archives-ouvertes

A survey on attribute grammars.Part I main results on
attribute grammars

Pierre Deransart, Martin Jourdan, Bernard Lorho

» To cite this version:

Pierre Deransart, Martin Jourdan, Bernard Lorho. A survey on attribute grammars.Part I main
results on attribute grammars. [Research Report] RR-0485, INRIA. 1986. inria-00076069

HAL Id: inria-00076069
https://hal.inria.fr /inria-00076069
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00076069
https://hal.archives-ouvertes.fr

T BEAASIRET) A WA RAREII AT YRV

Rapports de Recherche

N° 485

A SURVEY ON
ATTRIBUTE GRAMMARS

PART 1
MAIN RESULTS ON
ATTRIBUTE GRAMMARS

Pierre DERANSART
Martin JOURDAN
Bernard LORHO

Hnsimm
de |

enl
_'1@’&; €en |@1@

e de\oluceau
R@@@uenccaurt |
IPT@EJ - '

3 LeChesnay Ce

Francee _
Tél. < (1) 396385.11

Janvier 1986

T e T A T T R T

Pierre DERANSART, Martin JOURDAN, Bernard LORHO !

INRIA-ROCQUENCOURT
: BP 105
78153 LE CHESNAY Cedex France

A SURVEY ON ATTRIBUTE GRAMMARS

Part I : Main Results on Attribute Grammars

Abstract: This paper is the first part of a Survey on Attribute

Grammars consisting of three parts :

- Main results on Attribute Grammars
- Review of Existing Systems
- Classified Bibliography.

Key VVo:t'ds:k Attribute Grammars, Evaluation, Semantics

Résumé: Cet article est la premiére partie d’'une étud
Grammaires Attribuées qui comporte trois parties:

- Principaux Résultats sur les Grammaires Attribuées
- Revue des Systémes Existants

- Bibliographie Classée

Mots-clé: Grammaires Attribuées, Evaluation, Sémantique

1 Also at Université d’Orléans, Laboratoire .d’Informa.tiqﬁe, 45046
Cedex France

e sur les

ORLEANS

0. INTRODUCTION

This report gives an introduction to attribute grammars and a
synthesis in this topic. '

We shall show that the application domains of attribute grammars
are growing. But the question of automatically constructing efficient
evaluators remains the most important one, especially if we consider
that attribute grammars may not only be a theoretical but also a
practical model for programming. This is why we shall devote special
interest to the complexity analysis of evaluators for special subclasses of
attribute grammars.

We shall use a characterization introduced by Engelfriet [Eng84]
and Barbar [Bar82] based on partial orders between attributes. The
classification of attribute grammars obtained in this way seems to be the
most valuable one and it relies on simple characterizations. This
simplicity widely disappears when decomposing attribute grammars
evaluable in phases: we shall then use Engelfriet and Filé approach
[EF80a), though a characterization by orders is still possible [RS77]. The
advantage of such a representation is that the results do not depend on
a special application, i.e. if they were designed for the construction of
efficient attribute evaluators, their extension to other applications is
direct within this formalism.

Sections 1 to-4 present a classification of attribute grammars and
the main results about the complexity of membership test and of
evaluators built up for each category.

Section 5 deals with the question of the space needed during the
evaluation process: we first give standards to be able to compare
different systems, and then the most important results.

Section 6 is an introduction to the characterization of attribute
grammars from a more theoretical point of view. Two approaches are
presented using tree transductions and program schemes. These
characterizations lead to results about complexity of attribute
computation, about programs equivalence, and comparison of expression
power.

Such a study allows to situate the attribute grammars approach
among the numerous tools involved in the programming activity, but
also helps in evaluating the ability of existing systems to solve some
applications. The characterization in terms of program schemes is
essential as long as the theoretical results obtained in that field may be
de facto applicable to schemes defining attribute grammars and
conversely. '

N D PAPIER RECUPERE ET RECYCLE

Notations -38-

1. NOTATIONS

We introduce here the usual definition of attribute grammars
[Knu68] and present their semantics in an informal manner.

Let G = {N,T,P,Z} be a context free grammar. Each production
rule p in P can be written:

p:Xo—-»Xle...an

with X; € N if we forgetv about terminal symbols.
~An attribute grammar (AG) consists of an attribute system
assoc1ated to the underlying context free grammar G. For each non-

terminal symbol X € N, we associate two finite sets Ink (X) and Syn (X)
of symbols, the Inherited and Synthesized attributes.

