-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A logic for data and knowledge bases
C. Lecluse, N. Spyratos

» To cite this version:

C. Lecluse, N. Spyratos. A logic for data and knowledge bases. RR-0606, INRIA. 1987. inria-

00075948
HAL Id: inria-00075948
https://hal.inria.fr /inria-00075948
Submitted on 24 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50448897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00075948
https://hal.archives-ouvertes.fr

<
o
o
3
H
7
o
%
5-
<
S
o

X

S AANE S N S~ ANV A

N° 606

1
Y

N

A LOGIC FOR
DATA AND KNOWLEDGE BASES

I LU AL

—

A PR S S

"

TR R A T T s

=

%

q
b
5

Christophe LECLUSE
Nicolas SPYRATOS

Février 1987

e

A LOGIC FOR DATA AND KNOWLEDGE BASES
UNE LOGIQUE POUR BASES DE DONNEES ET BASES DE CONNAISSANCES

Christophe LECLUSE
Nicolas SPYRATOS

Université de Paris-Sud
LRI (U.A. 410) Bat. 490
91405 ORSAY Cedex
FRANCE

ABSTRACT We present a class of first order languages
suitable for data and knowledge representation. In support
of this claim, we give algorithms for processing queries
and updates in a restricted case corresponding to
relational databases.

RESUME Nous présentons une famille de languages du premier
_ordre adaptée & la représentation des données et des
connaissances. En particulier, nous présentons des
‘algorithmes pour calculer la réponse aux requétes et
effectuer les mises a jour dans un cas restreint
correspondant aux bases de données relationelles.

November, 10 1986

N D PAPIER RECUPERE ET RECYCLE

1. INTRODUCTION

In the past few years, major attempts have been made
to improve the power of database systems, in particular
those based on the relational model of Codd [C70]. These
attempts have'concentrated, mainly, around the following
issues:

(1) Non-procedural specification of gqueries (cf universal
relation)

(2) The treatment of disjunctive information

(3) The addition of a deductive component (cf recursive
queries)

(4) The inclusion of semantic constructs (cf ISA-
hierarchies) .

One way to accomodate all these issues in a common
framework is to consider the relation schemes and the
' database constraints as sentences from predicate calculus,
and the relations of the database as interpretations for
these sentences. An interesting body of theory was
developed around this approach, particularly with respect
te

armamd sl
(SO AR IR N Y

ct
Hh
3
t
M
)

T P N B S N ~an11T AR
ouue TLA LAV D caLaTG

[¢]

pes ¢f sentences a
devendencies (see ([F82] and [FV84] for a survey of the
area). In this paper, we adopt a different approach Qhereby
the relation schemes, the database constraints, and the
database, are all considered as strings of uninterpreted
symbols. Interpretations for these symbols are provided
using subsets of an underlying population of objects.
Semantic implication is done essentially using set-

'containment, as explained (informally) in the following

example.

Consider the (relational) database of Figure 1(a)
which contains two tuples: the tuple ab (over scheme AB)
and the tuple bc (over scheme BC). Define an in;g;gzg;agign
to be any function ¢ assigning a subset of a given set ® to
every symbol in the domains of A,B and C. An example is
shown in Figure 1(b), where it is assumed that @(x) = &
for all x not in {a,b,c} (moreover, it is assumed that ® is
the set of integers). We extend an interpretation ¢ from

atomic symbols to tuples as follows: for any tuple t, if

t=a,...a, theno(t)=¢(a;)N...n¢(a,). Now, define an
interpretation ¢ to be a model of our database, if passigns
a nonempty set to every tuple appearing in the database.
For example, the interpretation of Figure 1(b) is a model ,

as seen in Figure 1l(c).

AB BC ¢(a) = {1,2,3} p(ab) =0¢(a) Nno(b) = {2,3}
ab

b ¢ ¢(b) = {2,3,4} @(bc) =¢(b) N@(c) = {4}
Pp(c) = {4,5}
(a) (b) (c)
Figure 1

Consider now the following query on the database of
Figure 1l(a):

Q : List all tuples over scheme ABC
Define the answer 0.(Q) to be the set of all tuples t over
ABC such that, t has a nonempty interpretation in gvery
model of the database. Then the answer to gquery Q above is
empty. Indeed, for the model ¢ of Figure 1(b), we find:

@(abc) =0@(a) Neb) No(c) = B.
and, clearly, for any other tuple t over ABC such that
t#abc, we can find a model ¢ such that ¢'(t) =&. It follows

that, if there is no restriction on models thena{Q) is
empty. However, if we restrict the "admissible” models to
those satisfying the constraint ¢(b)g@(c), then we can
infer that @(abc) is nonempty, in every admissible model.
Indeed, in every model of the database, we have: @(ab)=zJ,
by definition of a model. On the other hand, ¢(b)co(c)
implies that ¢(b) N@(c) = @(b). Combining these two facts,we

obtain
P(abc) =¢@(a) NP(b) NP(c) =¢(a) NP(b) =¢(ab) .
It follows that if @(b)g®(c) thena(Q) = {abc}.It is

important to note that the closed world assumption [R83] is
not needed in our model. Indeed, for any tuple containing
symbols that do not appear in the database, we can always
find a database model that falsifies this tuple. It follows
that such tuples will never be included in an answer.

