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ON THE UNIQUENESS OF LOCAL MINIMA FOR GENERAL
ABSTRACT NON-LINEAR LEAST SQUARE PROBLEMS

Guy CHAVENT
kkkk

Abstract : Effectiveness of the inversion of a mapping ¢ defined
on a sec C by non linear least square techniques rely, among
other, on the uniqueness of local minima of the least square
criterion, which ensure that numerical optimization algorithm
will, (if they do), converge toward the global minimum of the
least square functional. We define a number vy depending only on
C and ¢ which, if the size of ¢(C) is not too large with respect
to its curvature, will be strictly positive, thus yielding
uniqueness of all local minima having a value smaller than 7.
The condition 4>0 will require neither convexity of C nor any
monotony property of ¢, but involves the computation of an
infimum over 3dCx3C of first and second derivatives of ¢. Numeri-
cal application to the estimation of two parameters in a
parabolic equation will be given.

SUR L‘UNICITE DE MINIMA LOCAUX POUR LES PROBLEMES
DE MOINDRES CARRES NON - LINEAIRES .

Résumé :@ L'inversion d’une application ¢ définie sur C par la
méthode des . moindres carrés non linéaires se raméne i la
résolution d'un probléme d'optimisation. La possibilité de
trouver effectivement le minimum global dépend de l'’existence de
minimum locaux. Nous définissons un nombre vy dépendant seulement
de C et ¢ qui, lorsque la taille de ¢(C) n'est pas trop grande
par rapport & sa courbure, sera strictement positif, assurant
ainsi l'unicité des minima locaux ayant une valeur inférieure a
v. La condition >0 ne requiert mni la convexité de C ni une
quelconque propriété de monotonicité de ¢, mais suppose le
calcul d’un infimum, sur 8Cx3C, contenant les dérivées premieéres
et secondes de ¢. Une application numérique a 1l'estimation de
deux paramétres dans une équation parabolique est présentée.

.Key Words

Inverse problems - non linear least squares -
identification - parameter estimation

Mots Clefs

Problémes inverses - moindres carrés non linéaires -
identification - estimation de paramétres
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1 . INTRODUCTION

Consider :

E = normed vector space (norm || "E)

F = prehilbert space (scalar product < , >F)
C = closed, C?-path-connected subset of E

¢ = C?-mapping of C into F

z € F a given point

and the optimization problem :

(I-1) find & € C such that J(%) < J(x) ¥ x € C where
(I-2) ¥ x € C, J(x) = 1|¢(x)-z||; .

Problem (I-1) is the general least-square setting of the problem :
(I-3) find ® € C such that ¢(R) = 2.

when the right-hand side z does not necessarily belong to the image set
$(C).

Qur goal is to find conditions on C and ¢ such that

problem (I-1) cannot admit two distinct local minima (and

(I1-4) hence has almost one solution), provided that the distance

of z to #(C) is taken smaller than certain number v>0.

In this paper, we will be able to ensure uniqueness only of the
local minima of J having a value smaller than vy (propositions 3 and 4).
We pursue further study to find conditions ensuring uniqueness of all
local minima.

Let us now explain our motivations.

The first question is : what kind of applications have motivated -

the author to undertake this study ? The answer is : parameter estima-
tion problems. In this application, x is the parameter, C is the set of
admissible parameter, z is the observed data, and ¢ is the parameter -+
output mepping reculting from the resolution of the model state

equations and the observation operator. Our concern is primarily with
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overspecified inverse problems, where dim F = dim E, so that we can
expect that the derivative ¢'(k) be more or less injective from E into

F. In order to be more specific, we can give an example

Example 1 : we consider the 1-D parabolic equation :

Jdu d au

.7 [aaz)+bu=f ¥ze [0,1[, ¥ Ce [0,T]
(1-5) w(0,t) = u(l,t) =0 ¥t>0

u(z,0) = ug(z) ¥ ze (0,1}

when the parameters a € R™ and b € R’ have to be estimated from the
measurement z € L?(0,T) of the solution u at point z = %-against time.
Here we have x = (a,b) € R?=E, C is a given closed subset of EU*XBG:
which represents the a-priori knowledge of the experimentator about the
parameter x=(a,b), and ¢ is the mapping which, to a given x=(a,b) €C
makes correspond the t-'u(%,t) function of L?(0T) =.F. In this example,
the evaluation of ¢(x) involves ;he resolution of the parabolic
equation (I-5); the problem is  obviously overspecified as dim F = +o >
dim E = 2 !

