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RESUME.

La propacation d'un faisceau monochromatique dans une fibre optique est
usuellement décrite par Ll'équation d'Helmholtz. Feijt et Fleck ont proposé un
algorithme d'approximation de cette equation par une méthode de décomposition.
Dans ce travail, nous discutons ce procédé et dérivons L'équation qui est consis-
tante avec cet algorithme. Nous donnons un cadre fonctionnel qui permet de ré-
soudre cette équation et, aprés avoir décrit quelques propriétés qualitatives
de ses solutions, nous montrons Lla convergence de L'algorithme de décomposition.

Enfin nous faisons quelques remarques dans le cas non linéaire ou l'indice de

Propagation Method or B.P.M.) in order to approximate this equation. In this work,

we discuss their procedure and derive the equation which is consistent with thisg

algorithm.
We give a functionnal framework that allows one to solve this equation. After

describing some qualitative features of the solutions, we show the convergence
of thesplitting method. Finally we make some remarks in the nonlinear case where

the refractive index of the fiber depends on the intensity of the beam

(Kerr-effect).
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1. INTRODUCTION.

Let us consider the propagation of a single frequency light in an optical fiber.
We assume that it can be described by the Helmholtz equation

2 2 2 2
a.n E_E. + E_E. + E_E +9 p2E=0
X Bxi *axg c

where E denotes one of the components of the electric field, c the speed of

Light in a vacuum and nw,x) the refractive index (x=(x;,x;,X3) is the generic

point in RH.

In what follows we discuss the method proposed by M.D. Feit and J.A. Fleck

[3] for solving (1.1) in the case where n has small variations from a reference

value ny :

n (w,x) = n,

The field E is given at the entry of the fiber (x5 = 0)

(1.2) E(X],Xz,O) = Eo()ﬁ,Xz)

and satisfies the radiation condition at +» (see (1.7)).

Since the propagation is studied for a range of x3 at least a million times the

wave length, this hypothesis is reasonable.

The electric field is sought in the form

(1.3 EGLw = Al,w) e KoX3
where
W
(1.4 ko = s Mo -
The envelope function A(x,w) is supposed to vary‘slow Ly over lenghts of the
order of A, = %E . Substituting (1.3) into (1.1) leads to the following equa-
tion for A ’
2 2
1.5) -2ik AL 2A La A+ (2 -n2ya=0,
. 0 9X 2 L 2 0
3 9xy » o

where éL denotes the transverse laplacian

2 2
(1.6) ALA=§'—A+M

2 2
oX | X5



(1)

The boundary conditions are

.7

A(xl,xz,O) = Ao(x;,xz) = Eo(xl,xz) ;

. . .. ... Q1
and A(xl,xz,xa) satisfies the radiation condition )

This method consists in droping the terp ——é in (1.5) because of the slow varia-
ax<-
v 3
tion of A with respect to X4
2
(1.8) -2i k, B 44 A+ 3 (n? -2y =g .
: 0 aX3 1 c2 0

Then,

[4] which is

X, direction
1St step. On
(1.9)

an step. On

.10

rd

3 " step. On

.11

At each step the initial condition is
The great applicability of this method is

one.

the Cauchy problem (1.7)-(1.8)

method (Split Step Fourier Transform)

is solved numerically with a splitting
pProposed by R.A. Fisher and W.K. Bischel

very popular in optics. It is based on j discretization in the

an interval of lenght Ax,/2, one solves

JA

- +

3X3

A A=0 .

-2i k, N

an interval of lenght Ax4, one solves

2
2k 22 ey, g
dx c?

3

an interval of lenght Ax,/2, one solves

A vaa=0 .

=21 ko 8x3 |

the terminal condition of the previous
due to the fact that the first and

third steps are solved by Fourier transform with respect to (xl,xz) while the

second step is a family of 0.p.E.'s,

Feit and Fleck's idea is to use this algorithm to solve equation (1.5)

with the boundary conditions (1.7) as follows :

This condition consists in dropping the

k's term in (2.4)



1St step. On an interval of Llenght Ax3/2, one solves

. L
o 4 - + = N
(1.12) 2i k0 3% 4 AL A=0

an step- On an interval of lenght Ax, , one solves
2
(1.13 ik A L0 (2 -n2)A=0 .