These sets verify:

for all X,Y € N, Ink (X) N Syn (Y) = ¢

We note Attr (X) = Inh (X) U Syn (X), Inh = Uy Inh (X), Syn =
Ugen Syn (X), Attr = Inh U Syn.

An attribute a associated in position i with the symbol Y is an
attribute occurrence and is noted a(i)%

For each production p we give a set of semantic rules defining the
computation of the elements of Syn (X,) and Inh (Xj) for1<j<mn in

terms of the elements of Attr (X)) for0<i<n :
a’(l) pa’l((1)’ e a’k(ik))
fori=0and a € Syn (Xy),1 <i<n, anda€ Ink(X)

We note W(p) the set of all the attribute occurrences in production

W(p) = {a(i) |a € Attr (X) ,0<i<n}

The semantic rules induce on W(p) an order of computation called
relation of local dependencies D(p) so defined:

b(j) D(p) a(i) <==> b(j) appears in a(i) definition
The graph of local dependencies in production p is the graph of

relation D(p). When no confusion is possible between the notions of
relation and graph, we shall use the same notation for both.

We note R the transitive closure of relation R (or graph R). If the
graph R is cycle free, R is a partial order.

2 We note a¥i instead of a(i) in the examples in order to emphasize the non-
terminal symbol Y associated to a, and to make reading easier.

wd- ' : Notations

An attribute grammar is in Normal Form or normalized if and only
if the semantic rules use

Inh (X,) and Syn (Xj) for1<j<nm,
instead of
Attr (Xi) for0<i< n,
i.e. they use only attributes defined outside production p.

Every attribute grammar can be put in Normal Form by means of a
simple transformation of the semantic definitions if the relations D(p)
are cycle free.

In the sequel, we shall consider only normalized attribute grammars
even if this is not required for all the definitions and results except when
especially stated. But the normalization makes examples and proofs
easier. Some characterizations are more difficult to define without this
hypothesis. In fact, if the attribute grammar is normalized, D(p)
cycle free and any path has a length of 1.

Let t be a derivation tree of G. We note R,(t) the graph of

compound dependencies obtained by pasting together the graphs D(p)
corresponding to each rule belonging to the tree. This graph may
contain cycles: in that case, it will be called circular.

If we consider a tree t with root X, the relation R (t) induces on
Attr (X)) a relation noted sd,(X,) (for synthesized dependencies induced
by the tree t derived from Xo). This relation is a partial order and its
arcs come from Inh (X) to Syn (X)) if the attribute grammar is in
Normal Form.

If u is a node of t, we call sort (u) the non-terminal symbol root of
the subtree hanging from u and label (u) the production rule p applied

to the root of that subtree. We shall generalize here the notation taken
for a rule by putting together in X, the name of the non-terminal (X
and its position (u) in the tree t. Nodes can be numbered “3 la Dewey”
in a way such that if a production p

p:X, X X, .. X,

P
is instantiated at node u (label (u) = p), X, takes the position u (X
and its sons positions ui (X;, 1 <i<n o)

If we consider a node u the sort of which is X (u € node (t), the set
of nodes of t), and if we remove the entire subtree hanging from u
(except u itself), the relation Ry(t) induces by transitive closure a

partial order on Attr (X), noted id,(X,) (for inherited dependencxes
induced by the context of X).

Notations -5-

Giving a rule p instantiated at the node u of a tree t, the relation :
id (X)) Usd (X ;) U ..U Sdt(xun) U D (p)

defines the dependency order® to be obeyed during computation of the
attributes W(p), where D_(p) and W (p) denotes the instances of D(p)

and W(p) at node u for rule p. v
It is worth noticing that, given a tree t, the relations sd can be
computed during one bottom-up visit of t, but the computation of the
relations ¢d-in one top-down visit requires the knowledge of sdt. _
We note IO(X) (Input/ Output relation) (resp. OI(X)
(Output/Input relation)) the union of all the relations sd(X) (resp.-
id(X)) on any tree derived from X (for any context of X).

Let :
I0(X)= U,sd,(X), for t the root of which is X

OI(X)= u,id,(X), for including a subtree the root of
which is X. '

All the trees we consider here are terminal trees the leaves of which
are terminal symbols.