The second question is : why do we adress the problem of unique-

ness of local minima ? The only way of actually solving the above
described parameter estimation problems is to undertake the minimiza-
tion of J over C on a computer. However, optimization algorithm are
only able to find local minima over closed set. Hence the least square
problem (I-1) will be practically solvable by an optimization algorithm
as soon as C is closed and J has at most one local minimum over C

This will ensure that the optimization algorithm, once converged,
will give the sought global minimum of J. One can also remark that the
uniqueness of local minima implies (but is not equivalent to) the
uniqueness of the solution & of problem (I-1), or in terms of parameter
estimation problems, the identifiability of % from the knowledge of z
and C. Of course, one other extremely important practical problem is
that of the stability of the solution % of (I-1) with respect to
perturbations on the data z; this problem will not be adressed as such
in this paper, but one can remark that, when C is compact, the above

uniqueness property will ensure the existence of a unique % depending
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continuously on z as long as the distance of z to ¢(C) is taken small

enough.

The third (and last) question is : what kind of conditions on C

and ¢ are we looking for ? The first idea is that we want data- indepen-
dant conditions : for a given set C and mapping ¢, we want to be able
to decide wether property (I-4) holds or not. If it holds we will get
as a by product the upper limit ¥>0 to the distance of z to ¢(C) for
which the uniqueness property of local minima holds. If it does not
hold the experimentator will then have to acquire more data (i.e change
the mapping ¢) and/or augment the a priori available information (i.e:
diminish the size of C) before checking again for property (I-4). The
second idea is that such conditions will by no way be cheap ! As in
view of the applications, no hypothesis will be made on the shape of C
and ¢ (no convexity, no monotonicity), the conditions will necessarily
involve exploration all over C - which of course will become extremely
computer-time consuming as soon as the dimensions of C, i.e. the number
of unknown parameters, increases.

Nevertheless, we believe that such condition will be practically
usefull for the problems with few unknown prameters, and that they at
least will help to understand what happens in non linear least square
problems. As test for the forthcoming sufficient condition for (I-4) to

hold, we will add to example 1 an extremely simple example

Example 2 Determine a real number x from the measurement (z,, Z5)

of its cosine and sine..Then we have
(I-6) E=R, F=TR? §(x) = (cosx, sinx)

Of course, one has to restrict a priori the search for x to an interval
of length smaller than 2n if we wants the problem to have a chance of
being well posed ! So suppose we take for example

.y

¢ = [0,X} with X given, X < 2Zm.

~d

~~

[
)

S

Then obviously problem (I-1) has a unique global minimum as soon as
d(z,$(c)) <y=sin(X/2) as one can see on top of figure I-1 for different

data z.
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"However one sees also on the same figure that there may exists,
beside the global minimum, a distinct local minimum, (with value larger
than v !)so that the solution of (I-1) by an optimization algorithm may
fail, as condition (I-4) is not satisfied !

In order to satisfy condition (I-4), it is sufficient to replace

condition (I-7) by the stronger condition :

(I-8) C=(0,X] with 0<X<m.

Then, as one sees on the bottom of figure I-1, condition I-4 holds when
(I-9) d(z, #(C)) < sin X.

Conditions (I-8) plus (I-9) are clearly equivalent to (I-4), and will
be used as bench mark to see how precise the condition which we will

derive is.

o{obal Mcn(mum\ (Pfc)

K< 2T

Local wainimuwm

Figure I-1 : determination of x € [0,X] from the measurement

z of (cosx, sinx)
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To conclude this introduction, we will recall a previous result of

J. Spiess (1969), who considered exactly the same problem, namely the

-uniqueness of local minima of problem (I-1), but set on _an open and

convex set C. In fact he gave data-dependant sufficient conditions,

i.e. conditions, which, for a given data z and a given local minimum %,
imply that % is a global minimum. These conditions, when translated

into data-independant conditions, read as follows

Spiess Condition : If

o] is an open convex subset of E

2

) is injective and over C

(1-10)y = Inf  Inf | FENCIN N FICIEr-162] |
x,yeC ze[xy] | " (z) (y-x,y-x)[17 o) -6 |IHl¢z)-8(m) |

>0

Then

J has at most one local minimum over the open set C as soon as

d(z,¢(C)) < 7.