A restricted class of interpretations is obtained if
we impose the following constraint: for every attribute A
and for all a,a' in the domain of A, @(a)n@(a')=D. This
class of interpretations, called partitioning
interpretations, were first proposed and investigated in
[884], and subseqﬁently used in [CKS85] to study the
inference problem of so called Qgggggign_gggggggggigs.

The paper is organized as follows. In Section 2, we
define a suitable first order language in which a database
is defined as a set of formulas. In Section 3, we restrict
our attention to databases without disjunctive data and we
present algorithms for query answering, and update
processing. Section 4 contains some concluding remarks. We
assume some familiarity with first order logic and
relational theory. The required definitions from logic are

by now standard {sce, for example, [L66]).

2. A DATABASE LOGIC.

For the purposes of formally defining a database, we
restrict our attention to a suitable proper subseét of first
order languages, that we call database languages, and to a
specific class of interpretations, that we call set
interpretations. The resulting logic differs from that of
Reiter [R83] in a significant way as explained earlier. As
a consequence, we obtain finer (and, we Dbelieve, more
natural) semantics, and algorithms for performing query

answering and updating.

Database languages
Define a first order language L to be a database

language if L has the following properties:

0. There is a distinguished constant @ (that will be always
interpreted by the empgy set). The set of all constant
symbols of L is infinite and denoted by CONS. The set of

all variables of L is infinite and denoted by VAR.

1. There is only one binary function symbol ., that we
call product. In the formation of terms we will omit "."
when no confusion is possible. Thus if s and t are terms
then we shall write 'st' instead'of 's.t’'. The set of
terms of L is denoted by TERMS. A term which is a constant
or the product of constants is referred to as a tuple. The

set of all tuples is denoted by TUPLES.

2. There are twp binary relation symbols, = which will
function for us as set equality, and C which will function

for us as set inclusion.

3. All other relation symbqls of 1L are unary relation
symbols and their set is denoted by REL. Among them, there
is a distinguished non-empty finite subset U called the

universe. The elements of U are called attributes. Let Py

be the set of all subsets of U. We assume a one-to-one
function gsScheme from REL into Py\{} such that
scheme (A)={A} for every attribute A in U. Intuitively,
every symbol R of REL is a name for a set of attributes.
Note, however, that different relation symbols are
associated with diffgrent sets of attributes. We do not
distinguish between a relation symbol and its scheme so for

example, if scheme(R)={A,B}, we write {A,B}, or even AB

instead of R. We also assume that there is a function type
from CONS into Py which associates a singleton to every
constant of the language but @, and type(z)=2& We extend
the function type to a function from TUPLES into Py as

follows: typel(c.c')=typelc) W type(c') for all tuples ¢

and c'. For every relation symbol R in REL, we denote by
dom(R) the set of all tuples t such that type(t)=scheme(R).
Thus dom({(R)= {t & TUPLES / type(t)=scheme(R)}. We assume
that all domains are infinite sets. We shall often say "t

'is a tuple over R" instead of "t is in dom(R)".

Roughly speaking, the product constructs tuples from
symbols, while = and [are needed for writing special

formulas expressing semantic information. We shall use the

following notation for typed quantifiers which is by now

standard: for every symbol A in REL,
Yx/a £ stands for Vx AxDf and

3x/A £ .stands for 3Ix AxAf.

Set Interpretations
Roughly speaking, an interpretation ¢@ of a database
language L will assign to the terms t of L certain objects

@(t) in a domain A, which the terms may be thought of as

naming under the given interpretation. It will assign to

each function symbol f of rank n a function ¢(f) of rank n,
from the domain A into itself, and to each relation symbol
r of rank n a relation @(r) of rank n on the domain A.

We want to think of an interpretation ¢ as attaching
to each formula p some assertion about the domain A, which
either holds or fails in A. The easiest way out is to také
¢() to be simply the value, truth or falsehood, of this
assertion. Since we need not explain what is meant by
thruth or falsehood, we choose instead two neutral objects,
the numbers 1 and 0, to serve, respectively, instead of
thruth or falsehood. We call 0 and 1 the truth-values, and

denote by B={0,1) the set of those two thruth values. Then,
if.p is any formula, we shall take ¢(p) in B. It will be

convenient now to require ¢@(r), for r a relation symbol of
rank n, to be not a set of n-tuples, but ‘rather a function

of rank n from A into B.
Let Wbe a fixed set of (unspecified) objects and

P,={0 / 0w} be the set of all subsets of ®. We shall take

A=P,XPyas the interpretation domain in every database

language L. It is important to note that ® can be any set.

However, in"our discussions, we shall conveniently thlnk of
® as being the set of nonnegative integers.