We note W(t) the set of all attribute occurrences a(u) in the tree t.
W(t) may be considered as the set of the varzables to which the
evaluation process must assign a value.

In the sequel, many relations noted R(X) will be defined on Attr
(X). They will be partial orders. If an explicit total order is required, it
will be noted T(X). In such a case, the dependency relation built up in t
can be widened to a total order noted T(t). It is obvious that R(t) (or
T(t)) figures out the order to be followed for computing the values of
the variables in W(t). :

1.1. Example |

The following example exhibits all previous definitions through the
conversion of a bit string into its decimal value (the original example
[Knu68))

3 That order is not necessarily a partial order as cycles may occur.

4 This remark shows that the notions of snherited and synthesized are not exactly
symmetrical as the relation id depends on sd but not the reverse.

-6- Notations

G = {N,T,P,Z}

N = {Z, BIN, BIT}
T ={0,1,.}

P = {Z ::= BIN . BIN
BIN ::= BIN BIT

BIN ::= empty
BIT =0
- BIT == 1}

Attr = {r,},v} Inh = {r} Syn = {l,v}
where

vX is the decimal value of the string derived from X,
; X is the length of the string derived from X,

rX is the rank of the rightmost bit of the string derived
from X.
Attr (Z) = {v} Attr (BIN) = {r,v} Attr (BIT) =

{r.v}

Notations

Attribute definitions _

(The decimal value of a bit string is the sum of powers of 2
corresponding to rank of bits 1) :

p;: “Z = BIN . BIN

j BIN ::= BIN BIT
¢BINg — yBINy 4 BIT
lBINO = lBINI +1
(BIT _ /BINg
BN} = BNp 4 1¢
] BIN ::= empty
vBIN — ¢

lBIN=0

P, BIT =:=1

Pt BIT =0

-8- . Notations

Local dependency graphs:

Py '
Z —v
A_ BIN_v{_}BIN}l& |

Py
1 BIN__v__1
14_ 1 r—BIT__v
Pg Py Pg:
o T___ BIN_v_l -r__BIT _v —1r—_BIT _v
p/‘f

Compound dependency graph for the string 10.01

Notations

Relations I0(X), OI(X) for X € { Z, BIN, BIT}

10(Z) =v o1(Z) =v
IO(BIN) =z _y I OI(BIN)=r v |

IO(BIT) = Ty OI(BIT) =r v

-9-

-10- Attribute Evaluation

2. ATTRIBUTE EVALUATION

Now, we are going to define the problem of attribute computation
and, more precisely, the criteria for estimating the time efficiency of an
evaluator.

The main problem to be solved as efficiently as possible is to
compute the values of unknowns W(t) for a given tree t. This operation
is called tree decoration in [Lor74] and corresponds to what is commonly
called attribute evaluation. A first step towards the solution is reached
when an-evaluation order is found, i.e. a total order T(t) of unknowns
W (t) compatible with R(t), i.e. R(t) C T(t).

The first class of attribute grammars introduced in the literature by
Knuth [Knu68] concerns AGs for which this order always exists for a
given tree:

2.1. Definition:

An ‘attribute grammar is well-formed or non circular if and only if,
for every tree t, R(t) is cycle free.

From this definition comes the following property:

2.2. Property:

For every tree t, there exists an evaluation order if and only if the
attribute grammar is well-formed.

The well-formedness property can be statically tested for any AG.
It was proved [JORT75b, JonS80, Jaz81] that this test is intrinsically
exponential in time and space. Fortunately, at least in the meta-
compilation framework, this test can be done with an acceptable
efficiency through numerous optimizations, without changing the worst
case complexity [RS82a, DJL84]. In the sequel of this chapter, we shall
consider only well-formed attribute grammars.

If the result of the test guarantees that an evaluation order can
always be found, this order must be determined dynamically.
Computation of semantic functions must be done according to this
order. :

In practice, the two steps are often done in parallel, but it is better
to differentiate them:

1: Plan butlding: corresponds to the construction of an
evaluation order T(t)®

5 The notion of plan is only given here to help in fixing ideas. One can talk of plan
only when the graph associated with R(t) relation is ezplicstly built, and this is usually

Attribute Evaluation -11-

2: Attribute computation: corresponds to a call to the previ-
‘ously built evaluator in order to assign values to the vari-
ables in W(t).

