1"‘151{20 —( 1 ) 1<u,v<K
I=

Since m > Ng, we obtain

m > Y + K - maxy<cuw<k L**
1= KE[r]—v
in other words
. AR
(m+1v+K IST%KL <m KE[r]

Thus _
Hy, < max H(im,) < m K Elr] < mE[r]
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which entails
Xm <0, m>No
Hence for all m > Ng, and all 1 < k < K,
= Mf,
As 11’::,, ME (where =,; denotes equality in law), we get for all n > Ny,
Wy =, Mf = My,

Due to the fact that the right most side of the above equations is a constant, the proof of the lemma is
thus completed. O

Remarks:
1. In the above proof we have in fact shown that for all m >Ny

Xm = 1<k<me <0
2. Intumvely, Lemma 11 indicates that if the processor graph G is strongly connected and if SQN_is
stable, then @¥, 7% and 7, converge to constant values when n — co. Furthermore these values can be
reached within bounded time, where the bound on time is given by Ng.

" The end of this section is devoted to various extensions of Lemma 11. The first extension is concerned
with the case of non strongly connected G.

When G is not strongly connected, let Gy, - - -, G, be its maximal strongly connected subgraphs. Lemma

11 provides an algorithm for computing lower bounds for the waiting times in SQN-Gj, ---, SQN- Gy
defined in Section 3. Let @ ”k * (ke Vi) be the lower bound of w¥* obtained with the mtera.rnval and
service pattern r and #-* respectlvely According to Lemma 11, there exists an integer Nj (1 < i < g)
such that for all k € V;, n > N§,
N ’lI]:’i — M;’:
o

where M} is defined by (3.13)-(3.14) with V¥ = li* and 7 = 7.

As indicated in Lemma 3, G is always acyclic, let the nodes of G (1 *+,90,90+1,---,g) be ordered
in such a way that if (¢, j) is an edge in G then i < Jj, and that nodes 1 -+, 9o have no predecessorq ingG.

For1<i<y,let

= max - max (Evn.vz + .o [Ve-1ve +zva.vx)
1<d<|V,| d v1,-,ve€V;

and _
é= max L%"
1<u,v<K
and for 1 <i<yg,
N! = [”_"‘M‘*_l)f +1]- V]

|Vi|E[r] — v
Note that £ is computed for the whole set {1,--., K}, and not for V;, so that N! > N§.

Finally denote as N; the quantity

N N/ 1stgoa
Nl+ma‘)‘106rld(t) 109 g0+1 stg

Theorem 9
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Assume A, holds and that the stability condition for SQN-G is satisfied. Then for everyi andk, 1<i<yg,
keV;, alln > N;,

'lf)ﬁ = M}\:’. (526)
where . L
MNi = ma.x(O, lgnsz‘(xm))
xfn = I—{,’; - mE’[r]
and
m d -
" = max ‘ () Prtetr)
{i,la:l,~~,m,im+1=k,i.€A(HG(t:"+l)} =1
Proof

We are going to show that for all k € V; and all m > 1

k < k
max
Xm S | MAX, Xn

This property, which entails (5.26), is proved by induction on i (1< i < g).

From Lemma 11, it is clear that for 1 < ¢ < go the above assertion holds (In fact, from the proof
of Lemma 11, we get the stronger assertion that x%, < 0 holds for all k € V;, 1 < i < go, and all

Assume it holds for some ¢, 1 <7 < g — 1. Then for every k € V41, consider

m
" = max [revets

m {u.|a=l,~~~,m,v,,.+1=k,v.eA(Ha(t:"“)}(’Z; )
Examin the series vy,---,¥m41. Due to the fact that G is acyclic, and that all G; (i = 1,---,g) are
strongly connected, we can décompose this series in such a way that

V1, ", Un, € vd;
Vh 41, "y Vh, € vdz

Vhgr41, " Vhy € Vi

where

i<hi<hy< - <h

IN

m

q:IL+1
and
1<di<dy<---<dy=i+1

dp € Pz(dp41), p=1,---,¢—-1
which entails
dq-—l < dq = i + 1

From the inductive assumption we get that
N e

' < max ]
Xhes € 1 SO X

holds for all § € Vi,
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Let
J =y = [Fo® [Fei-1%¢; _ 0. Elr
95 A U i 28

where ¢; < Nj_ -, and z.; = j € Va,_

Let
: F=xp, =V 4 Pt BT
1R, X = X ¥ ]

where by < N;;1, and yp, = k € Viyg.