Precisely, an interpretation ¢ of L is a function
defined on function symbols, relation symbols, terms and

formulas with values as follows:

Function symbols
The only function symbol . is interpreted as follows:
O(.) ((s,t) r (8',t")) = (SnS'ItUt')

Relation symbols

The relation symbols of L are interpreted as follows:

for all R in REL,
@®(R) ((s,t))=1 iff type(t)=scheme(R).

P (=) ((S,t),(s',t'))=l iff s=5"'.
¢ (L) ((S,t),(s',t’))=1 iff sgs'.

Terms
The values of ¢ on the set CONSU VAR are in the

domain PoXPy. The projections of ®, denoted by ¢, and 0y
are required to satisfy the following conditiﬁis:
- QPu(3) = Q.
- @y (c)=type(c) for every ¢ in CONS
— For every attribute A, the restriction of ¢ to
dom(A) is injective. (this property Corresponds to

the unique names assumption) .
We extend the function ¢ from CONSU VAR to TERMS as
follows: @(c.c’)=(@g (c) Ny (c’) r®y(c) Ueylc')) for all

terms ¢ and ¢! (which is in accordance with the

interpretation of the product . seen earlier).

Formulas
If R is a’ symbol of REL and s,t are terms then
¢ (Rt)=1 iff type (t)=scheme (R)
Q(t=s)=1 iff Qg (t) =@, (s)
P(tEs)=1 iff Qu(t) CPy(s)
¢(true)=1 , ¢@(false)=0
? (—p)=1-¢(p)
9 (PAQ) =min (9 (p) , (1)) » @ (pvq)=max(Q(p),¢(y))
9 (PDq) = (~pvq) -

Let x be a variable and p a formula, and define
I(x,9) to be the set of all interpretations @' that agree
with @ except possibly on x: then

¢(Vxp)=1 iff @' (p)=1 for all @' in I(x,®) and
¢(Ixp)=1 iff @' (p)=1 for some @' in I(x,9). |

- Databases Definped
. Let L be a database language. A database over I is a
finite set of closed formulas of L. '

Given a database D over L, we refer to the set of
formulas of D without wvariables as data, and to the set of
formulas of D with variables as knowledge. Accordingly, we
denote data by d and knowledge by k. Thus, D=dUk. For

example, consider the following database over L:

D={—ab=g, —a'b=g v —ab'=g, —bc=gVv-b'c=g, Vx/A Jy/B Xxg yl

Assuming U={A,B,C}, scheme(R)={A,B}, scheme (S)={B,C}, and
a,a',b,b',c to be constants such that type(a)=type(a')={Aa},
type (b)=type(b')={B}, and type(c)=type(c')={C}, we have:

d = {—ab=g, —a'b=g V-ab'=g, —bc=g Vvib'c=g)}

and k = {Vx/A Jy/B xcy}

Let us note that, as databases are sets of formulas,
all notlons related to semantic implication are also

applicable to databases. Thus, given a database D over L,
an interpretation @ of L is a model for D if ¢ verifies all
formulas of D (i.e. if ¢@(p)=1 for all p in D). If there is

no model for D then we say that D is inconsistent, and
otherwise that D is consistent. Moreover, we define the

relation of semantic dmplication, D |= D', between two

databases, to hold iff every model for D is also a model

for D'. We say that two databases D and D' are sgmannlsallz_

equivalent (denoted by D|=|D') if D|=D' and D'|=D. Clearly,
in'these definitions we tacitly assume a specified class I

of interpretations, and we should in principle write
D|=/D'. 'In practice, we shall commonly omit the subscript.

Queries
Queries are defined relative to a given database
language - L. Specifically, a guery for L is any expression
of the form <Rx|f> where:
-~ R is a relation symbol of REL, and x is a variable.
- £ is a formula of L whose free variabhle is x.
The answer to a query for L is defined relative to a

giveh database over L. Specifically, given a query Q=<Rx|f>

and a database D, an answer to Q with respect to D is any
-tuple t such that D implies Rt, —t=g, and f[x/t}. The

reason why we ask that —t=g is the following: intuitively,
a tuple t=a;...a; is meaningfull if there exists an object
in ® having property a; and ... and property a,, that is,
1 9p(t)=@u(a) N ... N@y(a,)#D (here we view ¢y(a;) as the
set of objects of ® having property a;). The set of all

answers to Q with respect to D is denoted by a(Q,D). Thus,

10

a(Q,D) = { t / D|=Rt A—t=g Afx/t]}.

Two databases D,D’ over L are called query
fquivalent, denoted by D=D' iff a(Q,D)=a(Q,D'), for every

query Q. We say that D contains less information than D',
denoted by D < D', if x(Q,D)ga(Q,D') for every Q. Let us

note that D|=|D" implies D=D' but the inverse is not true.

For example, if we consider the databases D= fabc=g} and
D'={vabc=s,Vx/A 3y/B XLy}, we clearly have D=D' but not
DI=|D'. We shall denote by BASES the set of all databases
Oover the same language L. Clearly, the relation = is an
equivalence relation on the set BASES. We denote by BASES/=
the set of all equivalence classes of the Set BASES. We can
also define an order relation between equivalence classes

as follows:C<C' 1ff there is D in ¢ and D' in C' such that
D < D'. It is important to note that the databases of an

equivalence class are just different representations of

the same information.We assume that the user cannot (and

should not) distinguish between equivalent databases.