An immediate consequence stems from the distinction we
introduced: there are two ways of following a plan T(t): starting from
minimal elements or from maximal ones in the relation. So we note:

W ;. (t) the minimal elements
W . (t) the maximal ones.
We immediately obtain two different classes of evaluators:

1. Evaluators that start by assigning values to variables in
W ., (t): we call them bottom-up or data driven evaluators.

-2. Evaluators that first consider variables in W, (t) (or,

at least, a subset of them): we call them top-down or
demand driven evaluators.

An important advantage of top-down evaluators comes from the
fact that it is possible to choose a subset of W, (t), let W, _ . (t) €

W (t), which is, in general, the set of all the synthesized attributes of
the axiom.

In such an approach, it is possible to distinguish, among the
variables, the useful ones, i.e. the variables actually involved in the

computation of
W arget (t) from variables in dead-ends. We shall note:

UsefulR (t) C W(t) the set of variables on which variables
in W, . (t) depend in R(t).

Dead-endsR (t) = W(t) - UsefulR (t).

We can say that an evaluator is time-optimal iff it computes only
once UsefulR ;(t) where R,(t) is the partial order relation obtained

through local dependencies.

It is worth noticing that this criterion is extremely severe, but it
induces the advantage to clearly fix ideas and helps in comparing
existing systems. In fact, many authors use as a criterion, either the "
computation without any repetition of W(t) or of UsefulR (t) for a
relation R larger than R, or a criterion of linearity in W(t) or UsefulR

(t) but relaxing the non repetition constraint. We must be very careful
in the criterion actually used.

not the case.

-12- Attribute Evaluation

With the help of our criterion, we immediately observe that only
top-down evaluators using relation R (t) can be optimal in time, but we

shall see that, in practice, for reasons connected to the exponential
nature of the non-circularity test, except in an incremental context,
R,(t) cannot be used. It turns out that, in practice, the advantage of the

top-down approach is not essential over the bottom-up one, according to
this criterion [Kav84]. If not essential, this advantage remains in the fact
that a top-down evaluator can introduce dynamic optimizations by
avoiding, for example, computation of attributes in useless branches of
conditional statements. We call them semantic dead-ends as opposed to
static dead-ends which are Dead-endsR(t); the former are determined by
the control flow of semantic rules.

To have an idea of our way of understanding the time efficiency of
an evaluator, we must keep in mind that the evaluator is part of a
compiler and that its practical efficiency is fundamental for actual
applications. If it is possible to know its theoretical complexity (for
instance, linear in W(t) size), we may be not satisfied with that. If we
consider that semantic functions are time consuming, it is necessary to
know the linearity factor. If we consider (and it will be the case in the
sequel) that each semantic function runs in a duration equal to one time
unit, this factor is to be one.

We must not forget that an evaluation is composed of two parts
(we considered until now only the second one, the evaluation phase),
and that the first one is built, in fact, of two sub-steps:

1) building a plan,
2) optimizing the plan size.

If both sub-steps are done during evaluation, (they can be combined
in some cases), their duration is to be added to the evaluation time.
First subtask cannot be avoided. The second one is devoted to optimize
the global size of the evaluation process, and this reduction plays
practically an important role on the evaluation time. Some semantic
functions, for instance definitions restricted to identities between
variables, can be eliminated in the second substep, and decrease in an
important manner the evaluation time.

Despite that, - we shall examine the problem of plan size
optimization and its consequences over evaluation in section 5. We
conclude this part by a remark on plan construction time.

The most interesting solution consists in doing nothing during
evaluation! Those systems that explicitly build R,(t) during evaluation
are not efficient in practice (see for instance the system DELTA

[Lor74]). The first idea that comes to mind is to avoid such a
construction by statically finding (during evaluator construction) a total

Attribute Evaluation -13-

order T over attribute occurrences, able to cover any relation R(t). If
this is possible, we say that the attribute grammar is l-ordered and this
fact necessitates to iniroduce new dependencies and may oblige to
compute UsefulT (t) whose cardinal is larger than that of UsefulR ,(t).

This strategy illustrates the way new attribute grammars classes
were introduced in order to improve the practical efficiency of
evaluators. Theoretical and practical studies lead to define numerous
categories (see the following section). Those categories are based on the
plan structure, i.e. on some properties of order relations, and this fact
induces the kind of evaluator that can be built for each of them. All
known evaluators belong to one of these classes described in sections 3
and 4. Some categories do not correspond to any known evaluator and
can be considered as the starting point of new ideas in the conception of
yet more efficient evaluators.