Observe that vh,_, 41, -, vn, € Viy1. Similarly to the proof of Lemma 11 we can show that
he he
Z Joe¥stt  —  [PheerVheoi4t + Z Vs
u:h,_g . _h¢_1+1
< el i S B
|v , 4,vEViq
< ([ |V | L4 1) + (|Vs+1| +1)¢
With the same manipulations as in the proof of Lemma 11, we get that for all hy — hy—y > N/, ,,
hﬂ
Z l‘v.,u.-n _ (hq — hq—l)E[T] <0
u:hq_l
Therefore
he
3" Pt - (hy — hyo1)Efr] < X,
u=hgy_,
holds for all Ay — hy—y > 1.
Hence for all m > 1
X
= HEF —mE[r]
m -
= max . {P:¥+ — mE([r])
{vsle=1,-,mums1=k,v,€A(Ta(te. "))} s=1
= max
{vals=1,,m,0my1 =k 0, € A(Tg(1e" )}
hq—l 1 hq—l
( E (Pevet) —hgo1 B[r]) + ( 32 (P¥*) = (hy = hy-1) E[r])
u=hqey
< max
To, e Te; TY0,Y1,Yhy, =k
(I_@'o.l‘l oo FeimtTe g [Yovr L WYy (e + bk)E[T]
< max xt

1<n<N"_“

The assertion is thus proved to be true for i + 1. Hence, the assertion holds for all 1 <i < g. O

Remarks
1. The above theorem shows that if the SQN is stable, @, % and #, converge to constant values.

Furthermore these values can be computed within bounded tlme
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2. Lemma 11 and Theorem 9 generate a very simple algorithm for computing these bounds which
consists in calculating the bounds by (5.26) within the time defined by (5.25).

The results of Lemma 11 and Theorem 9 can be also be extended to the systems &%, ¥*, and ¥,
described by equations (5.14)-(5.17) in case the ”noise” on interarrival times is bounded.

Corollary 14

Assume A; holds, that G is strongly connected, and that SQN-G is stable. Let 1, = Elr]+ an, n 2> 0.
We assume in addition that there ezists an integer ng and a real D > 0 such that for all m >ng

m
IzanlSD
n=1

Then there exists an integer No such that for all n > N,

W =, M, (5.27)
where
m

ko Tk _

My, = max(0, max (A, 2 7))
and

m
Al = max , () Peie)
" {i,|s=1,~--,m,l'm+1=k,l'.GA(na(t:’+l)} g

Proof

The idea of the proof is similar to that of Lemma, 11, except that we take

v+ K- maxi<u,v<K Luwv
KE[r]-v

No > max(no, [ +1]- K)

Then for all m > Ny, let m = m K + my, where 0 < my < K, we get

HY < max H*
™= k< ™

k
< 12}‘?,{ Hon, +1)k

m)
— max Zunvl-ﬁ-l
1€v0,+,Um, 1S K ,Z_o

< (my+1ly+ K- max L**
1<u,v<K

Let ME be defined by (3.11)-(3.12) with #* and 7,. Using Lemma 6, we get

m
rk _ ik
Mn - ma.x(O, lénn?zn(Hm ,,Z_; Tﬂ))
Let
m
Xm = Hy‘;) - L Tn
n=1
Then
Tk __ k
Mn - ma.x(O, lxsnrr?%(n Xm)

Since m > No, we obtain

(m+)r+K-  Jnax L** <mKE[r]- D
_ulv—
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Thus m
HY, << mKE[r]-D<mE[f]-D< ) m

n=1

which entails ,
xk <0, m>N,

Hence for all m > Ny, and all 1 < k< K,

The last equation yields (5.27). O
Remark

The strong connectedness assumption on G can be easily removed from the above corollary by using
the idea in the proof of Theorem 9.

6 Upper Bounds for Waiting and Response Times Based on
Association

The main concern of this section is to provide for a simplified version of the basic integral equation
(4.6) the solution of which is also an upper bound to the solution of (4.6) in some stochastic sense. The
discussion of these upper bounds is based on the notion of associated RV’s.

Definition 2 {41}

Real valued RV’s ay,---,a, are said to be associated if

COU[h(al, . ‘,an)’g(aly s '1aﬂ)] 2 0

for all pairs of increasing functions h,g : R® — R.
Lemma 12 [41]

The association of RV’s entails the following properties:

1. Any subset of associated RV’s are associated.

2. Increasing functions of associated RV’s are associated.
3. Independent RV’s are associated.
4

. If two sets of associated RV’s are independent of one another, then their union forms a set of
associated RV’s.