If we apply this condition to the simple example 2, where we take

now for convenience

(I-11) C = le, 2m-€l , e > 0 given

one checks very easily that :

¢ @0l _
| 6" (2) (y-x,y-x) |

for aﬁy X,¥,2

and that

is minimum for x,y,z as in

figure I-2.

Hence we get
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(1-12) v - 7%%‘5;‘5 ~ % sine for small e
So v 1is strictly positive, and the sufficient condition is satisfied,
in this example, for all e>0. '

Of course, as C is taken open, spiess condition does not eliminate
the local minima which may arise on ¢(3C) (as on figure I-1 top), so
that this condltlon does mnot answer to our second question. However, it
may gives a reasonnable idea of the kind of condition we are going to
derive in the next paragraphs, as they share the property of containing
~an infimum over couple of points (x,y) of C and over a path (here the
[x,y] interval) comnecting them.

Let us now be more technical and turn to the .derivation of our
sufficient condition. The hypothesis and notations given at the
beginning of the introduction will hold throughout the remaining of the

paper and will not be repeated.

e ' .\C?(c)\

—

— e —

Figure 1-2 : Application of the Spiess condition to example 2.
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1 - HOW TO RECOGNIZE THE EXISTENCE OF TWO DISTINCT LOCAL MINIMA ?

let x,y € C, x» y, be two such local minima (see figure 1.1).
Using the.hypothesis that C is ez—path-connected, we may choose one
pz-path going from x to y, i.e one €72 mapping s : 6§ +s(8) from some
] .

[f6, 8;] interval of R in E, satisfying

%
Figure 1.1
s(f,) = x, s(6y) =y
(1.1) ’
s(8) € C ¥ 4§ eby, 0,]

We consider now the function £ : [f,, §;] » R defined by :
(1.2) £(8) = || ¢(s(8)) - z}|? ¥ 6 e [6g, 6]

which we have depicted on figure 1.2, in the case where

£C06) =l o(x)-2l 2 = £(8,) = || ¢(yv)-z]?

From the properties of x and y, it is clear that one cand find ¢}

such that
(6, < 83 <6,

(1.3) £(6) 2 £(80) = || 6(x) - zII? V8 e [, 8]
Lf(ﬂi) = £(85) = || 6(x) - z]?
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From here two cases may occur :
i) £(8) = £(8o) ¥ 8 € [, 01]
then of course f"(§) = 0 => £"(4) < O

ii) £(8) > £(8,) for some subinterval of [fq, 1],

exists some § in this interval such that f"(§) =< 0;

+)

So if we set QIQO)

(1.4) y' = s(f1)
eyt

we obtain the :

so that there

Proposition 1 : )
e, o)

If : -f_*'sUf'l L‘Z.
z€F

s : [fg, 8,] - C = path from x to y

Then :

there exists § €l]6,,0{[ such that f"(§) <0

x,y = local minima of J over C, x#y (|| ¢(x)-z||% = || (y)-2]|?)

there exists #{ € ]6,,8,] such that £(§i{) = £(8o) = || £(x)-z]|* and

2 . GIVEN z € F, x,y’ € C SUCH THAT || ¢(z)-z]| = l4(y*)-z]| = 0 AND A pPaTH

s FROM x TO y', WHAT DOES £"(4) < 0 IMPLY ?

Let us first introduce some quantities related to the image-path

{81y, 0 € (60,611} in F :

v(8) = ¢'(s(6)) « s'(8) = velocity,
2.7)

Then the first and second derivatives of f(4) can be

va(&) - [¢'(s(€))-s'(9)]' = accelleration.

expressed
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as .
(2.2) £0) = 2 < ¢(s(8)) - z, v(8) >
(2.8) | £0(8) = 2 | v(8) |2 + 2 <4(s(8)) - z, a(d) >

From (8) we get :
(2.4) [£7 ()= 2 f(o)*llv(a)"

which together with (2.3) and the Cauchy-Schwarz inequality yieid :

[ 2
(2.5) £1(0) = 5%%{};-- 2 f(0)% I acor ]

We define now a function g : [f,, #{)] = R by the following 1-D
elliptic problem : '

-g"(8) = |l ato) || ¥ 0 e [6o,0}]
(2.6)

g(6o) = g(b1) =0

We may remark that this function g is independant of z (whereas f was

not!), and that it is a positive concave function.