3rd step. On an interval of lenght Ax,/2, one solves

(1.14) -2i ko‘g‘ea"% +0 A=0 .
X3
As before the initial condition of each step is the terminal one of the
previous step. But steps 1 and 3 are still underde;ermined since we have to
solve a second order equation in the x, variable. These steps can be viewed
as a second order 0.D.E. in X, (recall that these steps are solved by Fourier
transform w.r. to xl,xz). Therefore the solution A can be written as the sum of
two exponentials and M.D. Feit and J.A. Fleck erase the one which propagates
in the —x, direction (see (2.7)). In a certain sense they apply the vanishing
condition at +». The first and third steps are actually solved by Fourier
transform and it is this method which is called B.P.M. Let us point out that
besides the fact that from a computational point of view the Fourier transform
js very performent (F.F.T.), the B.P.M. method gives at the same time the signal

and its Fourier transform which is of great importance for physical reasons

(energy spectrum,...).

In fact the Split Step fFourier Transform applied to the parabolic appro-
ximation and the B.P.M. method can be jmplemerited in a very similar way. In
particular they can be performed as two close versions of a computer program.
In a subsequent work we shall report on the comparison of these two procedures
with'respect to the original problem which was to solve the Helmholtz equation

in an optical fiber.

In this paper we study the B.P.M. method. In the following Section we
derive formally the continuous eguation, the B.P.M. equation (i.e. the equation
obtained by letting Axy = 0) which is consistent with the B.P.M. algorithm
(1.12), (1.14). In the third section we give some mathematical results on the

B.P.M. equation. Then in the fourth section, we chow that the B.P.M. algorithm



is consistent with B.p.M. equation. Finally, in the Llast section. we give some
remarks on the nonlinear B.p.M. equation which torresponds to the case where

the refractive index depends on the electrical field (Kerr-effect).
In a preliminary version of thig Paper, [1], we have given in full detail

the proofs of the results presented here. We refer to thig report for some mig-

sing points, however this article is intended to be self contained. ye also

2. THE B.p.m. EQUATION.

In this section we derive the B.P.M. equation. Then ye give some compari-

Sons with the Helmholtz equation and with the parabolic approximation,

2.1. Derivation of the equation.

As already noticed, equation (1.12) s solved by means of a Fourier trans-~

form with respect to the X) and x, variables. Let ys denote by

.1 3(51,52,x3> = f A(xl,xz,xa) exp (-i(x1£1+ X,€,)) dx1 dx2
n-‘,Z
the Fourier transform of A ; then equation (1.12) reads

2.2) -21‘ko§i+ﬂ-(g2+g§>?\=o )
X3 3x§ !

The associated caracteristic equation is

(2.3 Km2k kv g2z oy

and if k, and k; denote its solutions, the solutions of (2.2) are givén by

. Sy
1 kgx, A1 ky x,

2.4) 3 =z ae + a' e .
st . 2 2 2
1 case : 51 + &2 < k; .
We have :
= - 2 _ r2 _ 2,172

k3 = kO (k0 €] £5) ,
(2.5)

kj = ke + (k2 - g2 - 53)1/2 ’



and k3 corresponds to @ forward propagation while k; corresponds to a backward

one. As explaﬁned in the Introduction, the B.P.M. consists in choosing the
k,-term in (2.4). It can also be noticed that when g2 + £} << kpsky ds close
to 0 and k; is close to 2 kg~ We have chosen the part of the wave which has

the slowest variation in X, this is consistent with the envelope hypothesis

(see (1.3)).

nd 2 2
2 case : &] ¥ E§>> kg -
Here
- : 2 2 _ 1/2
k, = kg + 1T G ¥ £2 - kP p
2.6
_ . 2 2 _ 2 1/2
ky = k, =1 (g] + &) kg? , N

and k, produces a vanishing wave in the x; direction while ki gives rise to an

amplified wave- The B.P.M. consists in choosing the vanishing wave, droping the

amplified one which is physicaLLy irrelevent.