Updates
Following Fagin et al [FUV83], we view the database
"not merely as a collection of atomic facts, but rather as
a8 collection of facts from which other facts can be
derived”. We shall therefore' consider the updating of
equivalence classes rather than of particular databases.
For example, given the database D={—abc=g}, we allow for
the insertion of =—ab'=g. Now, inserting over AB in D can
be considered as a "view updating”. We are interested in

the information contained in the database and not in any

11

- particular representation of this information. It follows

that, by updating equivalence classes, we also allow for

view updating.
3. SIMPLE DATABASES

Databases can be classified with respect to the type
of data and to the type of knowledge that they contain. In
its simplest form, the data contains no disjunction, that
is, the data is a set of formulas of the form —t=g,
Knowledge, on the other hand, may consist of two types of
formulas: those that contain a single relation symbol, and
those that contain more than one relation symbol. Wé refer
to the former as interpretation constraints and to the

latter as dependencies. we give here some examples of both

with appropriate abbreviations for later use.

Intervretation Constraints:_ for all A in u:

Partition Constraint : Vx/a VX'/A—xx'=s Dx=x'.
Inclusion Constraint tVX/A VX' /A —xx'=2 2xZx' VvV x'tx.
Transitive Constraint

Vx/A Vy/A Vz/a TXY=@ A YyzZ=g D —xzag,
Filter Constraint : Vx/A Vy /A —xy=g > 3z /A Z T xy.

Dependencies

Letting X and Y be relation symbols, the following are
examples of dependencies:

XfunY stands for Vx/X Vy/y Vy'/y TRYSP A SXy'=g Dy=y',
X—=Y stands for Vx/X Vy/f —XYy=g Dxcy.

X isa Y stands for Vx/x Jy/y XCy.

12

It is interesting to note thét, under the partition
constraint, the above three dependencies correspond all to
the same function. Indeed, in all three cases, the set of
Pairs ((x,y)/=xy=s} is a function. However, the three

dependencies convey different Semantic information.
Moreover, it is not difficult to see that X isa ¥ D Xx—vY

and X—Y > XfunY. The following proposition shows that, in

a restricted case, the consistency of a database is the

same in all three cases.

~ Proposition 1 Let R be a relation symbol of L, and d a set

of formulas of the form —t=g where t is a tuple of dom(R) .

Let X and Y be two relation symbols of L, sguch that
scheme(X)gscheme(R) and scheme(Y)gscheme(R). The fdllowing

pProperties are equivalent:
(1) 4 u {X'fun Y,Partition Constraint} is consistent.
(2) d U {X — Y,Partition Constraint} is consistent.

(3) d U {X isa Y,Partition Constraint} is consistent.

Proof
We can assume, without loss of generality, that
scheme (R)=(A, B}, scheme (X)={A} and scheme (¥)={B}. The
two implications above show that (3) implies (2) and
(2) implies (1) so it is enough to show that (1)
implies (3). If d U {X fun Y} is consistent, then we
build a model n of d U {X isa Y} as follows: we

associate to €very formula —t=g nique

of d a u
integer i,.. For every symbol x in dom(A)uUdom (B), m X)
is the set of all integers i, such that x appears in

t. For every formula —t=g of ¢ such that t=ab, we
change m(b)~ in m(a)um(b). m clearly satifies the

partition constraint for the attribute A. If there
are b and b' in dom(B) such that m(b)~m(b')#0, then
we added the same m(a) to m(b) and m(b') because the
Sets m(a) are pairwize disjoint. So, we have two
formulas —t=g and -t=¢ in d, so Property (1) is
false. Otherwise, m satisfies the partition
constraint and also satisfies the formulas of d and
the dependency X isa v. So m is a model of d U {X

isa Y}. We conclude that (1) implies (3).

13

Define a database D to be simple if the data is a . set
of formulas of the form =t=g, and the knowledge consists
of the partition constraint and dependencies of the form X
isa Y. There is a correspondence between a simple database
and a relational database if we view each tuple t as a
relational tuple and each formula X isa Y as the relational
functional dependency X—Y. Moreover, it 1is showh in
[CKS85] (in a somewhat different formalism) that the
database D is consistent (i.e. has at least one model) iff
the corresponding relational database is consistent.

Let D be a simple database. We denote by ¥ the set of
~dependencies of D and by M(D) be the set of all models of
D. From now on, we consider implication with respect to the

class M(D). If m is a model of D and t is a term such that

—t=g is true in m, then we say that "t is true in m".

Similarly, if D|=—t=g then we say that "D implies t", or
that "t is true with respect to D". Moreover, when we
represent a database, we write t instead of =t=g. For
example, Figure 2, below, represents a database with the
following data d={—2,b)=z,- 3,3} . Given a model m of b, we
denote by T(m) the set of all tuples t that are true in m.
We can define a partial order on M(D) as follows: m<m' iff
T(m)CST(m'). Let us define T(D)= N{T(m) / me M(D)}.
Clearly, T(D) is the set of all tuples which are true in
£very model of D, hence for every tuple t, D|=—t=g iff
teT (D). Finally, given a database D, we denote by CONS(D)
the set of constants of CONS that appear in the database,
and by TUPLES(D) the set of all tuples that can be built

using the constants of CONS (D) .

