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ABSTRACT

- Techniques for automatic detection of parallelism are described, in connection with a
prototype vectorizer which has been implemented by the authors. In this paper, the issues
relevant for micro-programmed "ARRAY-Processor” machines executing loops are
emphasized. This introduces significant differences in code generation for both the Vector
architectures and the straight line code approach to microprogrammed architectures. The
first area in which the Array-Processor approach differs from the Vector machine
counterpart, is the model of parallelism sought. The latter obeys to very formal rules that
define a Vector operation, and this corresponds to hardware or "firmware"-micro code once
for all realizations. The former is capable of a variety of uses, ranging from sequential code
to highly chained pipeline operation of complex instruction groups. However, this has to be
fully specified by user code, and therefore leads to a compiler approach. Our approach has
been to implement an ‘Array-Processor code generator as a backend for the more general
VATIL vectorizer. The specific part deals with scalar (non-loop mode) and vector (loop
mode) micro-instruction scheduling and makes global optimizations aimed at a fast
loop-mode during several resource allocation phases. .

RESUME

Des techniques de détection automatique du parallélisme sont décrites en relation avec un
prototype de vectoriseur développé par les auteurs. Dans cet article, on développe les aspects
relatifs 4 l'exécution de boucles sur un "ARRAY-processeur” micro-programmé. Ceci
introduit des différences significatives avec les générations de code pour les processeurs
vectoriels et les architectures micro-programmées exécutant du code sans boucle. Le premier
domaine dans lequel le traitement des Array-Processeurs différe de celui des machines
vectorielles est le modéle du parallélisme. Alors que les secondes obéissent a des régles trés
strictes qui définissent les opérations vectorielles, et qui correspondent a des réalisations
figées au niveau du matériel ou du micro-code "firmware", les premiéres sont capables d’une
grande variété de modes d’exécution. Cependant ceci doit &tre traité par le code utilisateur et
se préte donc a un traitement au niveau du compilateur. Notre approche a été de réaliser un
générateur de code pour Array-processeurs en sortie du vectoriseur plus général VATIL.
Les domaines spécifiques concernent 'ordonnancement des instructions en mode scalaire et
vectoriel. Une phase d’optimisation globale est effectuée qui vise P'exécution rapide des
boucles et concerne plusieurs décisions d’allocation de ressources.

*) This paper was presented at IBM-Europe Institute; Seminar on Parallel Computing, Oberlech,
Austria, 1986.
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1. INTRODUCTION

During the last decade, parallel computers of several kinds have been introduced making it
necessary to perform some form of parallelism detection, as well as program transformation in order
to expose the parallel constructs that are suited to the target machine. This activity can be done by
the user, who would then be provided with a parallel programming language (e.g. FORTRAN-8X
[AN84], DAP-FORTRAN , ACTUS [PCM82], ADA , OCCAM , CSP ). Another approach is to
have the compiler software handle this task, making it a "Vectorizer" or a "Parallelizer”. Both
approaches are not necessarily contradictory and can complement each other in many occasions (2).

The basic techniques of Automatic Parallelism Detection (3), now well known and widely
used in commercial applications, are mainly due to D.J.Kuck [KKLW], L.Lamport [La72] and
K.Kennedy [Ke80). Among the reasons we had to implement them into a prototype vectorizer
named "VATIL", is the fact that they have permitted us to construct both a unified theoretical frame
and a software basis applicable to the systematic study of several parallel architectures. These
architectures can be very different from one another, as our forthcoming treatment of
Array-Processor specifics will show. In other occasions they exhibit only so subtle variations that
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a high-level parallel language is not likely to convey to the user, giving to its implementor no choice
but applying "Automatic Parallelism Detection" techniques. An example of this is given by the
“chaining" strategies of most recent Vector Processors when they deal with main store objects. (Cf.
[CRI-1], [CRI-XMP], [FUJ-VP]) (4

Conceptually, our approach to Automatic Parallelism Detection involves several steps, the
most important of which are:
- the definition of pertinent parallel constructs,
- the derivation of semantic criteria making them equivalent
with one another and with some sequential program,
- the derivation of a performance model,
- criteria evaluation (),
- sequential program transformation for parallelism
improvement,
- final optimization and parallel form construction.

We shall therefore compare the requirement on these steps for the treatment of "Vector
Computers” and "Array-Processors". First of all, when dealing with "Array-Processors", we
cannot stay at the level of "vector counterparts” of the sequential operators, but have to explicitly
schedule the parallel micro-operations, and arrange for their chainin g during the loop executions.
This implies handling a large set of micro-operations, indexed by the loop iteration count, in
contrast with the situation for the vector model, were the criteria strongly suggest working on a
quotient graph where the various iteration numbers are merged. (Cf.[LiTh]). In order to reduce the
complexity of this problem, we distinguish three phases, dealing respectively with single loop body
scheduling, loop initiation frequency optimization, global optimization. Among the most striking
aspects is the fact that some transformations that arc‘imperative in the first case are merely
performance improving heuristics when applied to the second.

We shall then discuss the performance of the "Array-Processor” optimizer, specifically
targeted to the ST-100 [ST] and show the relevance of some classical vectorization transformation
to this context. This will also show the most important role of resource allocation for some practical
applications.

2.Vector Execution of Loops

2.1. Programs Models.

In order to simplify the exposition, and avoid several difficulties that are not essential to our
argument (6), we restrict ourselves here to the case of simple non-nested loops. The programs thus
follow the following abstract syntax, decorated with italicized keywords for easier reading: -



<Program> := <Declarations> <Bloc> <End>
<Declarations> := (<Type> <Var Id> <Var Bounds> )
<Bloc> := <Instructions>*
<Instructions> := <Assign> | <Do~-Seq>
<Assign> 1= <Var> = <Exp>
<Do-Sex> := DO <Index Var> = 1, Niter>

<Assign>t

CONTINUE

In order to relate a program to a corresponding parallel version, it is convenient to

distinguish:

- aninstance of an abstract rule in the program.

- anoccurrence of an instruction during the run of the program.These correspond to well
defined state changes of the conceptual target machine, as instances indexed by the loop
counters. They are partially ordered under the relation : A « B which means that A occurs
before B. Of course, for a sequential program, we have a total order.

- anaction, which is normally indexed by an instruction occurrence, a data index, and
possibly an instance of a (low level) expression tree.

These distinctions are illustrated in the following example, although actions will be more
useful in parallel constructs later:

X) DO I = 1,1000
(Y) A(I) = B(I)+C(I)
QONTINUE
X :: instance of <Do-Seq> with <WNiter> = 1000.
Y (12) :: occurrence of Y where A(12) is computed.

Y{(12)«Y (14).

Y(12) .<+> :: action : computation of B(12)+C(12),
irrespective of its use.

The classical procedure of denotational semantics would be to attach semantic functions to the
various instances. To introduce vector constructs and their meaning, our approach will be to
introduce new constructs in the abstract syntax, to give consistency conditions under which their
instances are well defined. We then specify how these can be translated to an equivalent sequential
program fragment, to which classical semantic methods can be applied. Occurrences and actions
are used in consistency conditions and proofs.