Hence in both cases, the kj-term in (2.4) is dropped and instead of (1.12)

and (1.14) we take

>>

2.7 A _ ik, A
e X, T Fs ’

where k. is given by 2.5)-(2.6).

Equation (2.7) is written in Fourier space; in order to return to the

A
physical space we introduce the function G, plotted in figure 2.1,

1/2
K, - & - E] 7B , for E2 + E3 <K -
(2.8) 6¢,,E) T

: 1
ko + 1 G Y E2 - k) 12 gor g2 + EL > kG -



Re

H¢3) InG(E) A
v
; , 2
: ;
I ; 2
! ;
|
f
|
ko | ko.
_..- . > 2 >
ko le]. [€]
Fig.2.1 : Real and imaginary part of the
function G(&), ¢ = (E,,E,)
versus [£] = €% + g21/2
Equation (2.7) reads
'R A N
2.9 ™ ] G(EI,EZ) A,
.3
or by-inverse Fourier transform w.r.t. 51,52;
"t ap JA
(2.10) "= T i G * A
o Bx3
whére G denctes the inverse Fourier transform of G, and the convolution * actg
on the x. " ahd X, variables.
- —1 kylx|
Remark 2.1. : We set K(x) = L s where x = (x. ,x.) Ixl= (x2 4+ 2)1/2
~ T'_ ,Xl Vd 1’ 2 Vd x Xl X2 -

By classical calculus (see e.g. [9]) we have

.11 4¢3
, it

0 €2.12) G(x)

. A
kKo =21 (k3 - 22 - £2) Repy
Lo - Mo ) ek Ixl
2m 0 an €
I'x P

Ix|3
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Tne function G js not Locally integrable in R?, the equation 2.10) is formal,
and the convolution 5s understood in the sense of principal values. We shall

give in the third section a rigorous meaning to equation (2.10), see also

remark 3.1. 0

Let us now return to the B.P.M. algorithm (1.12) to (1.14) , where equa~
tion (1.12) and (1.14) are replaced by (2.10). In the fourth section we show
that, when Ax, = 0 , the discrete approximations converge to the sotution of

the continuous equation
(2.13) (O gtk —— A=0
. 3x3 0

which is referred to in the sequel as the Beam Propagation Method equation

(or B.P.M. equation).

2.2. Comparison with the Helmholtz equation.

In the particular case where the refractive index n(w,x) is independent
of x, i.€. nlw,x) = no(w), the B.P.M. equation (2.13) and the Helmholtz equa-
tion (1.5)-€1.7) have the same soLutions. Indeed the radiation condition at

X, = +o is exactly the argument that leads to the choice of k, in (2.8

in the case where ntw,x) depends on X, the B.P.M. equation is in general
an approximation of Helmholtz equation. One of the avantages of the B.P.M. equa~
tion is that it is an evolution equation, while Helmholtz's equation includes
a boundary condition at x, = 4+ which is more difficult to implement. On the
other hand, the former equation is an envelope equation for a function which
varies slowly, in application, in a range of order Ay = %E , the wave Lenght.
This aLLoﬁs one to take the step of discretization Axa.ofo the order of XA, -
It is also worthwhile to note that, althought a fon Local operator occurs in
the B.P.M. equation, this difficdlty js avoided by using the Fourier transform.
However we must note that this method does not propagate without xs—deformation

the guided modes, which are the non-zero solutions of the equation

N

(2.14) poA+E @ -n)) A=D
&
there n(w,x) = nlw,x, ,X,? i.e. %%- = 0). Indeed these solutions are stationary

- - 3 . - .
solutions of Helmholtz's equation (1.15), but if n Z n, they are not stationary
solutions of the B.P.M. equation. We refer to [1], where we propose a modified

version of the B.P.M.equation, which conserves the solutions of (2.14).



1

Remark 2.2. : The parabolic approximation (1.8) can also be viewed as an appro-

ximation of the B.P.M. equation for small wave numbers. Indeed the expans1on of

6(51,52), for LEE- < 1, gives
k° £2 + 2
A A _ 1 2
2.15) G(E,,E) ~ Gp(gl,gz) = . ,

0

and by replacing G by G in (2.13) we obta1n (1.8). We stress the fact that
the parabolic approx1mat1on is a good approximation of Helmholtz's equation
only for small wave numbers, while the B.P.M. approximate this last equation

for arbitrarily large wave numbers (and is exact for constant refractive index).