14

3.1 Minimal models - Query processing.

Let us recall that a query is defined with respect to
a database language L and that it is an expression QO=<Rx/f>
such that:
- R is a relation symbol of REL, and x is a varlable
- £ is a formula of L whose free variable is x.

"The answer to Q w1th respect to a database D denoted by
@(Q,D) was defined to be the set of all tuples t such that

D implies Rt, —t=g, and f[x/t]. Thus, in order to process
queries in simple databases, we first have to solve the
following inference problem. Given a simple database D,
determine the set T(D), that is, determine the set of
tuples 1mplled by D We say that a model m of D is a query
medel of D if

- m is a minimal model of D and

- T(D)=T(mMﬂTUPLES(D).
The following example shows that minimality alone is not
enough to characterize T(D). Indeed, in Figure 2, we can

see a database D and two minimal models of D that are

incomparable. The model m; is a query model of D whereas

the model m, is not. Indeed, the tuple ab; is true in m,

although a,b; is not true with respect to D.

U={A,B}, dOm(A)={a~l,a2,...}, dom(B)={b1,b2....},

d: A B A k={A isa B}
ab; a,
m: a;—={1} my: a;—{1}

a,—»{2} a,—{2}

15

by—> {1} | b,—({1,2)
by~ {2}

Figure 2

Below, we give an algorithm that computes a query
model for a given simple database. In order to simplify the
presentation of the algorithm, we assume that:

- All dependencies of I are of the form X isa A where X
is a relation symbol and A a single attribute.

=~ Queries are of the form <Rx/true>.
Moreover, we consider only the 'semantic® component of an

interpretation, that is we only consider its projection on
Py-

Algorithm 1 Query Model
Input : A simple database D.
Output: A query model mg of D (if D isg

consistent) .

(1) Assign a distinct positive integer i, to every
tuple t of the database. Set m, (a)=@ for every
constant a.

(2) For every tuple t=a,...a, of the database, add the
integer i, to my(a;), for i in (1,...,k}

(3) Compute m.

i+1 from m; as follows until m;.,=m,.

ilf there is X isa A.in ¥, and x in dom(X) such
that m (x)#@ and m(a) Amy (x)=B, for all a in

dom(a),

16

then my,; is obtained from m; by taking a constant
a® in dom(A) such that m,(a*)=@ and setting
m;,, (a*)=m (x) .

else if there is X isa A in 3, x in dom(X) and a
in dom(A) such that m, (a)m, (x)=J,

then let m(a)=m; (a)Um, (x), and m(b)=m, (b) if bsa.

If there is a' in dom(A) such that m{a)~m{a')zJ

and a or a' is not in CONS(D) (a' for instance),
then m,;(a)=m(a)um(a’), m;.(a')=G, and

My, (B)=m; (b) for b#a,a’. Otherwise, m,,,=m.

else my,=m.

(4) mg is the last function m, computed at step 3.

Theorem 1 Algorithm 1 always terminates and if m, satisfies

the partition constraint, then Mg is a query model of D

else D is inconsistent.

Proof

We can notice that, while computing miy; from my, following
algorithm 1, the number of 'true' tuples 1is strictly
increasing if mi#mj+1. If the algorithm does not terminate

then we have an infinite increasing sequence of sets of
tuples. As the number of constants in the database is finite,
the number of tuples that may be built with them 1is also
finite. So, in such a sequence, we have infinitely many new
constants in the domain of at least one attribute. Moreover,
the values of my for these new constants always stay pairwise
disjoint. But, if a* is a new constant of type A introduced to
compute mj.1 from mj, we have mi+1(a*)={ka*}Limi(x) for some

tuple x, so ky is in.mj,3(a®). If x also contains a new
constant b*, we have mj(b*)={kb*}u1mj(y), for some term y and
JjSi. In this way, we can show that mi+1(a”) contains at least
one ky where t is a tuple without any new constant. As there

are only finitely many such tuples, the new constants cannot
be pairwise disjoint. So the Algorithm terminates. Now, we
have to show the following properties:

(1) If My verifies the partition constraint, then

T(D)=T(mq)hTUPLES(D) and

17

{(2) If My does not verify the partition constraint, then D

is inconsistent.
- In order to show (1), we show that the property

T(m;j) NTUPLES(D)CT(D) is true for all i. If it is the case
then, as my is a mjg and My is a model of D, we clearly have
T(mq)hTUPLES (D)=T(D). We clearly have T(tpl)nTUPLBS (D)ET(D) .
If T(mi)NTUPLES(D)<T (D) and X isa A,a and x are the elements
used to build mj,;. mj.; differs from mj only for the value
mj'(a). If t is a tuple such that mit+1(t)#J and m; (t)=@, then
a is a sub-tuple of t and we can write t=at'. Then we have
m; g (t)-'—'mi.,.l(a)hmi+1(t')=(mi(a)umi(x))r\ mj (L") =mj (x)Nmj (L")
and so we have m(x)Nm(t")#J and m(a) " m(x)#D3 for every model
m of D. As m satisfies the dependency X isa A, we have m{x)gc
m(a) so m(t)#J for every model m of D. So T(mj +1) NTUPLES (D) ¢
T(D). If a new constant a* is introduced then
T(mj 4+1)NTUPLES (D) =T (m;) "TUPLES (D) .