2.2. Sequential computation of Vectors.

The easiest construct pertaining to vector execution is the <Do-Vect>, which corresponds
to the sequential execution of vector instructions. Typical computers to which this model is readily
applicable are the Cray-1, and the CDC-Cyber-205. To define it, we first give its abstract syntax:

<Do-Vect> := DOVECT <Index Var> = 1, <Niter>
<Assign>
CONTINUE

An occurrence X of this will be considered consistent if the non-recurrence condition is
satisfied, namely:

(1) 1<i<j<X.<Niter> ==> out(X.<Assign>(i)) N in(X.<Assign>(j)) = @

Its meaning will then be the same as the corresponding sequential <Do-Seq>.

NOTES:
» It should be noted that the previous model is satisfactory for vector computers which
serialize their write accesses to memory, which is the case for most machines. Otherwise, we would
have to add a condition resolving these output dependences:

(2) 1 si<j<X.<Niter> ==> out(X.<Assign>(i)) N out(X.<Assign>(j)) = @

* Also this construct is quite different from the FORTRAN-8X vector assignment, where the
non-recurrence condition is not required, since the vector operation is first evaluated and then
stored. Excluding O stride in vectors also suppress the second condition. However, if a
FORTRAN-8X implementor wants to restrict the use of intermediate storage to the necessary cases
only, then the previous conditions apply. |

+ Finally, this model is also satisfactory for the Cray-1 chaining of vector operations, since
the hardware provides for all the dependency checking at the register level, and serializes the
memory operations. |

» The performance model for such an execution mode involves the vector startup times and
the rate of operations per machine cycle. It can also be characterized i in term of asymptotxc speed and
half-speed vector length as advocated by R.W.Hockney [HJ].



2.3. The Vectorization procedure.

Now, let us consider the case of an instance of a <Do-Seq> involving several <Assign>s in
the inner loop:

Y.<Do-Sexp> =D0 I=1,N
X1.<Assign>
X2 .<Assign>
X3.<Assign>

Its transformation to vector form should be, to keep all actions, a sequence of vector loops
such as:

TR Y.<Bloc>  :=(Z1) DOVECT I = I1,N

X(p(1l)) .<Assign>
CONTINUE

(Zg) DOVECT I = 1,N

X(p(q)) .<Assign>
CONTINUE

Where p(.) is a permutation of the indices 1,...,q. This is well defined if the q occurrences
of <Do-Vect> satisfy the above stated non-recurrence condition. In this case, TR_Y would not be
equivalent to the initial sequential program, but to the sequential program:

TR Y EQU.<Bloc>:=(ZEl) DO I = 1,N
X(p(1)) .<Assign>
CONTINUE
(ZEq) DOI =1,N
X(p(Q)) .<Assign>
CONTINUE

This implies that we have to impose further conditions on the instance of Y.<Do-Seg>,
making TR_Y_EQU equivalent to Y. These simply state that the order of interacting actions should
be kept the same as in the original program, and have been derived by D.J.Kuck[KKLW]. Here
they can be stated in the following way:
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Xk(i) « X1() and ZE(p~1(k)) » ZE(p-1(1)) then:

© ©in(XI)) Nouk@) =B ' Data Dependences
» out(X1(j)) Nin(Xk@{@) =0 - Anti Dependences
« out(X1(3)) N out(Xk(@)) =G Output Dependences

These criteria can be more conveniently expressed in terms of Dependence Graphs and
Quotient Dependence Graphs. (Cf. [KKLW] [LiTh]). The vectorization procedure consists then in a
loop distribution pass, in order to obtain TR_V_EQU satisfying (3), and is followed by a check of
(1) for each individual loop. :

NOTES

* An actual realistic implementation has to perform a series of transformations in order to find
vector indexing information, suppfess unnecessary dependences, and can use several
approximations for the computations of conditions (1-3). The reader will find a detailed exposition
in Kuck [KKLW], Kennedy[Ke80]. An example of VATIL output showing the effect of these
preliminary steps is shown below.

* an easier way to formulate the preceding vectorizability criterion is to state that the quotient
dependence graph is acyclic. The required permutation of instruction is then given by a topological

sort.

< bloc npest> — CODE  --- < bloc nest> —- CODE ---
C$(avail (n . 100) (1. 0) (k . 0)) DOVEC1i = 1,50,1
3(2% -1) = 1+b(2% -1)
CONTINUE
DO2i = 1,5 ,1
c(2%) = a(2%_-1)+ b(2*_-1)
a(2% _-1) = ¢(3%*)
CONTINUE
99
150
99
100

.-‘.

Cs$
bo

1i=1,n,2
k= 1+k
a(j)
k =

c(k)
1= 3+

™

+k
la(i) +b(j)

a(j) = (1)
CONTINUE

k
= 1+b(j)
1

VVVVVVVVVYVY

p 1on

vVVVVVVVYy
w‘\—ui-.-n

—

= Original loop - - Vectorized form -~

2.4. Concurrent Chains of Vector Operations.

Our previous vector execution model is far from being able to describe the form of
parallelism present in the most recent Vector Processors, which are capable of concurrent vector
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activities. Usually this means that several functional units are capable of concurrent operation, that
the hardware automatically keeps track of dependences in register storage, and that special
serialization instructions are provided to deal with main memory data dependences. We have chosen
to model this behaviour by the following construct:

<Do~CVect> := DOCVECT <Index Var> = 1, <Niter>
<Synch List>
<Assign>t
CONTINUE
<Synch List> i= SYNCH { <Var>* )

Roughly speaking, this states that the series of vector operations corresponding to the
<Do-CVect>.<Assign>* part will be executed concurrently. However, the dependences concerning
the elements in the synchronized list <Do-CVect>. <Synch_List> are respected by adequate
chaining of instructions. These dependences are defined relatively to the order of vector instructions
in <Do-CVect>.<Assign>* . We can now state the conditions under which <DO-CVect> is
defined, and give it a meaning in terms of a sequential equivalent. The problem of finding the
<Do-CVect> equivalent of some sequential program will then be solved much like in the previous
case. It will be defined if the following set of conditions is satisfied:

(4) 1<i<j<Xk.<Niter> ==>out(Xk.<Assign>@1)) N in(Xk.<Assign>(j)) = @

&) if Xk # Xl then:

«(ViInXIG) ) N (UVout(Xk@G)) C in UAm Data &
j=1,Nitel' i=1,NitCr m=1,n Anti Dependences

«(VouXI(G)) ) N (Nout(Xk@))) C in UAm  Qutput Dependences
j=1,Niter i=1,Niter m=1,n

And then equivalent to the sequential program:
Y EQU.<Bloc>:= DOT =1,N
X1 .<Assign>
CONTINUE



NOTES

¢ The mechanisms by which hardware perform dynamic dependency checking involve
register reservations, result renaming and several vector chaining techniques. Moreover, for a
practical application in existing Super-Computers, the variables in the <Synch-List> should satisfy
further constraints which would make them eligible for register storage. If it becomes necessary to
allocate a variable in <Synch-List> to memory because of register shortage, adequate
synchronization instructions should be issued together with the required loads ans stores.