5. Ifay,---,a, are associaled RV’s, then

P{max a; <t] 2 [IPlai <]

i=1
for all pairs of increasing functions h,g: R* — R.
Definition 3 [40]
Let F and H be the two distribution function on R. F is said to stochastically dominate H, F >,, H, iff

F(z)< H(z), Vz€eR.
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If a and b are two real valued RV’s, we say that a >,; b, whenever
Pla<z] < Pb< 7], Vz € R.
A direct consequence of the above definition and property 5 of Lemma 12is .
Lemma 13

Let (a1,-++,an) be a set of associated real valued RV’s with respective distribution function Fy,---F,.
Let F be the distribution function of max(ay,---,a,). Then

F 5;: fIF’
i=1

To terminate the introduction of the basic definition on associated RV, we state the following obvious
lemma.

Lemma 14

Let (Fy,- -+, Fy) and (Hy,- -+, Hy) be two families of distribution functions on R. If for all 1 <i<n,
F|i Zat ‘H‘.l then

n n
FI'F2”‘Fn=HFi >t HH:'=H1'Hz"'Hn
=1 1=1
and
FixFyx- - xFy >, HixHy*---x Hy,

where - and * denote the product and the convolution of distribution functions respectively.

We are now in position to derive the upper bounds. If not redefined, the notations are defined in the
previous sections. Throughout this section we will assumne

4 vr nDIry

Az i {m, 05,1 <i < |V} is a set of muiually independent RV's.

By the definition of the RV’s /¥ (1< j,k < K,n > 0), we can easily prove the following facts:
Lemma 15
Assume Az holds. Then

1. for alln >0, {Ii* 1 < j,k < K} is a set of associated RV’s,

2 forn=01,..., the seis of associated RV’s {BE 1< k< K} are mutually independent.

3. foreveryn, i, j,k,(n>0,1<4%,j,k< K), the three RV’s wi, li’* and 1, are mutually independent.
Lemma 16
Assume Az holds. For all m >0,

Sm = {w:,lgkgK,OSngm}U{r:,15kgK,ngngm}
U510 < 5.k < K n > 0} (=, n > 0}

is a sel of associated RV ’s.

Proof
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"The proof is done by induction on m. The case when m = 0 is trivial observing the fact that wf = 0 so
that, from the previous lemma, So — {r§,1 < k < K} is a set of independent RV’s. For all 1 < k < K

£ = ax (E*
"0 s eallivtn )

1s an increasing function of associated RV’s. Properties 2 and 3 of Lemma 12 yield the desired conclusion
for m = 0.

Assume S, is a set of associated RV’s for some m > 0. Then for every k, 1 < k < K,

k _ j 3k
Wy = max(O,jeAr(Irllag%‘:»(w’m + 85 - 1)

is an increasing function of associated RV’s. Spmy1 — {rf,1 < k < K7} is therefore a set of associated

RV’s. And in turn

E = Wl + B
rm+1 jeAI(IIlIa:%t:))( m+1 + m+1)

is an increasing function of associated RV’s. Hence Sm+1 18 a set of associated RV’s.
By induction, the assertion holds for all m >0.0D

Remark:
Lemma 16 holds under the weaker assumptions :

1. {ma}3%, is independent of {li*,1 < j,k < K}2,.
2. {m}% is a set of associated RV’s.
3. {B*,1<j,k< K}, is a set of associated RV’s.

Let Wk, RE, R,, Aj¥, and T;7 denote the distribution functions on R of the RV’s wk, vk, r, Ik
and —7, respectively. Note that WF, R, R,, AJ* have their support on Rt and T, on R~.

We define the sequences Let W,’,‘, RE and R, (1 <k < K, n > 0) of distribution functions on R by
the following recursion:

WE = U (6.1)
Wi = U- JI Wi=aika1y) . (6.2)
jeA(a(th)) .
RE = T  W«ai (6.3)
JEA(TIG(t%)) :
R, = ][ R | (6.4)
1<k<K :

where U denotes the step function:

U)=o0, t<0
Ut)y=1, t>0

It is easy to see that the distribution functions W,f, Rf, and R, have their support on Rt
Theorem 10

Assume Az holds. Then for alln >0, 1 <k < K, we have

W: <st W: (6.5)
RE <, Rk (6.6)
Rn Sat Rn (67)

39




Proof

Let df(a) denote the distribution function of RV a. We show (6.5) by induction on n.
Forn=0,and all1 <k <K, )
Wg =U = df(wf) = W§

Hence (6.5) is true for n = 0.