~ If mg does not satisfy PART, let i be the first integer
such that my...m;_; satisfy PART but not mj. Let X isa A, x
et a be the elements used to compute m; from mj_1. Using (1),

we can show that there are two tuples xa et xa' in T(D) which
is impossible if D is consistent. So D is inconsistent.

Example 1 Let D be the following simple database: there are
three attributes A,B and C, and three relation symbols R,S
and T with schemes {A,B},{B,C} and {A,B,C} repectively. The
data are —ab=g, —bc=g and —b'c'=g. The only dependency is
B isa C . Figure 3 shows a query model of D as computed by

Algorithm 1:

mg: a — {1}
b - (1,2} b' — (2}
c = (1,2} c' — {2}

Figure 3’

We turn now our attention to query processing. Given

a database, our general plan works as- follows: Produce a

18

query model m;, of the database and for each query expressed

in terms of the database language,

(a) Process the query using this model

(b) Give the result in terms of the database
language.
" In this way, the syntactic component, namely the database
language, sefves aé an interface in which the user
interacts with the system, while the semantic component,
hamely the query model, serves as an environment in which
the actual processing takes place. Indeed, given a query .Q,
the answer & (Q,D) is the set of all tuples t over Q such

that t is in TUPLES (D) and m,(t)#J. For instance, in
Example 1 above, for Q=<Tx/true>, we find (Q,D)={abc},

‘because abc is the only tuple over T such that abc is in
- TUPLES (D) and my (abc) =& .

3.2 Characteristic models - update processing

In order to give algorithms for performing updates in
a simple database D, we have to solve the following
inference problems:
(1) Given a simple database D, determine the set T(D), that
is, determine the set of tuples implied by D (which is the
inference problem solved for queries), and

(2) Determine whether D|=szt, for tuples s and t in T(D) .

We solve these problems by constructing a query model
m, such that:

(a) If mo(to)gmo(tl)u...Umo(tn) for some tuples toj...)
t, then we have Dl=t0;tq, for some i in {1,...,n}.

19

(b) There is no pair of inseparable integers in m,. (We

say that two integers i and j are inseparable in m if there
is’ a constant a such that i and j are in m(a) and, for
every constant symbol b, i is in m(b) iff j is in m(b)).
Such a model allows us to answer the questions above
and we call it a characterjistic model. The following

proposition gives an alternative formulation of property

(a) above.

Proposition 2 For any query model m,, the following

properties are equivalent:

(1) For all tg,...,t,inT(D), if my(ty)Gmg(t;)U...Umg(t,)

then there is i in (1,...,n} such that D|=tyCt,.
(2) VteT(D) Jk.emy(t) VseT(D) kemy(s) = D|= tcs.

Proof

Easy.

The following algorithm computes a characteristic
model of a simple database D. As in the previous section,
we assume that all dependencies of)Y are of the form

le

X isa A where X is a relation symbol and A a sin

i3
u

attribute. Moreover, we consider only the "semantic"

component of an interpretation, that is, we only consider
its projection on P,.

Algorithm 2 Characteristic Model

Input : A simple database D.
Output: A characteristic model m, of D (if D is

consistent).

20

(1) Assign a distinct positive integer i, to every
sub-tuple t of a tuple of the database. Set
m, (a)=J for every constant a. .

(2) For every sub-tuple t=a,...a, of a tuple of the
database, add the integer i, to m;(a;), for i in

{1, ..., k} :
(3) Compute my,, from m; as follows until my,,=m,.

-if there is X isa A in X, and x in dom(X) such

that my(x)#@ and m;(a)Nm, (x)=, for all a in
dom(A) . :

- then m'; is obtained from m; by taking a constant
a* in dom(A) such that m;(a*)= and setting
m'y (a*)=my (x) .

else if there is X isa A in X, x in dom(X) and a
in dom(A) such that my(a)Nm (x)=D,

then let m(a)=m (a)um (x) and m(b)=m, (b) if bz#a. If
there is a' in dom(A) such that m(a)m(a')#@ and

a or a' is not in CONS(D) (a' for instance), then
m'y(a)=m(a)um(a'), m';(a')=F, and m',(b)=m(b) if

b#a,a'. Otherwise, m';=m.

else m';=m;.

-m;,; is obtained from m'; as follows: for every
tuple t=a;...a, such that m';(t)#J and m, (t)=0,
add a new integer i, to n',; (ay) for all j in
{L,...,p}.