* A performance model can be constructed for this type of execution, in addition to start-up
times and operation rates, it will be necessary to take into account the number of "chimes " that
model the concurrent execution of several chains. The effect of chaining can be very nicely
expressed in terms of asymptotic speed and half-speed vector length.

As an illustration, we show an example of VATIL's handling of this feature below.

> DOCVECT 1 i =1 ,n .1 i

s DO1i=1.n.1 C$SYNCH-LIST = (ar_1_ px5 br_ ar_ px7) |i

> cx4(i) = ar > or_1_(i) = ex5(i)

> ar = cx5(i) > br_(i) = ar_1_(i)-px5(i)

> br = ar—px5(i) > Px5(i) = ar_1_(i) _

> px5(i) = eor > or_(i) = br_(i)-px7(i)

> cr = br—px6(i) > pPx7(i) = br_(i)

> px6(i) = br > cx4(i) = ar_(i-1)

> ar = br-px7(i) >1 CONTINUE

> px7(i) = br > er = br_(n)-px6(n)

>1 CONTINUE > DO-CVECT 2 i =1 ,n ,1 I
> px6(i) = br_(i) '
>2 CONTINUE

- Original loop - - Vectorized Form -

- DO—CVECT Vectorization -

3.Array-Processor Execution of Loops.

In the previous paragraphs, we have looked at computers capable of handling Vector
Operations at the instruction set level, and even allow for concurrency and chaining between them.
Here we will adress a much less sophisticated environment were the basic capability for chained and
concurrent operations on vectors are possible, but not handled automatically by the hardware.

3.1. Micre-Instruction Execution. : - : . o L
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The execution model can be éasily described at a very low level, the micro-program level.
This amounts to the definition of:
* the functional units :  include every pipeline stage of every operator, or memory access
pipeline. They possess part of the registers making the state of the
machine in the form of input registers (inr1(U),inr2(V),...), a
result register (outr(U)), and intermediate latches.

» the register storage: made of a set of registers.

« the memory banks: are seen as quite peripheral through memory access pipes (functional
units), but are capable of storing, holding and retrieving any type of
data.

* the micro-instructions : these are sets of simuitaneous possible actions by the functional

units, together with possible transfers of register data.

* the micro-program:  a sequence of micro-operation with non-nested iteration loops.Each
occurrence of a micro-instruction can thus be labeled by an
execution date.

In the case of the ST-100 Array-Processor, a global view at this level is shown in the
following two figures.(Cf.[ST], [Ei], [EE]). The execution time of some micro-program will be the
product of the clock cycle time and the number of executed micro-instructions. The translation from
our original source code to a micro-program thus involves:

. generation of micro-actions, and register assignment.

. compaction of these micro-actions into a scheduled set of legal
micro-instructions.

. optimization at the local level (also called straight line micro-code compaction)

. glc;bal optimization. Here we will limit ourselves to the fast execution of loops in

a chained fashion.

MEMORY BANKS

<4 Registers Interconneé&tion

2 Adders
[ 2 Multipliers
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- Architecture and Register Interconnection of ST100 -

More precisely, a <Do-Seq> loop will be translated into a fragment of micro-program :
<Entry-M> <Loop-M> <Exit-M>

where the <Loop-M> bloc will be repeated. Each iteration through <Loop-M> may cover
one or more iterations of the initial <Do-Seq>. After a start_up period spent executing <Entry-M>,
we will be initiating iterations of <Do-Seq> periodically, the period corresponding to <Loop-M>. In
order to cleanup the last actions we will then have to go through the <Exit-M> bloc. A performance
model can then be derived, involving :

(6)  start_up_time = I<Entry-M>| + I<Loop-M>| + I<Exit-M>|

I<Loop-M>!

(7) mean_latency =
Number of Equivalent <Do-Seq> Iterations

INumber of Operations in <Do-Seq>!

(8) asymptotic rate =
mean_latency

It should be noted than the start_up time we are referring to here is the number of
micro-instruction cycles needed to reach the periodic behaviour, during this phase Min_Iter
iterations of the original <Do_Seq> have been performed, and the formula for half-speed vector

length thus reads:



start_up_time
% Nip = - Min_Iter

mean_latency

In order to minimize start_up times, it is very interesting to look for constant <Loop-M>
cycles each performing one <Do-Seq> iteration. This must not be done when it implies sacrificing
asymptotic rate, since we are optimizing for potentially long vectors.

3.2. Micro-code generation from the original program

In order to go from the original program to the optimized micro-code we are looking for,
several steps are necessary, since it is not desirable to make any decision too early that would be
found inadequate at a later stage in the process. In particular, register and redundant functional unit
assignments should be done at a stage when the entire scheduling is visible. On the other hand,
micro-actions are usually related to one another : for instance, a memory load will require several
memory pipeline "advance" steps.

In our implementation, the first step uses a 3 adress code, the M-code, reminiscent of usual
assembler programs, operating on a set of registers of arbitrary size. To summarize, we can give a
flavour of its abstract syntax:

<M-Program> := <M-Instruct>"
M-Instruct> := <M-oper> | <M-Do-Seqp>

<[v1_omr> o= Qeg> —_ Qeg> ("+" I nw_nw I Wy l "/" ) <Reg>
| <Reg> LOAD <Var> | <Var> STORE <Reg>
<M-Do-Secp> := DO <Index Var> = 1, Niter>
<M-oper>*
CONTINUE

In the same fashion as previously, we can define dependences between these
<M-instructions>, taking as a reference the originai <M-Program>. This allows to work with
parallel actions in very much the same way than we have been dealing with pipelines and
concurrency in the above paragraphs.

The major difficulty comes here from the fact that we want to execute several iterations in a
pipelined fashion: it is not sufficient to work simply with a quotient dependency graph where the
iteration numbers have been factored out, on the other hand a completely unrolled graph is not a
better candidate. It should be noted that the reason that made the quotient dependency graph totally

satisfactory for t?lle study of <Do-Vect> and <Do-CVect> was the special form of conditions (1-5).
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To take into account this new difficulty, we will split the problem into a straight line code
generation, and a loop optimization. The straight line code generation must handle <M-oper>*
blocs outside of loops and loop bodies. Each of these are processed separately.

Considering an isolated straight line block, the dependences form a Directed Acyclic Graph.
To go from the <M-code> to a micro-program, we associate with each instance of a <M-oper> a
template that describes a series of corresponding micro-actions, together with their resource and
timing constraints. Some templates can have variants that will be used in case of resource conflicts
(7), the use of such a variant implying a change of the original <M-code> to an equivalent one . We
can deduce from this a set of scheduling constraints on possibly parallel activities, a feasible
scheduling of the block and the related set of register assignments. The feasibility of this step is
assured by the acyclic nature of the dependency graph, and the fact that we can systematically use
template variants using main memory to resolve any resource shortage. The schedulin g algorithm
we use at this step is a simple list scheduling, giving priority to the longuests paths.