Now assume (6.5) holds for some n > 0. Then from Lemma 14,

Wan = U- JI Wisaiks1y) ‘
JEA(Ilg(tY))
>0 U- JI Wieaika1y)
 JEA(Ng(tk))

Using Lemma 16 and property 3 of Lemma 15 as well as Lernma 19 yields

Wine 20 U-  JI  Wisai*s1))
j€ATa(t))

> wl i ky
2 st df(max(o’jeAr(IIlIa:%t:))( n+ln ) Tn))

= er:+1
By induction we have thus shown that (6.5) holds foralln >0 and all 1< k< K.
With similar arguments, for all n >0 and all 1 < k< K,
Ry = IT  Wi«ad
. j€A(Nla(t}))

Zat H (Wr{ * Ail'k)
JEA(Hg(}))

> d wl + Ik
Zst f(jeAI(Il}Ia:Etf._‘))( n+ n ))

= Rk
And finally
B o= ] B

1<k<K

Zat H Rﬁ

1<k<K
> df( max r*
st f(ISkSK n)

= R,
This completes the proof. O

The next result extends the transient bounds of ‘Theorem 10 to steady state provided that Wk
(1 <k < K) converge weakly to finite distribution functions W* when n goes to co.

Corollary 15

Assume Aj holds, and that for allk, 1 < k< K, W,f converge weakly to finite distribution functions wk
when n goes to co. Then for allk, 1 < k < K, the distribution functions RE, R, Wk, RE, R, converge
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weakly o finite distribution functions R¥,, Ro,, W, R:, Rs when n goes to co, and

We <a W5 (6.8)
RS, <a R (6.9)

Proof

It was established that under the assumption A,,

Wy <ot Wy
holds for alln > 0, 1 < k < K. Let M¥ (n > 0,1 < k < K) be the RV’s defined by equations
(3.11)-(3.12). It follows from Lemma 5 that

Wy = df(My).

Hence the fact that W} converges weakly to a finite distribution function Wk when n goes to oo entails
that the increasing sequence RV’s M¥ cannot converge to co almost surely. In other words the distribu-
tion functions W} (1 < k < K) converge weakly to finite distribution functions wk.

The weak convergence of the distribution functions Rf,, R, RE . R, towards finite distribution func-
tions follows directly from the weak convergence of W and W¥, and from equations (6.3), (6.4), (2.15)
and (2.16). .

Equations (6.8)-(6.10) are immediate consequences of equations (6.5)-(6.7). O

The remainder of this section is concerned with computational algorithms for these upper bounds .
It will be assumed that assumption A, holds. Observe that assumption A, implies that the sequence
{%,1 < j,k < K}, is i.i.d. Denote as Ai* and T the common distribution functions of the RV’s
U:* and —r, respectively.

It follows from equations (6.1)-(6.4) that W% , R% and R satisfy the following functional equations
below

Wh = U JI (Wi sAif«Tg) (6.11)
j€A(To(t5)) :
R = II Wi «aiky (6.12)
jeA(lg(t}))
Re = J[ Rk (6.13)
1<k<K

The set of functional equations (6.11) can be solved as follows.

If W¥ converges weakly to the limit distribution function WE | equations (6.1)-(6.5) entail that the
following numerical schema converges towards the solution of (6.11).

We=U, 1<k<K,

Wr ) =U®)- /_ . F(t — u)dT~ (u)

where U is unit function and
t

Wi (t — u)dA?* (u)

Foy= ] /

JjeA(lla(tk)) "

Observe that this upper is based on K unknown functions of one real variable W, -, WX, to be
compared with the initial equation (4.6) where the basic unknown function W, is a function of K real
variables.
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7 Conclusions

In this paper, a new class of queueing models was introduced for evaluating the performance of multi-
programmed and multitasked multiprocessor systems under simple workload and scheduling assumptions.

In this model, task graphs are represented as general acyclic graphs, which allows the description
of sequential or parallel execution, synchronization and spawning of tasks. Tasks execution times and
programs interarrival times are represented as generally distributed stationary and ergodic sequences of
random variables, which allows the description of asynchronism in program submission and uncertainty
on the actual value of tasks execution times. The multiprocessor systems considered have generic archi-
tecture with a finite number of processors possibly sharing a central memory.