(4) If my, is the last function computed at Step 3 then

my is obtained by removing from m;, an element from

each pair of inseparable integers.

21

Theorem 2 Algorithm 2 always terminates and if m, satisfies

the partition constraint then m, is a characteristic model

of D else D is inconsistent.

Proof
We can notice that for every i, T(m';)=T (mj+1). So we can use
the proof of Theorem 1 in order to conclude that if my does

not satisfy the partition constraint, then D is inconsistent
and else my is a query model of D. It is also clear that mg

does not contain any pair of inseparable integers. We show by
induction that the following property (Hj) is true for all 1i.
- (Hj) Vte T(mj) Jkee mg(t) Vse Timy) kpemy(s) =D|=tCs.

(H)) is easy to test. If (Hy) is true, then let t be a tuple
in T(mj4+1). There are two possibilities (a) t is in T(m;),
(b) t is in T(m;') but not in T(my).

-(a) If t is in T(mj), let k be the integer associated with t

in (Hi). Let X isa A, x and a be the elements used to compute
mi+l from mj. Let s be a tuple of T(D). If k is in mj (s) then

(Hi) implies Di=tgs. If k is in m'; (s) but not in m; (s),

then a is a sub-tuple of s (because a is the only value that
have changed from mji to m';). We write s=as' and k is

necessarily in mj (x) and in mj(s') so we have D|=tC x and
Di=tzs'. As we clearly have Di=xg a, we finally obtain
Di=t Cs.

=(b) If t is in T(m'j), then we can find a tuple t' in T(mj)

such that Di=tct'. So, we are in case (a) with t' instead of
t.
In conclusion (H;) is true for all i. We can use the

proposition 2 to conclude that mg is a characteristic model
of the database D.

Example 2 If we consider the database D of Example 1, then
Figure 4 shows a characteristic model m, of D as computed

by Algorithm 2:

my: a - {1,3}
b - {1,2,4} b' — {2,686}
c = {1,2,4,5} c' = {2,6,7}]

Figure 4

22

We can deduce from mg that Dil=br ¢ (because
Mo(b)Cmy(c)) and that D J<AL b (because my(a) @y (b)) . It is
clear that a minimal model is not enough to characterize
the orderC . Indeed, with the minimal model m; of Figure 3,

we have mg(a)cm (b) .

Now, let us define formally insertion and deletion of
@ tuple in a given (simple) database. In doing so, we shall
require that the insertion or deletion of a tuple produce
"minimal®" change in the original database. We consider this

to be a reasonable constraint, from a pPractical viewpoint.

- Let BASES(X) be the set of all consistent databases over

the same language L having the same set of dependencies Y.
Recall that we are updating equivalence classes and not
particular databases.

Given a class D and a tuple t, define the result of

the insertion of —t=g in D, denoted INS(D,~t=g), to be the

class D! verifying the following properties:

(1) DD
(2) D' |=—t=g

*

(3) D is a minimal class verifying (1) and (2).
It is clear that the insertion of =—t=g in D does not
always produce a consistent database, and, when it does,

the result may not be unique. This defines a (partial)
function INS from BASES (¥) /= x TUPLES into BASES (})) /=. For

example, if we insert —ab=g in the (class of the) database

D;={—-bc=g,B isa C}, we obtain the (class of the) database
D,={—abc=g,B isa C}.
We define deletion of a tuple from a class D, in much

the same manner as for insertion. Given a class D in
BASES(X)/= and a tuple t in TUPLES, the_deletion of —t=g

23

24

from D, denoted by DEL (D,-t=g) is the class D' verifying
the following properties:

(1) D'sp

(2) D{}égszﬁ, for all s such that Dl=sc t.

(3) D' is the maximal class verifying (1) and (2).

We shall see that, as a consequence of Theorem 3 below,
DEL (D, —t=g) is always defined for every value of D or t.

For example, if we delete =abc=g from the (class of the)
database Dy={—abc=g}, we obtain the (class of the)
database: Dy={—ab=g, -bc=g,mac=z}. Now if we delete the
same formula -wabc=g from the (class of the) database
D;={—abc=#,B isa C} above then we obtain the (class of the)
database Ds={—=bc=s, -ac=2,B isa C}. Let wus note that
DEL(INS(Bntanw@is generally not equal to D.

We can notice that a characteristic model mg of D is
also a characteristic model of any database of BASES (Y) /=
equi&alent to D. So, given an equivalence class D in
BASES(XY) /=, we say that m, is a characteristic model of D

iff my is a characteristic model of all databases in D, So,

in order to process an insertion or a deletion, all we have

to do is to compute two mappings i and 4 such that, given a

formula —t=g, and a Caracteristic model m: .
i(m,—t=g) is a caracteristic model of INS (D,—t=g) and
d(m,—t=¢) is a caracteristic model of DEL (D,-t=g) .

The following algorithm constructs function i.

Algorithm 3 Insertion
Input : A characteristic model my, of D,

Output: A characteristic model m'y of INS(D,=-t=g)

(if it is defined.)