Part of our very prudent attitude at this step can be explained by the fact that many choices
made here will have to be modified in order to optimize loops , as we will explain below.

3.3. Loop optimization

At this stage, we can envision the loop execution as the repetition of the execution of loop
bodies identical to the one we have already determined, at the fastest possible rate. It is indeed
possible to use a collision vector technique, such as described by Davidson [Da71] and
Shar [Sh72] to find an optimal (or only "good") periodic initiation rate. If iterations were
independent, this would involve simply marking the future cycles where a loop iteration are possible
in a linear cycle reservation vector. The technique can be extended to cope with inter -iteration
dependences.The fact that the possible states of this vector are finite, since current machines
activities will all be terminated after a finite amount of time (cycles), encourages the exploration of
the finite but possibly large set of situations by several techniques.

It must be emphasized that the situation at hand is very different to the optimization of a
pipeline subjected to a series of fixed identical independent requests, here described by the
loop-body micro code. It that situation, the only optimization parameter, is to delay some
operations in the pipeline to reduce the conflicts, and thus improve the asymptotic speed. (Cf.
Kogge [Ko]).Here, we could modify the micro-code scheduling, the expansion of templates and
the resource allocation. Due to their complex interaction we shall have a heuristic based approach,

We can now discuss the similarity and difference of the problem at hand with those of vector
execution of loops in the two modes we have shown previously. The most striking difference is that
the vector loops had most precise vectorization criteria, and the Array-Processor execution seems to
have none. It is indeed possible to run the loop slow enough and ignore all inter-iteration
dependences. This will result to a global speed far from satisfactory, but shows that the very
systematic vector approach,with criteria (1-5), due to hardware scheduling of the pipelines and a
simple execution model, is not adequate here. The parallel between the two dissimilar situations will
be made more precise by the following result:



LEMMA:
Let us consider the following micro-code loop:
(X) DO I =1, Niter
YO
Y2
Yp
CONTINUE
were the loop has been scheduled : Yq executes at initiation time + q cycle.Then if there is a
dependency :
Yk(i) « YI(j) and one of the following is true:
(10 « in(YI(j)) Nout(Yk(@) # @ Data Dependences
s out(Y1(§)) Nnin(Yk(i)) = @ Anti Dependences
» out(YI(j)) N out(Yk(i) # @ Output Dependences

Y1(j) cannot be scheduled until Yk(i) has executed.

Applying this with j = i+1, we get the most stringent scheduling constraint between
iterations. It bears strong similarity with the condition pertaining to vector execution where
operations are indeed performed at 1 cycle intervals in the pipelines. Another way to exploit this is
by remarking that if the loop X satisfies the vectorizability criterion of paragraph 2.3, then it is
possible to schedule the micro-operations of its body in such a way that inter-iteration dependences
will be satisfied whatever the loop initiation rate.

3.4 Global Optimization

resent here a very brief skeich of the optimization strategy that has been
implemented. The details can be found in [Ei]. To summarize, the first pass is to perform
sequentially the above translation to M-code, a straight line code scheduling of the loop body, and
finally to look for a suitably fast intiation rate for the iterations. While this is done, many choices are
taken concerning scheduling strategies and ressource usage.

The second optimization pass tries to perform M-code to micro-code translation for a single
iteration per <Loop-M> period at a prescribed initiation rate. All rates higher than the previously
constructed result have to be tried. Here the initiation rate objective is used to test the adequation of
many choices concerning template variants, register and functional unit usage.

The improvement optained by this procedure are shown in the illustrations below
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First Pass : 5 MFLOPS - Pass : 25 MFLOPS -

= Improvement after global optimization -

6.Conclusion

The way pipeline type of parallelism can be exploited in a Vectorizer and in a code generator
for an Array-Processor have been compared. Most of the precise criteria permitting to distinguish
highly optimizable (vectorizable) programs are common, even though they should be given quite
different presentations. The discussed concepts and methods have been illustrated by the output of
an implementation made by the authors, the vectorizer VATIL and a micro-code optimizer for the
ST-100. With the introduction on the market of both new vector computers and VLSI chips making
pipelined units more and more attractive, it is felt that the techniques we have illustrated will be
more and more important for practical high-speed applications.

DO11=1, 100, 1
X1(1) = A1(1)
X2(1) = A2(1)
Y1(I) = A1(I)
Y2(1) = A2(I)
CONTINUE

+ (01(1) « C1(1) —02(1) »
+ (02(I) = C1(I) +01(1) »
( 01(I) « C1(1) -02(1)

( 02(I) « C1(I) +01(1)

c2(1) )
c2(1) )
c2(1) )
c2(1) )

SecundPass
38 clocks
15 clocks
27 MFLOPS

First Pass
47 clocks
20 clocks
20 MFLOPS

start_up_time
mean_latency
asymptotic speed

- Example of Performances -
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Unoptimally obtained by pipeline flushing.

For instance sequential FORTRAN transformation into FORTRAN-8X [PSR],
“micro-tasking" preprocessor transforming "loop- slices" into a parallel program
using special constructs. [ CRI-1], [SEQ].

We shall quite often refer to it as "Vectorization", when this does not lead to
ambiguities, even if the form of parallelism involved is different.

We have modelled these possibilities with the "DO-VECT" and "DO-CVECT"
construct [LiTh]

() Usually refered to as "dependency testing " or "dependency analysis "

©)

)

These have to be delt with for a production grade vectorizer, and include aliasing

phenomena , interference of control structure, semantics of intrinsics operator
applicable to the language. The framework we are using here is far more
restrictive than VATIL's capabilities, but is well suited to our present treatment
of Array-Processors.

€.g. aregister assignment template can have a variant involving some spill to
main memory
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APPENDIX

Here output listings of microcode generator are presented. Vector loops are extracted
from original program by the vectorizer VATIL and translated into microcode for the
Array-processor ST-100. The two passes of the generation algorithm are shown. It can be
seen that no improvment is performed by the second pass. This is due to the fact that
intermediate results have to be kept in registers for too long a time. To get better
‘performances, the loops should be broken into smaller and more regular ones, that would
yield the same kind of improvement as the loop shown in the paper (page 17). This

optimization should enter in the pass of the vectorization called "loop distribution”.
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[ E R RS AT RS RS R R R R 2 R A R 22 AR R 2 R R RS 2R RS R AR R 2R 2 R R R RS R R 2R 2 2 R 2 2 2]

PROGRAM F19

I E RS R R R RS RS R R RS RS R 22 R A R 2 R R F R R R R R RS R R R RSN R R R RSN A2 2 X
VATIL : V3.0 - Decembre 1986

INTEGER i
REAL s

REAL u(1:300)
REAL v(1:300)
REAL w(1:300)
REAL x(1:300)
REAL y(1:300)
REAL z(1:300)

ORIGINAL tOOP :

DO 1 i =1 ,300 ,1 ; 1=-101
s = 1+x(i)sy(i) ;1-102
2(i) = s - ;i—-103
w(i) = 14+2ss ;i—104
s = 2+w(i)»z(i) ;1-105
u(i) = 3+s ii—-106
v(i) = 143ss ;i=107
1 CONTINUE