2.3. Example (example 1.1 continued)

The attributes of a given non-terminal symbol can always be
evaluated in the same order, for any tree :
T(N)=IO(N) UOI(N)= v I

p—

T(B)=IO(B) U OI(B)= r_ v

~—
For instance, in rule p,, the following order can be obeyed for any
context where this rule can be instantiated:

-14- Attribute Evaluation

Continuous arrows : D(p)

" Dotted arrows : dependencies induced by the context =
T(X) L

A total order is the following one:

],Nl INO rNO rB vB er le VNO '

if we are interested in evaluating all the attributes in any tree t. Note
that, for the string 10.01 given as an example, the value of IN in the left

subtree is not needed for computing vZ, the only interesting value. There
are also many other dead-ends.

We conclude this section by giving in the following figure useful
criteria for estimating the practical efficiency (and, maybe, the
theoretical efficiency) of an evaluator.

2.4. Criteria

Criteria for time efficiency of an evaluator (each semantic action is
supposed to be done in one time unit, the attribute grammar being
normalized) :

- difference from UsefulR ,(t) (number of calls to semantic
functions), i.e. number of attribute instances evaluated.

- time to build the plan. _

- time to optimize the plan size (see section 5).

Attribute Evaluation

" - effective global time and space of attribute evaluation
process.

-15-

-16- . General Classification of Attribute Grammars

L

3. GENERAL CLASSIFICATION OF ATTRIBUTE
GRAMMARS

In this section, we study different possible plans, the complexity of
problems connected to their construction and the time and space
efficiency of evaluators that can be built for some attribute grammars
classes. But it is out of the scope of this paper to study in every detail
each evaluator and the implementations they lead to. A more complete
discussion about this question can be found in [Eng84].

3.1. Purely synthesized AGs

The second class of attribute grammar introduced in Knuth’s
original paper is that of purely synthesized AGs, or, in short, pure-S-
AGs.

3.1.1. Definitions F

An AG is pure-S iff Inh = ¢. In the same manner, we say that an
AG is purely inherited (pure-I) iff Syn = ¢.

If symmetric definitions seem to characterize pure-S and pure-I
attribute grammars, only the pure-S ones play a theoretical and
practical role. In fact, pure-S have the same power as Turing machines
(this result will be recalled in section 6), and the evaluation order is
intrinsic to the AG: it does not need to be dynamically constructed. In
fact, a time optimal system can be built that combines syntactic and
semantic analysis (suboptimal bottom-up evaluator (linear in W(t)) or
optimal top-down one that can be combined with a bottom-up or a top-
down parsing method). We immediately see that such an evaluator can
be optimized in space and time. :

It is useful noticing that in a pure-S AG, every (synthesized)
attribute can be considered as a recursive functlon defined over the tree
t (they are primitive recursive schemes, see section 6). Therefore, it is
easy to produce, from a pure-S AG, a top-down evaluator defined by
recursive functions with only one argument (the tree t), whose result is
precisely the value of the attribute(s) of its root.

This remark allows us to introduce the notion of static and dynamic
size of the evaluator. By static size, we have in mind the size of the
evaluator as it &5 constructed , i.e. the size of code and data of the
constructed program. By dynamic size, we intend the size of information
added to the tree t and to the set of variables W(t) Of course the size is
the sum of the static and dynamic sizes.

In order to illustrate these notions, let us note that a recursive
evaluator for a pure-S AG has a static size proportional to the AG size

General Classification of Attribute Grammars ' -17-

and a dynamic size corresponding to t plus its recursive calls stack
whose height is that of the tree t. There is no need to keep W(t), but, in
such a case, the evaluation has an exponential complexity, as shown in
the following example:

3.1.2.

Example
(tree t is given as a parenthesized expression)

Py:i—2Z-58 P, ~X— 8;— 8,— Py 8, —8,
f]\ \ f, f, T a, Ta.2
- 1.__52) A} !