(1) For every sub-tuple s=a;...a, of t, add the
integér ig to my(a;) for i in {1,...,p}
(2) Compute m;,, from m; as follows until my,,;=m,.

-if there is X isa A in I, énd X in dom(X) such

that m (x)#@ and m;(a)Nm, (x)=D, for all a in

dom(A) .

then m'; is obtained from m; by taking a constant
a® in dom(A) such that m; (a*)= and settin;;
m';(a*)=m; (x) .

else if there is X isa A in Y, x in dom(X) and a
in dom(A) such thét m; (&) Nmy (x) =,

Lthen let m(a)=m (a)Um (x) and m(b)=m, (b) if bwa. If
there is a' in dom(A) such that m(a)m(a')2D and

a or a' is not in CONS(D) (a' for instance), then
m';(a)=m(a)Um(a'), m';(a')=0, band m'; (b)=m(b) if
b#a,a'. Otherwise, m';=m.
else m';=m,.
~My,; is obtained from m'; as follows: for every
tuple t=a,;...a, such that m' (t)#@ and m, (t)=0,
add a new integer i, to m';(ay) for all j in
(1,...,p}.
(3) If my, is the last function computed at step 2, m’',

is obtained by removing from m;, one element from

each pair of inseparable integers.

Theorem 3 Algorithm 3 terminates, and if m', satisfies the
partition constraint then i(m,—t=g)=m', else INS(D,—t=g)
is not defined.

proof

25

The proof of this theorem is quite similar to the proof of
Theorem 2.

Algorithm 3 strongly resembles Algorithm 2, and this
is not surprising because the construction of a
characteristic model for a databése D can be seen as the
insertion of the tuples of D into the empty database. We

give now an algorithm for constructing function d.

Algorithm 4 Deletion
Input:A characteristic model my of D and a tuple t.

Output:A characteristic model m'y, of DEL(D,—t=g).

The model m', i3 obtained from my, as follows:

m'p(a) = my(a) \ my(t), for every constant a.

Theorem 4 The model m', computed by Algorithm 4 is the
characteristic model d(m, ot=g) .

Proof
We clearly obtain a caracteristic model from Algorithm 4. We can

2se Proposition 2 to characterise the elements of the input
model mgy. We obtain, for any tuple t of T(D),

(1) mg(t) = {kg / Dl=s;. t}.
In conclusion, it is necessary and sufficient to remove from mg
all the integers of mg(t) in order to eliminate from T(D) the

tuples s such that Di=sC t. Property (1) above shows that we do
not remove anything else from T(D) .

4. CONCLUDING REMARKS
We have seen a proper subset of first order languages
that seems to be suitable for data and knowledge

representation. In support of this claim, we have presented

algorithms for processihg queries and updates in a

26

restricted class, namely simple databases, corresponding to
relational databases. Let us note that simple databases are
not suitable for modeling recursive queries under the
partition constraint. Indeed this constraint implies that,
for any constants a, b and ¢ of the same type, the formulas
—ab=g and —bc=g always leed to inconsistent databases.
- However, if we move to a larger class of databases, namely
by replacing the partition constraint by the inclusion or
the transitive constraint mentioned earlier, then recursion

is possible. We are currently working in this direction.

BIBLIOGRAPHY

[C70] E.F.Codd,WA Relational Model of Data for Large
Shared Data Banks", CACM 13:6, june 1970, p.377-
387.

[CKS85] s. Cosmadakis, P. Kanellakis, N. Spyratos,
"Partition Semantics For Relations", Proceedings

ACM PODS, March 1985 (also to appezr in JCSS) .

[F82] R. Fagin, "Horn clauses and database.dependencies",

J-ACM 29,4/ OCt- 1982’ p-952—985-

-[FUV83] R. Fagin, J.D. Ullman, M.Y. Vardi, "On the Semantics
of Updates in Databases", Proceedings ACM PODS,
1983, p.352-365.

27

(FVv84]

[L66]

[R83]

[s84]

[SL86]

[SL87]

‘R. Fagin, MlYﬂ Vardi, "The thepfy of '~ data

~ dependencies-a survey", IBM Résearch‘Repéft'RJ

4321, june 1984.

R.C. Lyndon, "Notes in Logic", Van Nostrand

Mathematical Studies, 1966.

R. Reiter,"Towards a logical reconstruction of
relational database theory”, in : On Conceptual
Modeling: Perspective from Artificial Intelligence,

Databases, and Programming languages.

N. Spyratos,"The Partition Model: a Deductive
Database Model",INRIA Research Report No 286, April
1984 (also to appear in ACM TODS) .

N. Spyratos, C. Lécluse, "The Semantics of Queries
and Updates in Relational Databases", INRIA Research

Report No 561, June 1986.

.N. Spyratos, C. Lecluse. "Incorporating Fonctional

dependencies in deductive query answering", IEEE
International conference on Data Ingeneering, Los
Angeles, February 1987.

Imprimé en France

par
I'Institut National de Recherche en Informatique et en Automatique

: 23

o

N

Y,
R .
;.
R L e . -
L
- v N . .
o . .
A N
-5

ISSN 0249 - 6399