MODIFIED LOOP :

DO 1 i =1 ,300 ,1 ;i—121
s11(1+i) = T+x(i)»y(i) ;i=116
2(i) = s11(1+i) .i-103
w(i) = 142ss11(14+i) ;i—104
s2(1+i) = 24w(i)»z(i) : ;i-118
u(i) = 3+s2(1+i) . i-106
v(i) = 1+3ss2(1+i) ;i-107
1 CONTINUE
s1 = s11(301) ;i-115
s = s2{3¢e1) pi-117

DEPENDENCE GRAPH

inst—107 =>
inst—106 =>
inst—118 =>

inst—107 :: <data-dep>

inst—106 :: <doto—dep>
inst—104 =>

inst—118 :: <dctao—dep>
inst—103 =>

inst—118 :: <dota-dep>
inst—116 ==>

inst—104 :: <doto—dep>

inst—183 :: <doto—dep>

VECTOR LOOP
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CDIR$ DOVEC
DO 1 i =1 ,300 ,1
s11(1+i) = 14+x(i)*y(i)
z(i) = s11(1+i)
w(i) = 142¢s11(1+i)
s2(1+i) = 24w(i)*z(i)
u(i) = 3+s2(1+i)
v(i) = 143%s2(1+i)
1 CONTINUE
s1 = s11(301)
s = s2(301)

LAl R R E R R R R R Y Y R I

MICROCODE GENERATION

(A A R R AR R L N I L I ' 1
CDIR$ DOVEC
DO1 i =1 ,300 ,1

s11(1+i) = 14+x(i)sy(i)

z(i) = st1(1+i)

w(i) = 1+2es11(1+i)

s2(1+i) = 24w(i)=z2(i)

u(i) = 3+s2(1+i)

v(i) = 1+43+s2(1+i)
1 CONTINUE

LOCAL SCHEDULING
COLLISION VECTOR :

1711111111111 11111111121101180
BEST CYCLE : (22) AVERAGE : 22

BEST CYCLE 'S AVERAGE LMM = 22

LOOP °S LENGTH LB = 22

MICROCODE’S LENGTH TMC = 52

ASYMPTOTIC SPEED VOP = 1.02e+1 MFLOPS

yi~121
;i1—116
;i~103
;i—104
;i=118
;i~106
; 1=~107
;i=115
s i=117
;i—=121
;i—=116
;i—183
;i—104
;i—118
;i—106
;i—107



- 22 -

.“t‘.‘..“l...““.‘.t""‘.‘t.lt‘l‘l...'.“.‘l.".“.‘.'.'.“‘l.“‘.t

MACRO F19 : LOOP

‘!“l“t‘#t#‘."““..t.'.““““lt.".‘.““‘t".“.“..'t.“““t“‘

"INSTRUCTION 8:
BOUCLE :

PADD1 FADD1
“INSTRUCTION 9:

LMULT2 FA1 , CC INC A3 , A3 WRITE CA LOADR RA , FA1 INC B3 , B3 WRITE CB
LOADR RB , FA1 PADD1 FADD1

“INSTRUCTION 1@:

FMULT2 PADD1 FADD1

"INSTRUCTION 11:

PMULT2 PADD1 FADD1

"INSTRUCTION 12:

LADD2 CB , FM2 PADD1 FADDI

“INSTRUCTION 13:

FADD2 PADD1 FADD1

“INSTRUCTION 14:

PADD2 PADD1

“INSTRUCTION 15:

LMULT? FA1 , FA2 INC C1 , C1 WRITE CC LOADR RC , FA2

"INSTRUCTION 16:

FMULT1

“INSTRUCTION 17:

PMULT 1

"INSTRUCTION 18:

LADD1 FM1 , CC

“INSTRUCTION 19:

FADD1

“INSTRUCTION 20:

PADD1

“INSTRUCTION 21:

LMULT2 CA , FA1 LADD2 FA1 , CA INC C2 , C2 WRITE CC LOADR RC , FAI

"INSTRUCTION 22:

FMULT2 FADD2 MOVE Ce , C® READ CC INC A1 , A1 READ CA INC B2 , B2 READ CB
"INSTRUCTION 23:

PMULT2 PADD2 MOVE A® , A@ READ CA MOVE B , BO READ CB

"INSTRUCTION 24:

LADDY CB , FM2 INC A2 , A2 WRITE CA LOADR RA , FA2

“INSTRUCTION 25:

FADD1 LMULTY CA , CB

"INSTRUCTION 26:

PADDt FMULT1
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"INSTRUCTION 27:

INC B1 , B1 WRITE CB LOADR RB , FA1 PMULT1 DEC L1 , L1
"INSTRUCTION 28:

LADD1 CB , FM1

“INSTRUCTION 29:

FADD1

BRNE BOUCLE
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PROGRAM 30

T R s I R R R R R I R R R R R R R NI R S RS R 2 R R R R R R A A R A R R R 2 R A 2

PROGRAM NUMBER : 30
VATIL : V3.0 - Decembre 1986

<scalar><integer> <local>

<scalar><real> <local>

<scalar><real> <local>

<orray>—<real> <local> DIMENSIONS : [5ee ]

<array>—<real> <local> DIMENSIONS : [1@01 ]
: <arroy>—<real> <local> DIMENSIONS : [1001 ]
: <array>—<real> <local> DIMENSIONS : {1001 ]
ORIGINAL LOOP:

N X X € ~ = 3

DO 7m=1 ,120 ,1 ;i—101
x(m) = ((re(reu(14+m)+u(2+4m) )+u(3+m) )+ (re(rsu(4+m)+u(5+tm))
1+u(64m) )st)et+(re(rey(n)+z(m))+u(m)) ;i—102
7 CONTINUE

MODIFIED LOOP:

DO 7m=1 ,120 ,1 ;i=111
x(m) = ((re(rsu(1+m)+u(24m) )+u(3+m))+{r+(reu(4+m)+u(S5+m))
t+u(6+m) ) et)st+(re(rey(m)+z(m))+u(m)) ;i—102
7 CONTINUE

DEPENDENCE GRAPH :

ingt—102 —>

VECTOR LOOP
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!.l.‘..ll“...“‘l‘.tt"..‘..‘.O‘..‘.l.t“"“t“..‘.“'.“‘l"‘.‘.".-

MICROCODE GENERATION

l‘tt““‘t‘tt'.‘t“‘t‘."“.t't“l't“"‘t."t‘#“lt‘lt".l"““tt.#‘.