See also Remark 3.4. D

3. SOME MATHEMATICAL PROPERTIES OF THE B.P.M. EQUATION.

In this section we give a mathematical framework that aLLows one to prove
existence and uniqueness of a solution to the B.P.M. equation. Then we study
the long time behavior of these solutions and finally the dependence of the

solutions on the refractive index is addressed.

3.1. Existence and uniqueness of solutions to the B.P.M. equation.

To begin with, we make some changes in the notation. We denote by t the

xy-variable because of the evolutionary character of the probLem, and we normal1ze
n2(x, ,x,) = n2
the refractive index function and set qx,,x,) = L 1272 L . Moreover
. 2 n?
. . . 0
we assume, for the sake of simplicity, that n does not depend on x; Cor equi-

valently t), see also Remark 3.2. Finally we denote by u the envelope function

which was denoted A.

Functional setting.

As usual we denote by HS ¢ R?), s € IR, the Sobolev fractional space of

order s on R2(s> Q) :

(3.1 H3CIRY) = {u € L2 R2), J 1 gl 2$|u(g>l2 df < +o }
IR?
where Lr(IRZ), 1< r<+»w , is the space of measurable functions u, defined

on IR?> with values. in £, for which

1
(3.2) hul = ( J Jult oV <o
L CR?) R?
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for 1 < r < =, and for r = + those which are essentially bounded on R? :

(3.3 ful = ess sup luxX)l <« 4o .
(IR x €R

Let k denote a positive number (which has the dimension of a wave number, it
can be for instance the unit in which k is measured), the space H3C IR?) is a

Hilbert space with scalar product

(3.4) Cu,v)_ = I «? + 1EDS G &) &
S 2
(2m 2
R
and norm lul = (u,u)l/2 . The space L2C IR®) is 1dent1f1ed with its antidual

and then H S(lR ) is identified with the antidual of H® CRR®.
We introduce the sesquilinear form

(3.5) aq(u,v) z - E

— 26(;;) S T e dE + i J ,ato ux) T(x) dx
2m) R

IR

where the function G is given in (2.8) and q is a given real valued function with
(3.6) g€ LTCR?), for somer, 2T < 400 .

Let us mention that this last hypothesis on @ js motivated by the fact
that in practice the refractive index, and therefore g, can be discontinuous,

a piecewise constant for example.

It follows readily from the expression (2. 8) of G and the Sobolev inbbe-

dings, H 1/2( R?) C,Lp( R2) for 2 < < 4 with continuous injection, that aq
is continuous on H1/2( R2) x /2( R?). Moreover we have
2 2,1/2 2 1/2
(3.7 * + ky) lvl, + Re aq(v,v) IVH/Z, v veE R (R ,
which shows that a_ is coercive on H1/2(IR2). We introduce the Llinear and conti-
nuous operator from H1/2(1R2) into H-1/2(IR2), Aq, defined by

_ 1/2
(3.8) <AL VM Zqy0 472 T a (v, Vv, EH TCRY .

Wwith this notation, the B.P.M. equation (2.13) reads

du :
- —_— = -
(3.9 P + Aq u=0 , t o



-~

N

13

or equivalently

(3.9)" Qi utqu=0 , t>0 ,

whith the initial condition

(3.1 ul® = u, -

Remark 3.1. : (Continuation of Remark 2.1.) : From (2.11), it follows that

(.11 a, (u,v) = -j kof uvdx -2 kjj (K * y) Vdax +

IR® IR2
v kwBuy W L (K « 4y 3v
J \ ax, " 3x, J , Ix,” dx,
IR iR
where
1[ e"i kolyl
(3.12) (K* w) (x) = — Wlx=-y) =— dy .
| br ] Iyl |
IR .