Plugging (2.6) into (2.5) yields then :

n [ 2

£ (ai £ (0% - g8y = 0
ie. 2£(8) 4£(9)

2
2.7) ST EOT - g 1 20

which prooves that the function 4 - f(ﬁ)k - g(8) 'is convex, and hence,
as £(fo) = £(8{) = d (where d is the common value of || ¢(x)-z|| and
ey -zl )
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(2.8) . £ =g +4

¥ 8 € [f6,01]

But on the other hand, from f*'(;) < 0 we get, using (2.3) and the

Cauchy-Schwartz inequality ::

0% £73) = 2 v |? - 2 £ || ad ]|

and hence :

- L. pt 2
(2.9) £ = _HL(;QH__
It acoll

From (2.8) and (2.9) we get then :

r 2
(2.10) d= ;’(9) - g

So we have proven the

Proposition 2 :
If

z €F

%..

x,y' € C such that || ¢(x)-z]] =[lé(y")-z||= 4
s : [#o, 81]- C a path from x to y’

then

8 € [6o, 6] - .
. — a> @I G

fu(f) <0 Il a¢oli

€
3 - A FAMILY OF SW¥FICIENT CONDITION FOR THE UNIQUENESS OF CERTAIN

LOCAL MINIMA OF PROBLEM (I-1)

Suppose we have chosen a strategy S in order to associate to every

couple (x,y) of points of C a Cc?-path s from x to y :

s (x,y) € CxC s = S(x,y)

s(fg) = X

[00,01] -+ C st 5(91) =Yy

s is €?
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Then from propositions 1 and 2 we get immediately the following

sufficient condition :

Proposition 3 (sufficient condition associated to the strategy S )

Suppose that

2
(3.1) v Inf  Inf {H—}%%H - g(8) }> 0

X,y € C s=S(x,y)
06[00901]

Then the problem (I-i) has at most one local minimum with wvalue

smaller than vy as soon as d(z,¢(C)) < +.

This condition does not look very handy. But before simplifying it
somewhat and indicating which strategy S to choose, let us explicit on

a simpler case its meaning.

Example 3  Suppose that

C 1is convex (and hence Cz-path-connected ')

¢ 1is such that numbers o > 0, 8 > 0 exist with
L

lle' x)eyllz allyll |
(3.2) ‘¥ x € C, ¥YyeE

l¢' vyl = gliyll?

50=0, 01=1

(3.3) S(x,y) = s defined by
. s(8) = x + 6(y-x)
Then
Ivier|| = e« [ly-x|
lacerll = B lly-x|I?

and hence, from the maximum principle :

g(0) = S llyx|I? 6c1-0) = £ fly-x]*

and :
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and :

vyl 2

2
a(d) - g(a) = gﬂ_' %"Y‘XHZ '

Then from proposition 3 we get the (weaker) sufficient condition :

Proposition 4

Suppose that (3.2) holds and that :

v- me {5 BNy} o
(3.4) (x.y) €¢

or equivalently

2
g diam C < 2/7 a and7=%-%(diamC)2

Then the problem I-1 has at most one local minimum with value

smaller than v as soon as d(z,¢(C)) < 7.

This result was already given in [1] together with a lipschitz
continuity result of the z - % mapping and, in the case where E is a
Banach space, an existence result for %.

However, the estimation (3.4), which involves upper and lower
bounds, over all x € C and for all directions y, are very rough, and
mayvyield too restrictive conditions on the size of C for pratical use.

So _we- come back to the less constraining estimation (3.1) of

_proposition 3.

4 - CHOICE OF A STRATEGY S

The prdblem is now to choose the strategy S, which associates to

any couple (x,y) € CxC a Cc?-path s from x to y, in such a way that the

number vy defined by (3.1) is the largest possible (and hence the "size"

condition on C the least restrictive possible).
For given x,y € C, the choice of a path going from x to y can be

conceptually split into two steps
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- choose the geometry of the path,
- choose the time-law, i.e. the parametrization of the path.

We will choose these two items separately.

4.1 - For given x,y € C and a given geometry of a path from x to y, how

to choose the time-law ?