CDIR$ DOVEC

DO7m=1 ,120 ,1 ;i=111
x(m) = ((re(reu(14m)+u(24m))+u(3+m))+(re (reu(4+m)+u(5+m))
14u(6+m))st)st+(re(rey(m)+z(m))+u(m)) ;i—102
7 CONTINUE

LOCAL SCHEDULING

COLLISION VECTOR :
T111111111111111111000000001 8
BEST CYCLE : (19) MOYENNE : 19

BEST MEAN AVERAGE LATENCY LMM = 19
MICROCODE LOOP'S LENGTH LB = 19
MICROCODE*® LENGTH TMC = 49

ASYMPTOTIC SPEED VOP

2.10e+1 MFLOPS

GLOBAL SCHEDULING
MEAN AVERAGE LATENCY FOUND : 19 (LAST VALUE : 19 ) _
COLLISION VECTOR :

1171111111111 11111110000000010
BEST CYCLE : (19) MOYENNE : 19

BEST MEAN AVERAGE LATENCY LMM = 19
MICROCODE LOOP'S LENGTH LB = 19
MICROCODE® LENGTH T™C = 49
ASYMPTOTIC SPEED VOP = 2.10e+1 MFLOPS

GLOBAL SCHEDULING :

MEAN AVERAGE LATENCY WAS NOT IMPROVED




ll"“‘.‘t.'.‘“‘#‘“‘“‘!‘t“.t..t“.tt.‘lt".t“.‘t.“.'t..‘.““‘..'

- 26 -
MACRO 3¢

t.“‘““...‘.l“““'.‘.‘..“t't‘.‘t.“....‘.‘.‘....“."..l."".“-‘

"INSTRUCTION 11:
BOUCLE:

PMULT1 FMULT1 PMULT2 INC A6 , A6 READ CA FMULT2

"INSTRUCTION 12:
LADD2 CA , FM1 PMULT1 PMULT2 FMULT2

“INSTRUCTION 13:
FADD2 LADD1 FM1 , CA PMULT2

"INSTRUCTION 14:
PADD2 FADD1 LADD2 FM2 , CA

"INSTRUCTION 15:
LMULT1 CB , FA2 PADD1 FADD2

"INSTRUCTION 16:
FMULT1 PADD2

"INSTRUCTION 17:
PMULT1
“INSTRUCTION 18:
LADD1 FA1 , FM1
"INSTRUCTION 19:
FADD1 INC A@ , A@ READ CA INC Bt , B1 READ CB MOVE Ce , C@ READ CC
"INSTRUCTION 20:
PADD1 INC A3 , A3 READ CA INC B2 , B2 READ CB
"INSTRUCTION 21:
LMULT2 CB , FA1 INC A1 , A1 READ CA

"INSTRUCTION 22:
FMULT2 LMULT1 CC , CA LMULT2 CC , CB

"INSTRUCTION 23:
PMULT2 FMULT1 LMULT2 CA , CC INC A4 , A4 READ CA MOVE B® , B@ READ CB FMULT2

"INSTRUCTION 24:
LADD2 FA2 , FM2 PMULT1 INC A2 , A2 READ CA FMULT2 PMULT2

"INSTRUCTION 25:

FADD2 LADD1 FM1 , CA PMULT2 LADD2 CB , FM2

"INSTRUCTION 26:

PADD2 FADD1 LADD1 CA , FM2 FADD2

*INSTRUCT
1

TION 27:
INC C1 , C1 I

2
WRITE CC LOADR RC , FA2 PADD1 FADD1 PADD2 DEC L1 , L1
"INSTRUCTION 28:
LMULT1 CC , FA1 PADD1 LMULT2 CC , FA2
"INSTRUCTION 29:
FMULT1 LMULT1 FA1 , CC INC A5 , A5 READ CA FMULT2
BRNE BOUCLE
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PROGRAM L1

LA A A R 2 A 22 R 2 2 2 R 2 2 A R a2 R e R R R R R R R R R P R Y S PSSR T]

PROGRAM NUMBER : I
VATIL : V3.0 - Decembre 1986

INTEGER k
REAL q

REAL r

REAL t

REAL x(1001 )
REAL y(1001 )
REAL z(1001 )

ORIGINAL LOOP:

DO 1 k=1 ,400 .1 101
x(k) = q+(rez(10+k)+tez(11+k) ) *y(k) . i-102
1 CONTINUE

MODIFIED LOOP:

DO 1 k=1 ,400 ,1 i=111
x(k) = gq+(rez(10+k)+t»z(114k))»y(k) ;i-102
1 CONTINUE '

DEPENDENCE GRAPH :

inst—102 =>

VECTOR LOOP

I A EEEE RS E 2 S 2 2 A 2 2 2 2 2 R 22 R E R R R 2 0 R e R R R X R Y R N R R R R YRR R PR R RN X
MICROCODE GENERATION

A A A S A2 Lt 2 A 2 R 2 2 R 2 2 2 R R R R R R R R R R R R R E P R SR T Y

CDIR$ DOVEC

DO 1 k=1 ,400 ,1 i=111
x(k) = g+(rez(10+k)+tez(114k))ey(k) ;i—-102
1 CONT INUE

LOCAL SCHEDULING

COLLISION VECTOR :
t111111111100001 190
BEST CYCLE : (11) MOYENNE : 11

BEST MEAN AVERAGE LATENCY LMM = 11
MICROCODE LOOP’S LENGTH L8 1"
MICROCODE® LENGTH TMC = 30
ASYMPTOTIC SPEED VOP 1.13e+1 MFLOPS
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GLOBAL SCHEDULING
MEAN AVERAGE LATENCY FOUND : 11 (LAST VALUE : 11 )

COLLISION VECTOR :
1111111111 100001180
BEST CYCLE : (11) MOYENNE : 11

BEST MEAN AVERAGE LATENCY LMM
MICROCODE LOOP’'S LENGTH LB
MICROCODE’® LENGTH ™C
ASYMPTOTIC SPEED VOP

1
11
30
1.13e+1 MFLOPS

SNBSS AAB SR AB ISR RS F SR NIR AN SNSRI AR R AR RS AR R RS ISR RR S ES SRR EIED

MACRO L1

R R R R R F R R R R R R R R N R R R S R RN N N RS S RRR S S 22 22 2222 R0 A R d  addd

"INSTRUCTION 8:
BOUCLE:

FADD1 MOVE Be , Be READ CB

"INSTRUCTION 9:

PADD1

"INSTRUCTION 1@:

LMULT2 FA1 , CB

"INSTRUCTION 11:

FMULT2 INC C1 , C1 READ CC MOVE A1 , A1 READ CA INC B1 , B1 READ CB
"INSTRUCTION 12:

PMULT2 INC C@ , C@ READ CC MOVE A® , A2 READ CA
"INSTRUCTION 13:

LADD2 FM2 , CB

"INSTRUCTION 14:

FADD2 LMULT2 CA , CC

"INSTRUCTION 15:

PADD2 LMULT1 CC , CA FMULT2

"INSTRUCTION 16:

INC C2 , C2 WRITE CC LOADR RC , FA2 FMULT1 PMULT2 FMULT2 DEC L1 , L1
“"INSTRUCTION 17:

PMULTY PMULTZ2

"INSTRUCTION 18:

LADD1 FM1 , FM2

BRNE BOuCLE
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.“."O.“t‘.t“l.".‘“".".‘.‘t.".t."#'.‘.‘.‘O“‘?.'.‘..“"t"..‘

PROGRAM F15

.tl.‘.'t‘l“t.t..t‘t“.‘t‘.#‘l‘t‘t#“t‘t"'“"“'.t‘#.‘l.t“‘tl."“‘!