In opposition whith the equation (2.10) where the convolution was understoad
in the sense of principal values, simce g is not locally integrable, the expres-
sion (3.11) is in term of classical functions since (3.12) is a convolution

with a locally integrable kernel. The conterpart being that now the x-derivatives

of u are involved in (3.11). o

Existence and unigueness.

The continuity and coercivity properties of A , allow one to solve the
problem (3.9)-(3.10) by the classical methods for linear parabolic equations

(see e.g. J.L. Lions and E. Magenes [7], or A. Friedman [5]) :

Proposition 3.1. : for every u,

(3.13) u, € L2CRY ,

the problem (3.9)-(3.10) Possesses a unique solution

&P

(3.14) u € C¢ R, ; L2CIR?)) N L2¢0,T ; H1/2( RV, ¥ T < 4o,

For vector valued distributions we refer to L. Schwartz [8] .
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Moreover

noreove

(3.15) 1 ii—lulz + Re a_(u,u) =0 for a.e. t =0 o
- 2 dt 0 0 V4 7 wCo. .

It witl be usefull to introduce the semi-group notation to represent the
solution u to . 9)-(3.10). Therefore we define a Linear and continuous operator

on LZC IR by

(3.16) e 9 :use 0y Eul® .
The continuity of this operator relies on the fact that (3.15) can

be written as

t 2
(3.17) ] | utx, 01 dxe| J[ ag1” -k A ucg, ol 6 ds = ] u, GOl dx
R? : Ylgl =k, IR?
thus

(3.18) le 9 u l<luld, , ve>0.

Remark 3.2. @ It has been assumed that q does not depend on t. In fact Theorem 3.1
js still valid for time (t) dependent a, for instance for q € LL (IR+; LT CrR2),

2L r <40 O

when the function a is more regular, further regularity results on u can
be obtained. (the fol lowing results are well-known, see [1] for deta1Ls).
recall that W m/FCR?) m€EIN, TS T < +») is the set of elements of L TCRr®

whose distribution derivatives up to the order m are in L "¢ RY.

Proposition 3.2. : For q € W ’m( R2), m > 1 and u € "¢ IR2), there exists 2

constant C which depends only on lgl ,m, « and k  such that
m-1, 2 2= ) —
(R
“Agt ;
(3.19) sup e ul <c ju k. B
m >0 om m 0'm

Remark 3.3. : By the smoothing effect of parab0L1c equation, if g€ wm'” ¢ R

for every m, and u; € L2¢ R2), the solution u is € in 10,4+ x R? . O
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3.2. Some qualitative Properties of the solutions.

Long time behavior of the solutions.

Indeed, Theoren 3.1 hereafter shows that the énergy contained in the wave
numbers larger than k0 is damped and tends to zero. This is due to the fact

the imaginary part of G is positive for 11> k0 (see Fig.2.1.).

Theorem 3.1. - Let u, be given in LZ(IRZ), and let u be the solution to the

B.p.M. equation ; ywith Q satisfying (3.6). Then
~ath 22 =lying ~en

2
(3.20) Lim j G-k 8,00 g =g
t > 4o |£'> ko .
Proof : Let us first assume that u, € H1 Ry, According to (3.17) the function ¢

ot =f Qe - k"2 18,00 12 g
HE
belongs to L(0,+w). Since u, € H'( R?), the function g% is also a solution to
the B.P.M. equation with initial condition - Aq u, € L2¢ IR2), Therefore the

function

A
s =[ agl® - k2y172 129 6,0 12 g
HES

belongs also to L1€0,+<) . 0n the other hand

d¢ _ 2 _ 20172 5 30
Ft (t) = 2 Re f el ko) u 3% dg

ler >k,

and thanks to the Cauchy-Schwarz inequality,
13% () | < ¢Ct) + yee)

hence g%-e L1€0,%). Since ¢ € L10,=), (3.20) follows. In the general case,
i.e. when u € L2¢ IR?), by the smoothing effect uCt ) € H'( R?) for every t > g

and the previoys proof applies again. o

Remark 3.4. : This decay pbroperty is not satisfied by the parabolic approximation

2

j IEP 18,0 1% dE remain
IR?

constant in time. Thig also show that this approximation of Helmholt: equation

(1.8) since for their solutions J . lG(E,t)l2 d€ and
' IR

is not realistic for Llarge wave numbers, o
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pependence of the solutions on the index 4.