We consider first a particular parametrization & (§) of the path

from x to y where § is the curvilinear abscissa on the image path

$ o 5(8).

Such a parametrization satisfies, by definition :

(4.1) o))l =1llé vchy) - o ()] =1

and will exists as soon as ¢'(x) in injective every where over C. Af
points where ¢'(x) is not injective, 0(5) may still exists, but v'(é)
'will have to be infinite.

By deriving (4.1) we get, as usual, that, on the image path, the

velocity V(é) and the accelleration é(@) are orthogonal :
(4.2) a(6) = [¢'(8)+8")" 1 9(d) = ' (8)-5'

We consider then any other parametrization s(8)° of the same

geometric path, which is necessarily of the form :

s(6) = &(x(8))
(4.3)
where x : [fo, 6,) = [6o, 6]

On checks then easily that

v(8) = x'(6) v(d)
(4.4) ) .
a(f) = x'(6)% a(d) + v(8) x"(8)
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But as 4(#) and ¢(3) are orthognal we get

(4.5) @l = {x @ Had 2+ x@)? o112}
and hence |

(4.6) fa)ll = x o2 fladr|l

In order to compare the numbers % and vy associated by (3.1) to the two
parametrizations é(é) and s(f) of the same geometrical path, we compare

the arguments of the inf in (3.1)

i) Obviously one gets from (4.4) and (4.6)

fvrl? . x 2 le@®l _ Iv@l?

I aconll x' ()% flaca | lacé) |l

" ii) In order to compare g(8) and g(é), we set
(4.8) E(0) = a(x(8))

and will compare g(f) and é(ﬁ). One first checks easily that é(ﬁ)

satisfies the following equation :

50 = x (O laxen ] ¥ 8 € (60, 6:1]
(4.9)
g(8o) = g(61) =0

Comparing with the equation defining g(§)
-g"(8) =l a(®) | ¥ 6 € [80, 8:]
(4.10)

g(fo) = g(6,) =0 i’

we get, using (4.6) and the maximum principle :
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v

g(8) = g(8) ¥ 6 € [8o, 0]

~ and hence

v

(4.11) g(8) = g(8)

Summarizing the results (4.7) and (4.11) we get
Avl2 . 2
Jlﬂf:ZlL - g(g) > ML - g(8)
EYO llace)]]

which proves that

(4.12) v =7

CONCLUSION : For a given geometric path going from x to y, the
best parametrization is obtained when # is the curvilinear abscissa

on the image-path.

In the sequel, we will omit the hat on s, 4, etc... and § will

always denote the curvilinear abscissa on the image path.

With this parametrization, the formula (3.1) simplifies somewhat,
and moreover gains a geometrical interpretation : now the radius of
curvature p(§) of the image path at point ¢ o s(§) is given, as

Nve))l =1 and v(4) 1 a(d), by :

(4.13) p(8) = “j;%iyn—.

- Hence, when the parameter # is chosen to be the curvilinear

abscissa along the image path, (3.1) reduces to

(4.14) vy = Inf Inf {p(a) - g(8) } >0
X,y€C s=S(x,y)
6€(bo,6,)

where g(4) is defined by :

n = 1
(4.15) {'g 9= 20 for 6o < 6 < 6,
g(fo) = g(8,) =0
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We have illustrated on figure 4.1 a geometrical construction of vy
from the data of the § = g(#) function : the point D should never get

above the horizontal hatched line.

4.2 . GIVEN x, vy € C, GIVEN A PATH s FROM x T0 vy, AND GIVEN TWO POINTS

x’, y' BELONGING TO THAT PATH s, HOW DO y (ASSOCIATED TO x,y) AND

~' (ASSOCIATED TO x’ y’) COMPARE ?

If x' and y' correspond to the parameters f4 and 8] of the [4,,
6,] interval, it 1is clear from figure 4.2 and from the maximum

principle for elliptic equations that :

(4.16) A

Ko pa bl Fewmooe-potd  @cd

A

%(e) .
@ (@) :
\ corvilinear
l, I' L k .;;
6= 0 8, e/, 4 abscrssa ©
mnk%&.“waqa
patl

Figure 4.2
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- CONCLUSION : As soon as the strategy S chosen is stable with =

respect to restriction (i.e. if S(x',y’) = S(x,y)| (6 0,]),315 is
o,V1

sufficient, in order to calculate vy, to consider only couples of

the boundary 4C of C

Hence (3.1) or (4.14) reduce to

(4.16) v = Inf Inf { p(8) - g(8) } >0
X,y € 3C s=S(x,y)
| 660,61
where

¢ is the curvilinear abscissa along the

image path

and where g(®) is defined by

-g"(8) = ;%77 for 6, < 0 < 8,

(4.15)
g(go) = g(f,) =0

4.3 - HOW TO CHOOSE THE GEOMETRICAL PATH FROM x TO vy ?