VATIL : V3.0 — Decembre 1986

REAL ar

'REAL br

REAL cr

REAL cx4(1:100)
REAL cx5(1:100)
INTEGER i
INTEGER j
INTEGER k
INTEGER |

REAL px5(1:100)
REAL px6(1:100)
REAL px7(1:100)

ORIGINAL LOOP :

C$avail: (1 . B)(k . 9)

DO 1 i =1 ,5 ,2 ;i—101
k = 1+k =102
i =k ;i-103
cx4(j) = ar ;i—104
or = ex5(j) ;i—105
br = ar-px5(k) ;i—106
px5(k) = ar ;i—107
k = 1+k ;i—=108
cr = br—px6(j) ;i—-109
px6(j) = br . ;i=110
I = 341 yi=111
ar = br—px7(1) ;i=112
px7(1) = br ;i=113
1 CONTINUE

MODIFIED LOOP :

ar2(1) = ar ;i—-134
DO 1 i1 =1 ,25 ,1 ;i=137
cx4(2+i1-1) = ar2(i1) ;i—-104
ar11(1+i1) = cx5(2si1~1) ;1129
bri(1+i1) = ar11(1+i1)~px5(2¢i1-1) ;i=131
px5(2*i1-1) = ar11(1+i1) ;i—107
cr = br1(1+i1)-px6(2¢i1-1) pi—108
px6(2+i1-1) = br1(1+i1) ;i—110
ar2(1+4i1) = br1(1+i1)—px7(3»i1) ;i=-133
px7(3#i1) = bri1(i+i1) ;i—=113

1 CONT INUE
' i = 49 ;i=115
k = 50 : ;i—=118
j = 49 ;i—119
I =75 : ;i—-120
aorl = ar11(26) . ;i—-128
br = bri1(26) ;i—130
ar = ar2(26) 5i-132




DEPENDENCE GRAPH

inst—113 =>

inst—133 =>

inst—113 ::
inst—104 ::
inst—110 =>
inst—109 =>
inst—110 ::
inst—109 ::
inst—107 =>
inst—131 => -
inst—113 ::
inst—133 ::
inst—110 ::
inst—109 ::
inst—107 ::
inst—129 =>
inst—107 ::
inst—131

inst—104 =>

- 30 -

<anti-data—dep>
<dota-dep>

<anti—-dato-dep>
<output—dota—dep>

<dato—~dep>
<dotao-dep>
<doto-dep>
<dotao-dep>
<ant i—dato—-dep>

<datao—dep>

: <datao—dep>

VECTOR LOOP AFTER FOLLOWING TRANSFORMATION:

ar2(1) = ar
CDIR$ DOVEC

PO 1 i1 =1 ,25 ,1

ori1(1+i1) = cx5(2%i1-1)
br1(1+i1) = ar11(1+i1)—px5(2+it-1)

px5(2+i1-1) =

art1(i+i1)

ar2(1+i1) = br1(1+i1)—-px7(3+i1)
px7(3%i1) = br1(1+i1)

cx4(2+i1-1) =
1 CONTINUE

cr = br1(26)-px6(49)

CDIR$ DOVEC

DO 10001 i1 =1 ,25

ar2(i1)

1

px6(2+i1—1) = br1(1+i1)

10001 CONTINUE
i = 49
k = 50
i = 48
| =75
orl = ar11(26)
br = br1(26)
ar = ar2(26)

’

;i=134

;i—140
;i—-129
L i=131
yi—-107
;i-133
pi=113
;i—104

Di-141

;i—143
vi-11e

;i=115
;i=-118
;i-118
;i—120
;1—128
yi—130
pi—132
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LR d A R e Y Y s Tt s I

MICROCODE GENERATION ( FIRST PART)

LR A L N N Y Tl sy

CDIR$ DOVEC

DO 1 it =1 ,25 ,1 ;i-130
art1(14i1) = cx5(2+i1-1) ;i-121
bri(1+i1) = ar11(14i1)—px5(2#i1-1) ;=123
px5(2+i1-1) = ar11(1+i1) ;i-107
ar2(1+i1) = bri1(1+i1)-px7(3+i1) ;i=125
px7(3%i1) = bri(1+i1) ;i-113
cx4(2+i1-1) = ar2(i1) ;i—104

1 CONTINUE

LOCAL SCHEDULING
COLLISION VECTOR :
111110100111 10010
BEST CYCLE : (8 5) AVERAGE : 6.5

BEST CYCLE 'S AVERAGE LMM = 6.5

LOOP 'S LENGTH LB = 13

MICROCODE'S LENGTH T™MC = 39

ASYMPTOTIC SPEED VOP = 7.69e+0 MFLOPS

GLOBAL SCHEDULING :

MEAN AVERAGE LATENCY WAS NOT IMPROVED
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MACROF15

(FIRST PART)

iy r a2 2 2 R A R A2 R R 22 22 SRR R A R R R R R R A2 A AR R R 2 R R R 2 X 2 )

"INSTRUCTION 13:

BOUCLE:

PADD1 ADD A® , A3 READ CA ADD
"INSTRUCTION 14:

ADD A® , A2 WRITE CA LOADR RA
WRITE CB LOADR RB , FA1

"INSTRUCTION 15:
ADD C@ . C2 WRITE CC LOADR RC

"INSTRUCTION 16:

Be , B3 READ CB ADD C3 , C5 READ CC

., FA1 LADD2 FA1 , CA INC B4 , B4

, CA FSUB2

PADD2 ADD B@ , B2 WRITE CB LOADR RB , CC LADD1 CC , CB

“INSTRUCTION 17:
INC A5 , AS WRITE CA LOADR RA
LOADR RB , CC

"INSTRUCTION 18:

PADD1

“INSTRUCTION 19:

ADD A® , A2 WRITE CA LOADR RA
WRITE CB LOADR RB , FA1

"INSTRUCTION 20:

INC A4 , A4 READ CA FSUB2
"INSTRUCTION 21:

PADD2 ADD A@ , A3 READ CA ADD
"INSTRUCTION 22:

INC AS , A5 WRITE CA LOADR RA
"INSTRUCTION 23:

ADD C@ , C2 WRITE CC LOADR RC
DEC L1 , L1

"INSTRUCTION 24:

ADD B2 , B2 WRITE CB LOADR RB
"INSTRUCTION 25:

INC A4 , A4 READ CA FSUB1! INC
BRNE BOUCLE

, FA2 FSuB1 INC B5 , B5 WRITE CB

, FA1 LADD2 FA1 , CA INC B4 , B4

BO® , B3 READ CB ADD C3 , C5 READ CC

, FA2

, CC LADD1 CC , CB

BS , BS5 WRITE CB LOADR RB , CC
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MICROCODE GENERATION  ( SECOND PART)

AR d A XA Rl R R R R e R RS R T st

CDIR$ DOVEC

DO 1e8e1 it =1 ,25 ,1 ;i-143
px6(2+i1-1) = bri(1+4i1) ;i—11@
10001 CONTINUE

LOCAL SCHEDULING

COLLISION VECTOR :