We are given two functions d;, G, with ¢3.20) a,, G, e L"C R?) for some r,
2 £ r <t The following results shows that the solution to the B.P.M. eguation
depends continuously on the function a. 1t will be usefull for proving the con~

vergence of the algorithm in the case of a non smooth refractive index. for

jts proof we refer to [1]-

Theorem 3.2- For every T, 0 < T <=, there exists a constant c(T) which

depends only on K, Kg and T such that, for every u, e LZCRY),

-i Aq t =i A t
(3.21) sup le 1ou- e Ay l, < CM lay ~ 9 | Iyl »
C0<t<T _ L CR®
T "'.1 Aq t "'"i Aq t 2 .
(3.22) [ le Lu, — e 2 u°l1,2dt <cmla -9, | o |%lo. a
0 L CIR)

4. CONVERGENCE OF THE SPLITTING ALGORITHM.

We study first a two step algorithm very simitar to (1.12)-(1.14) in order
to avoid technicalities. The convergence js obtained for smooth refractive index
(q € wi’ZC R?)) and then extended to non smooth ones (a € L"C R N ¢ IR?) for
some r, 2 < r <+ y. Finally we state the convergence result for the original
algorithm. The proofs are based on technics similar to that of J.T. Beale
and A. Majda [21- (Concerning general results on splitting algorithms, we refer

to R. Temam [101).

A two step algorithm.

" We are given T, 0< T<®and u, € H1/2(lR2). We wish to approximate
equation (2.13) by the following procedure. For N> 1, we set T F %ﬁ and

initialize the scheme by taking

4.1 W =u -

We suppose that the u2k (= ulk T))are known for 0< k<m and we compute

u2m+1 by

(4.2) %% + AW E 0, onl0,T 1
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(4.3) W) = "
(4.4) w2 - Wit) = ¢ Ao u2m .
Then we compute u2m+2 by

(4.5) g% t+igv=0, on (0,71 ,
(4.6 vid) = u2m+1 ’,
4.7 u2m+2 = vim) = e_iqT u2m+1 .
Convergen

ce_in the case of a smooth refractive index.

We have the following convergence result.

Theofem 4.1. : Under the assumption that

(4.8) - 9 € ul"®¢ r2)

’

o
there exists a constant C independent of T and N such that for every u € H2(IR2),

-A mT n

4.9 TR o lul, -
0<m<N

Proof. From (4.1), (4.4) and (4.6) we have

2m -A mT

@10 wme 9y = (79T AT~ UtiarT }u

The difference of the two Operators appearing in the right hand side of .10
is equal to .
‘m=1 . . -A =A kT
G I 71 ATk migr AT TAGT q
k=0 At

. . =i
and since the semi~groups e 9t and e

contract in L*C R?) (see (3.18))

, wWe
deduce that
' A nT m=1 s _ -A T
(4.12) lu2m - e u l < x | (9T e Aot _ e 9y |
0 _ k o -~
k=0
-A kT
where v, = e d Uy -
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We claim that for v € H2( R%) ,

o Cen
a3y e At Tt e Aoty | | <R e lvl, , YE20

where % depends on d, Kr Ko but not on t and V. Then (4.9) is a simple conseguence

of (4.12), (4.13) and (3.19), which applies since @ € w1'“( IR?). The Theorenm

js proved.
it remains to show (&4.13). We set (see (4.2))

-1 - - +1
iat Aot |, - e (A +iadt

(4.14) §Ct) = e_iqt wit) — ult) = e v

for v € H2GR?) and q € N1'w( R2). According to (3.19)6, m=0,1, 2, there
exists a constant Co(q) such that

2 -A t
(4.15) S e @ yl <@ Ivl, , VEZO0 -

kK o 2

k=0

Using this property with g and g = 0, it follows that there exists Cl(q) such that
2 dku dk
(4.16) T () =g + —"‘{ w1 <c @
k=0 dt dt

therefore there exists Cz(q) such that

, d2s <
4.17) sup | — ) | < ¢, (@
t>0 dt?

since 6¢0) and §(0) vanish, (4.13) follows from (4.17) thanks to Taylor's

formula at t = 0.

convergence for non smooth refractive index.