It was established that the evolution of the system can be characterized by a set of state variables
that satisfy a system of stochastic recursive equations. These evolution equations capture two types of
mechanisms that are characteristic of parallel processing: queueing mechanisms that are due the compe-
tition of all tasks for a limited number of processors and synchronization mechanisms that translate the
precedence constraints between tasks.

The first result of the paper consists in a general expression for the stability condition of such systems
under mild statistical assumptions that only require that the program inter-arrival times and execution
times be stationary and ergodic random sequences. For this, the SQN was decomposed into a set of
subnetworks that are determined by the structure of the Processor Graph. The stability condition of the
SQN was shown to reduce to the intersection of the stability conditions of these subnetworks, which were
derived explicitly. It is important to notice that this condition actually yields the maximum program
throughput of the system or equivalently the maximum rate at which programs can be executed or sub-
mitted.

The second type of results concern the statistics of the stationary behavior of such systems. Basic
integral equations were derived for the stationary joint distribution of the state variables. Important
performance criteria such as stationary program response times or stationary queue sizes can be derived
from the solution of this integral equation. An iterative numerical schema that converges to this solution
was proposed. In addition to this, various upper and lower bounds were derived on the statistics of these
quantities together with simple computational algorithms.

The practically important particular case where the service requirements of the tasks are deterministic
was shown to be also of theoretical interest since the simple lower bounds that were derived are based on
a deterministic version of the initial probabilistic problem. In this special case, the stationary program
response times and queue sizes were shown to be equal to certain constants that can be obtained with a
simple algorithm of known complexity.

To the best authors knowledge, the analysis presented in this paper is the first attempt towards an
exact model within this context, and the results obtained here are new. Further research topics consist in

studying analytical solutions to the basic integral equations, generalizing the model to other scheduling
policies and relaxing the assumption that all task graphs are similar.
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9 Appendix 1

This appendix contains a proof of Theorem 5.
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Observe first that under the assumption of the theorem, L/* (1 < j, k < K) is deterministic. Let

n
— max ZL”:‘:“-’-H 9.1
@n 1<vy,,va41 <K ( )

i=1

Forall1<d< K,andall1<k< K,

nd
@na = max E Lvivis
1<v1, - vna41<K Py

> n (Lk,ux + L¥v¥3 ... 4 [Va-3.%4-1 +Lva-1,vx)

. max
1<y, vg.1 <K
which entails
Y2V (9.2)
Now for every vector 7, = (v1,---,vn41) € (1, K)™+! given by (8.1), let Q,(7,) denote

n
Qu(3) = 3 Lrown

h=0

Consider the series vg, vy, - - -, Un41. Scanning its vertices from the left to the right, as soon as we find
a vertex equal to one of the precedently scanned vertices, for example,

Vp = v r<gq

we remove the vertices between v, and v, (including v, but excluding vg) from the series. These vertices
will be said to form a cycle, and the length of the cycle is defined as the sum of the corresponding L7:*’s.
This procedure is iterated and successively found cycles are removed from the series until no cycle can
be found. It can easily be shown that there are at most K vertices in each cycle, and there are at most
K vertices left in the final series.

Now we group the cycles in such a way that cycles having the same number of vertices are put into
a same set. Let A, (h=1,.-., K) denote the set of cycles having h vertices, n; the number of elements
of Ay, and ap j the j-th element of A,. The length of aj ; is given by

Jchj — Lix,iz 4t Lt'r.-x,ir. +Lih,i'1 <h-v
where i1, - -+, i} are the vertices in cycle apj,j=1,--- ns.

We can rewrite Q,(7,) as
K na

Mo
Qn(’-;n) = Z Zch,s + LYeve
s=1

h=1s=1

and
K

n=2hnh+mo

h=1
where mo (0 < mg < K) is the number of vertices left in the final series.

As a consequence,

K na mo
(@) = 3D Las+d L
h=1s=1 s=1
K nh
< h-v+mg- Lwv
S DX hvamos max
h=1s=1 - -
= (n—mo)v+my- max L%V
1<u,v<K
< nv+ K- max L%?
. 1<u,v<K
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which yields
Qn =maxQn(Pn) Sn-v+ K- ,Jpax L
or .
Qn<n-v+K '15151,3"5(1([' ¢ (9.3)

Dividing the above inequality by n at each side and letting n — oo yields
Y<vw | (9-4)

The result of the theorem is therefore obtained from (8.2) and (8.4). O
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