10

BEST CYCLE : (1) AVERAGE :1

BEST CYCLE 'S AVERAGE LMM = 1

LOOP *S LENGTH LB =1
MICROCODE®S LENGTH TMC = 11
ASYMPTOTIC SPEED VOP = @ MFLOPS

GLOBAL SCHEDULING
MEAN AVERAGE LATENCY FOUND : 1 (LAST VALUE : 1 )
COLLISION VECTOR

10
BEST CYCLE : (1) (LAST VALUE : 1)

BEST CYCLE 'S AVERAGE LMM = 1
LOOP 'S LENGTH LB =1
MICROCODE’S LENGTH ™C = 11
ASYMPTOTIC SPEED VOP = © MFLOPS

AR R E R SRR R R S RS R 2R R SR R R R R R R R R R R R R R R R R R I R R TR L

MACRO F15 : LOOP 2

LA AT AR SR 2 R R 2R A R E R R R 2 2 R R A 2 R X R R R R R S R T ]

"INSTRUCTION 5:
BOUCLE :

ADD A@ , A2 WRITE CA LOADR RA , CB INC Be , B® READ CB E
DEC 1, -L1 . . )
BRNE BOUCLE
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PROGRAM 166

VATIL : V3.0 — Decembre 1986

REAL o(500 )
REAL b(500 )
REAL ¢

REAL d(500 )
REAL e(500 )
REAL f

REAL g

REAL h
INTEGER i
INTEGER j
INTEGER k

ORIGINAL LOOP :

o]e}

ti=1,5 ,1

a(3+5+i) = 3sd(148#*i)+b(3+i-2)
c 22+a(5=*1i)

f = ((b(3+i-3)—g)+c)-3
b(3+i-3) = 4s(d(8#i)+f)+gsh
CONT INUE

it

It

MODIFIED LOOP :

DO

1 i =1 ,50 1

a(345%i) = 3»d(148+i)+b(3+i-2)
ct(14i) = 22+a(5+i)

f1(14+i) = =3+((b(3«i-3)—g)+c1(1+i))
b(3+i-3) = (4+d(8=i)+4sf1(1+i))+g+h
CONT INUE

[}
I

= ¢c1(51)

f = f1(51)

DEPENDENCE GRAPH

inst—105

ingt—118

inst—113

inst—102

==>
inst—105 :: <anti—dato—dep>
inst—105 :: <doto—-dep>

=>
inst—115 :: <dato-dep>

=>

VECTOR LOOP AFTER FOLLOWING TRANSFORMATION:

CDIR$ DOVEC

DO

-~ 0
[

1P =1 .,5 ,1

a(345¢i) = 3sd(1+8+i)+b(3+i-2)
c1(1+i) = 22+a(5+i)

f1(14i) = =3+((b(3+i=-3)=g)+c1(1+i))
b(3%i=3) = (4sd(8si)+4sf1(1+i))+g=*h
CONTINUE

= ¢1(51)
= £1(51)

s i=101

;i1=-102
;i—103
;i—104
;i—=105
;i-118
;i=102
;i=113
;i=115
;=105
;i=112
;i=114
;=121
;i1-102
;=113
;i—-115
;i=-105
;i=112

;i=114
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MICROCODE GENERATION
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CDIR$ DOVEC
DO1i=1,50 ,1

a(3+5%i) = 3#d(148%i)+b(3+i=2)

c1(1+i) = 224a(5+i)

f1(1+7) = =3+((b(3*i=3)=g)+c1(1+i))

b(3si~3) = (4d(8+i)+4sf1(1+i))+g+h
1 CONTINUE

LOCAL SCHEDULING

COLLISION VECTOR :
T1T11111111111111111111121011180
BEST CYCLE : (23) AVERAGE : 23

BEST CYCLE 'S AVERAGE LMM = 23
LOOP *S LENGTH LB = 23
MICROCODE'S LENGTH T™MC = 54

ASYMPTOTIC SPEED VOP = 1.19e+1 MFLOPS

si—=121
;i—102
L i=113
L i=115
;i—105
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MACRO 166 : LOOP

SEBEBRE RSN BN RN E SR EEREIRENVBIH AN RI S EASHIRIER NS ESEESE S S ST SRS

"INSTRUCTION 8:
BOUCLE:

FMULT1 PADD2 PADD1
"INSTRUCTION 9:
PMULT1 LADD2 FA1 , FA2 INC B6 , B6 WRITE CB LOADR RB , FA1 FMULT1

"INSTRUCTION 10:

FADD2 ADD A® , A4 READ CA PMULT1 FMULT1
"INSTRUCTION 11:

PADD2 PMULT1 FMULT1

“INSTRUCTION 12:

LADD2 CA , FA2 PMULT1 FMULT1

"INSTRUCTION 13:

ADD Bo , B2 READ CB FADD2 PMULT1 FMULT1
"INSTRUCTION 14:

PADD2 PMULT1 FMULT1

"INSTRUCTION 15:

LADD1 ZR , A1B LMULT2 CB , FA2 INC C6 , C6 WRITE CC LOADR RC , FA2 PMULT1

FMULT1

"INSTRUCTION 16:

FADD1 FMULT2 MOVE B5 , BS READ CB PMULT1 FMULT1
"INSTRUCTION 17:

PADD1 PMULT2 ADD B@ , B3 READ CB PMULT1 FMULT1
“INSTRUCTION 18:

LADD2 ZR , A2B LMULT2 FA1 , CB PMULT1 FMULT1
"INSTRUCTION 19:

LADD1 ZR , A1B FADD2 FMULT2 PMULT1 FMULT1
"INSTRUCTION 20:

FADD1 PADD2 PMULT2 PMULT1 FMULTY

“INSTRUCTION 21:

PADD1 LADD2 FM2 , FA2 PMULT1 FMULT1
"INSTRUCTION 22:

FADD2 LMULT1 CB , FA1 PMULT1 FMULT1
"INSTRUCTION 23:

PADD2 FMULT1 PMULT1 MOVE B4 , B4 READ CB ADD A@ , A3 READ CA
ADD Ce , C2 READ CC

"INSTRUCTION 24:

LADD2 FM1 , FA2 PMULT1 MOVE A5 , A5 READ CA MOVE C4 , C4 READ CC
"INSTRUCTION 25:

FADD2 LADD1 FM1 , CA

"INSTRUCTION 26:

PADD2 FADD1 LADD2 ZR , A2B LADD! ZR , A1B
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"INSTRUCTION 27:
ADD A@ , A2 WRITE CA LOADR RA , FA2 PADD1 FADD2 FADD1 MOVE C5 , C5 READ CC

"INSTRUCTION 28:
ADD Co , C3 WRITE CC LOADR RC , FA1 PADD2 PADD1 MOVE A6 , A6 READ CA

DEC Lt , L1

"INSTRUCTION 29:

LADD2 FA2 , CA LADD1 FA1 , CC
"INSTRUCTION 30:

LMULT1 CA , CC FSUB2 FADD1

BRNE BOUCLE

Imprimé en France
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