As mentionned previously, the refractive index can be discontinuous,

piecewise constant for example. In what follows we consider the case where the

o0
(strong) hypothesis d =3 w1' is relaxed. More precisely we assume that

(4.18) A g€ L"CRD N LTCRD

for some r, 2 <7 < 4o
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Theorem 4.2. : Under the previous hypotheses on g, and with the notation of

Theorem 4.1.,

~A_mT
(4.19) tin  sup 14 -e 9y =0. o
N>+0  O<p<N

We are going to sketch briefly the main steps of the proof of this result

(the details are given in [1]1), but first we make the following remark.

Remark 4.1. : In the caseof a smooth refractive index the convergence was

shown to be of order 1 (0( %-)). The cdnvergence obtained in Theorem 4.2 has

no order of convergence. ©

Sketch of the proof of Theorem 4.2. We introduce a regularized family

{ 9 }s > g Which satisfies
a € W CRS) N LT RY) ,
(4.20) sup lq_| < 4o ,

>0 © L"CRY)

q_ converges to q in L"CR?) as € » 0.

‘Let u be given in H2( IR?), denote by

-A mt
(4.21) 5 =u® - ¢ u,

and note that it is the sum of the three terms :

-(A°+iq€)mT -(A°+iq)mT
(4.22) 6; = (e -e ) ouy
n=1  igr -a Tym=k=1 _ -iqT =~A,T
(4.23) §2= 5 (9 7R (e 19T TReT _
k=0
-ig_T =A,T —(A,+ig_Jdkt
- e € e ) e € Uo
rd
m=1 s _ Lo -ig_t1 _,.
(4.24) 62 = 5 (19T TRk (e AT
k=0

-(A0+iq€)r -(A°+iqe)kr
. )Y e u .
0

- e

The term (4.22) is estimated thanks to Theorem 3.2., equ.(3.21). The two terms
(4.23) and (4.24) are bounded by the method we have used for (4.11). Then (4.20)
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allows us to conclude the proof of (4.19). 0

convergence of the B.P.M. algorithm.

We finish this section by giving a result of convergence for the B.P.M.
algorithm (1.12)-(1.14). Let us point out that this algorithm is totally simi-
Lar to the one in two steps (4.1)-(4.6) analyzed previously. It differs only
in that the 0.D.E. step (4.5) is integrated on [0, I—] in the B.P.M. algorithm
instead of on [0,T 1 as in the two steps method. From a computational point of

view they are almost identical.

We note that if we set T = é%-then the solution of one integration of the

B.P.M. algorithm (3 steps = T, 2t, T) with initialization u, reads in concise
=AyT e-ZiqT e PoT y

notation : e 0"

Theorem 4.3. : Under the assumption that

(4.25) qe wWrTIRY

ny
there exists a constant C(T), independent of N such that for every u, € H3( R®),

_ s _ _ +i
AT o 21qT e AgTyMy - o 2CA, igQ)mt u | <

(4.26) sup | (e 0°) Uy )

0<m<N
¥ M

N2

=

lugt, -

The proof of this result is very similar to that of Theorem &4.2.; there-
fore, we omit it. The order of convergence is improved (order 2). We can say

that the B.P.M. algorithm is consistent with the B.P.M. equation.

5. REMARKS IN THE NONLINEAR CASE.

It has been assumed previously that the refractive index, besides its
dependence on w, X = (xl,xz) and t, was independent of the electric field.
For certain media this is not a good approximation and one must take into
account the influence of the electric field (autoinfluence). By pnysical
arguments (objectivity of the refractive index) it can be show that the refrac-
tive index depends only on the intensity of the beam, which is proportional to

the square of the norm of the electric field. A first order expansion reads
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G.D

NWE) = n ) + n,w fg?

where # means proportional and e is the sign of n,.