For a given X,y € dC, we are now looking for a path s from x to vy,
which will be parametrized by the curvilinear abscissa § along the

image path ¢ o s, such that the quantity

(4.17) Inf { p(8) - g(8) }
. 6 € [60,8:1]
appearing in (3.1) or (4.14) is maximum.
The first remark is that the quantity (4.17) depends only on the

geometrical properties of the image path ¢ o s going from ¢(x) to

$(y)
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6 is the curvilinear abscissa along this path
p(8) ~ 1is the. radius of curvature of this path

g(8) is defined from f,, 8, and p(4)

'So we can replace & the task of choosing a path s from x to y
in C by that of choo;ing_a path S from ¢(x) to ¢(y) in ¢(C) in such a
way that the quantity (4.17) is maximized.

In this new setting the mapping ¢ is used only, together with the
. set C, for the definition of the set ¢(C) in which the sought path §
has .to stay. -

The second remark is that, whenever the[segment [¢(x), é(y)] is
fully included in ¢(C) then one can chéose S = [¢(x), #(N], whiﬁﬁ
yields p(é) = + « and g(f#) = O, hence v = 4+ so that § is obviousiy the -
sought optimal solution !

The third remark is that, if one chooses a path S from ¢(x) to
#(y) with both large radii of curvature and a large length §,-6,, as

the one depicted in figure 4.3, for which we have :

p(6) = R >0 ¥ 0 € [0y, 0]
{00=0, 01=27|'R

Then the function g is of the form

1 .
g(d) = 5¢ (6-60)(61-6) ¥ §.€ [fo, 0:])
and is maximum at the point § = ﬁn%ﬁ; = 7R
2
g(nR) = %— R

so that

2

R - g = (1-%) R20.

(1) at least conceptually !
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So we see that paths S with both large p and large length are not
optimal.

From the two last remarks, we may conjecture that the optimal S is

the minimum-length path point from ¢(X) to é(y) in ¢(C) - But this
still remains to be proved. ‘

So we can propose two stragegies for the choice of the path s from

X toy
Strategy 1 determine a path s from x to in such a way that

S = ¢ o s is the minimum-length path going in ¢(C) from ¢(x) to $(y).
This procedure may (if our conjecture is true !) yield the optimal
number vy, and hence the less constraining condition on the size of C.
However, from the practical point of view, such
strategy seems very difficult to implement, as one would have to solve,
for each couple x,y € :C, a complicated optimization problem in a high

dimensional space.

Strategy 2 choose s as the minimum length path going in C from x
to y. This procedure is surely non-optimal, but will garanties that the
corresponding image path S = ¢ o s will not have a too great length, as
soon as upper bounds on " ¢'(x)" are available. Moreover, as the set

C is defined by explicit constraints, and is usually of non-void
interior, the minimum length path in C from x to y can be determined
relatively easily (in many cases it will be the [x,y] interval).

To conclude this paragraph, let us see, on the very simple example
2 of the introduction, how close our final condition (4.14) (4.15) with
stragegy 1 or 2 comes to the solution of this example. »

We have seen in the introduction (see figure I-1 and formula
(I-8)) that the least square functional for the search of a real number
x from measurements of its cosine and sine had a unique local minimum
with value smaller than vy = sin % (which of course is ‘the global
minimum) as soon a we search for x in the [0,X] interval with X < 2.