The corresponding Helmholtz

equation (known as the Helmholtz equation
in a Kerr-type medium) reads
2 2 a2 2
(5.3) LE_+£+§~E +&(n§+%n2,E,2)E=Q ,
32x? ij ax32 c?

this equation is solved numerically py

the B.p.m
where (1.13) is replaced by

- algorithm (1.12)—(1.14)

(5.4) -2ik A,
0
Bx3 c?

which is again an explicit 0.D.E.

With the notations of Sections 3 ang 4,
equation

(5.5) du

(note that y hag been renormalized in order to keep € = £1)_

Theorem 5.1. : fop EVEry Uy € L2CIRY), there

exists a function y
———SEX15ts a function
.7 SELTOR, G L2CRY) 0 2 r HY2CRD), v 1 < e

solution of (5.5)-(5.6)
=L aron or

o]
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This result shows that the nonlinear B.P.-M. equation possesses a gLobaL
weak solution (i.e. in the distribution sense) . We do not know whether this
solution js unique OT even more regular fort >0 (see also proposition 5.1
and Theorem 5.2. below). The proof of Theorem 5.1. is based on standard energy
and compactness methods (617, Ve refer to (11 for the details. Let us simply
nention that if u catisfies (5.5) and (5.7), then Qd-‘t‘-e L1¢o,T; L CRD) #

L 20,7 W ECR, VT < w, and (5-6) makes sense - °

Concerning the uniqueness of solutions of the B.P.M. equation we have

the

proposition 5.1. e exists at most one solution u

: Ther

(5.8) UuE€ L°€0,7 W2 R2y 0 L2O,T WICRZ)), VT <+

of (5.5)-(5.6)- ©

pue to sobolev imbeddings, if u satisfies (5.5) and (5.8), then
9‘d-“t-e L2¢Q,T ; LZCIRR), VT < # 1t follows (71 that

(5.9 seca; W2 Rz L2 (T R2)

for every interval I of R, -

Functions U satisfying (5.5) and (5.9) are catled strong solutions on 1
of the nonlinear B.P.M. equation. According to proposition 5.1. there exists
at most one strong solution to this equation. concerning their existence, we
are going to state a resutt (Theorem 5.2.), which shows that, for small u,
in H1/2(IR2), there exists 8 (unique) global strong soLutioh (i.e. for which
I =lR+) to the nontinear B.P.M. equation. and for ahbitrarily large U, s there
exists TCuy) > (0 and a (unique) strong solution on 1 = [0, TC,) 1 to the
nonLineér B.P.M. equation. The proof of these results are slighty technical

put classic, We refer to [11 for the details-

Theorem 5.2. (i) There exists 2 constant K depending on ¥ Eﬂg_ko such that

for every u, € H1/2(lR2),

(5.10) <K, o

luglq/2



23

the nonlinear B.P.M. equation (5.5)-(5.6) possesses a unique strong solution

on R, .
(ii) For given 8§ > 0 and

(5.11 u, € HOCRY

there exists a positive real number TG = T6(|u0H+G)such that the nonlinear

B.P.M. equation possesses a unique strong solution on [O’TG]' Moreover

146

(5.12) ue ([O’TG] ; H CR?) N LZ([O,T6] ; H (R*») . o

Remark 5.1. : (i) We know neither part (i) of this result is still valid
for arbitrarily large u; € H1/2( IR?) nor whether the solution obtained in part

(ii) exists for arbitrarily large time, t.

(ii) Concerning hypothesis (5.11), we recall that H1+6(IR2).is an

algebra for § > 0, and this allows us to prove the following estimate for

lul1+6 where u denotes the solution to (5.5) :

L B R T 2 )
(5.13) > g5 Yly4s u%/2+6 < mlul1+6+ cé'“’1+6 ,

where m and C6 are constants which do not depend on u or u,- By comparison with
the 0.D.E.
91: + 2
9t 2my + 2 C6 y
(5.14)
2
Y(O) = |U0|1+(S

we obtain the following a priori esfimate on [0, T6 |
1. 1 m
TsCluplyy g = 5 Log ‘z* 2 ¢, lu, I’ >
§ 70 14§
2 m
< < —
(5.15) Iu(t)l1 ‘s y (t) Cg ,

hence the result . ©
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