If we now appply condition (4.16) (4.15) to this problem, we have
to compute the argument of the infimum in (4.16) only for a path going
from O to X. Obviously, the path
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(4.18) s(8) = 6 , ' 0

A
@
IA
>

has all the desired properties

8 is the curvilinear abscissa are the one of circle
which is the image of the [0,x] interval by the ¢

function defined in (I-6).

s yields the minimal length path as well in the image
set as in the parameter set so stragegies 1 and 2 are

equivalent here.
Along this path, one has
p(f) =1 (radius of curvature of image circle)
and hence
g(0) = 3 6(X-0)

which is maximum at § = %':

X x?
g®) <@ =T

Hence we get from (4.16) the condition

2
vy=1 - %; >0

or

X < 2J2 =12,828

which is to be compared to the best possible condition x < 2n exhibited
for this example in the introduction. We see that the result is not too
bad, but as 2J7 < 27 we cannot conclude wether the condition (4.16)
(4.15) with strategy 1 is optimal or not. But one may remark that
2/%<x, which proves that, on this example, our condition y>0 yields in

fact uniqueness of all local minima.
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5 . NUMERICAL APPLICATION

For historical reasons, the numerical application we are going to
present was not made using (4.14) with the curvilinear abscissa in the
data-space parametrization, but using a weaker version of (3.1) with
constant-velocity-in-the-parameter-space time law. The geometry of the
path going from x to y was given by strategy S, of paragraph 4.3
(minimum length in the parameter space), and C was taken convex.

Hence, for any x,y C the path s(§) was :
(5.1) s(f ) =x+ 8 (y-x) § € [0,1]

The sufficient condition for (3.1) was obtained in the following
way : using the fact that, for any v €Hq(0,1) = {v € L2(Ol)|
v' € L2(01), v(0) = v(1) = 0 } one has |v(d) ]| = %— vll2 o, and

1 , . s

Il VWIL2(01) < ;-" v "L2(01)’ and that, from its definition (2.6) as the
solution of an elliptic boundary value problem, the function g satis-
fies || g'|l i2(01) < | el 12 (01) x || aIILz(Ol)’ we get the following
majoration for g(f)

1
(5.2) leco)] = 5 all 20y
Thus a sufficient condition for (3.1) to hold is :

(5.3) v =  Inf { Inf lLvcor I

w1
2L Nallz gy }> 0
x,yeac “oe(0,1] Jam] L7 (01

We applied the condition (5.3) to example 1 of the introduction.
However, rather than cheking, for a priori given admissible parameter
sets C, if condition (5.3) holds or mnot, we used an alternative
approach : supposing we have been given by engineer some nominal value
X = (a, b) ]§+*x]§+ of the unknown parameters, we tried to answer the
question "how large can the parameter set C be chosen around (a, b),
still maintaining the uniqueness of local minima of problem I-1 over

C ?" This amounts to find, "around" a given X, the "largest" set T for
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which =0 so that any set C striclty included in C will yield de
striclty positive . This was done by computing the wvalue of the
argument of the infimum in (5.3) for segments on increasing length
centered at X and lying on a finite number of straight lines going
through X, until one reaches, in each direction the zero value. At this
stage,_‘all couples [x, 2X-x] € 3C which are symmetrical with respect to
X have been tested. Then the couples (x,y) with y » x one tested,
eventually diminishing the length of one [x, 2X-x] interval if the
argument o6f (5.3) happens to be negative for the [x,y] segment. Of
course, this procedure will produce domains dependant on the order in
which the (x,y) segments are tested in the second part of the algori-
thm. ‘

The numerical results, taken from Charles, are shown on figure
5.1. The interesting thing to be mnoted is that the size of the
"maximal" sets given by condition (5.3) is already not ridiculous from
a practical. point of view. Using condition (4.16) would yield still
larger sets, with no basic increase in computational time. On the other
hand, the use of the much more restrictive condition (4.3) would lead,
in this examples, to maximal set of the size of a point on the figure

5.1, and is thus inadequate for practical use.

6 . CONCLUSION

We have studied the uniqueness of the local minima of general
non-linear least square f)roblems, under the main hypothesis that the
mapping to be inverted is regular C? and has an injective derivative.
We have derived for that a sufficient condition which involves a
minimization over all geodesic curves of the image set of a quantity
which involves the radius of curvature of the geodesic curve and a
function related to the radius of curvature through the resolution of
an elliptic problem (see (4.16)). This condition has been optimized
among a class of possible sufficient conditions, but it is not known
wether or not it is the best possible condition. However, numerical

examples

:ave shown that the proposed condition makes it possible
obtain practically interesting results for a two parameter estimation

problem.
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Ay

Figure 5.1 : "Maximal” sets C obtained for example 1 around different

nominal values X = (a, b) of the parameters.
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