X8 X—-sl-—— 8,

g

The recursive functions aré the following ones:
value (p, (t))=f(value o1 (t) ,values2 (t))
va,luea1 (p,(t))=f, (va,lue81 (t) ,va.lue,!2 (t)
va,luet12 (py(t))=f,(value - (t) ,value32 (t)
values1 (p3)=a,

v-aluesz(p3)=a2

If no result is stored, the time complexity of values(t) computation is

exponential in tree height (O(4") if n is this height, O(2™) if m =
card(W(t))) : we are far from a time optimal evaluator!

By opposition, if intermediate results are kept, or if functions are
organized to compute all the synthesized attributes in one call, we find
again the time optimality in the case where all the attributes are useful.

For instance, with the evaluator :

values(pl(t))=f(valu'e'31 ” (t))

valgeslsz(p2 (t) =g(va,luesl ‘2(t))

-18- General Classification of Attribute Grammars

va.lueslsz(ps(t))=<a,l,a2> .
where value, . is a function defined on a pair of values with
8(<x,y>)=<f, (x,5) f,(x,y)>

the evaluator becomes time optimal and the dynamic size is limited to t
plus the execution stack size.

This example was described in some details in order to emphasize
size efficiency criteria for an evaluator; they are summarized in the
following figure :

3.1.3. Criteria

Size efficiency criteria for an evaluator
- static size (size of code and data)

- dynamic size (size of manipulated data in term of t and
W(t)).

To be complete, it would be necessary to take into account the
complezity of evaluator construction. But we can observe that it is the
same, in time, as the membership test to a class, and that, in space, it is
of the same order as the static size of the evaluator or that of the

membership testS.

- 3.2. l-o.rdere'd AGs

Going back to the analysis of attribute grammars, we see that the
pure-S AGs class is too restrictive in practice: it does not allow to
transport information over the tree in any order. But we must keep in
mind that this class of AGs avoids the dynamic building of a plan and
we are going to characterize the largest possible class that obeys that
condition, the l-ordered class.

® That comes from the fact that the membership test is a constructive method and
-Temains the most complex part of the construction ‘process which is done before any
use.

General Classification of Attribute Grammars -19-

3.2.1. Definition

An attribute grammar is [-ordered iff there exists a family of total
orders {T(X)} for X € N such that

Foranyp € P, T(X,) UT(X;) U ... U T(an) U D(p) = T(p)
is cycle free.

If an AG is l-ordered, for every tree t, T(t) obtained by combining
the orders T(p) is an evaluation order. : '

This property follows trivially from others stated in [Eng84]. It
turns out that the attribute evaluation order (in a bottom-up way) is
known at evaluator construction time. One can program the evaluator
as sequences of computations including calls to visit subtrees of nodes in
right parts, or calls to visit the context. Such sequences are called
visiting-sequences in [Kas80, Eng84] and are associated. to each

production. :
l:

3.2.2. Example (continuation)

The visiting-sequence associated to rule p, is the same as that given
in §2.3 augmented by the calls to visit the sons and the father:

- visit(i,X) is a call to execute the i-th visit of the subtree
rooted X

- finish(i,X) is a call to go on the context visit

- compute(a,X) is a call to compute aX,

The sequence
N1 N0 rNo B vB N1 vN1 vNO (see §2.3.)
is reduced to 2 phgses of visits and computations : (for rule D,)
visit(1,N,):visit(1,N,) compute(l,N,);finish (1,N).
visit(2,N) :compute(r,B);visit(1,B);compute(r,N,);
visit(2,N,);compute(v,N,);finish(2,N)

The visiting-sequence does not describe the computations done
outside of rule p,, but as soon as a visit is finished (for instance, when

visit(2,N,) is complete) all the values needed for the immediately
following computation (here compute(v,N,)) are known.

-20- General Classification of Attribute Grammars

It is clear that one can build efficient evaluators for such a category
: a finite automaton directed by the visiting-sequences and a push-down
stack for recursive calls to visits (whose height is at most that of tree t)
are appropriate tools for the computation of variables in W(t).

The evaluator is bottom-up (not time optimal but linear in W(t)
size, without computation repetition) and it looses no time in
elaborating a plan. Its static size is obviously linear in the AG size
(visiting-sequences size); its dynamic size, by opposition, uses t, all
variables in W(t) which are kept in the tree t and a stack as stated
before.

The evaluator construction must carry out the membership test.
Definition 3.2.1 shows that it is easy to check, by means of transitive
closure of T(p) in each production, that a AG is l-ordered if the family
{T(X)} is known. However, one must find such a family, i.e. one
partition of Attr (X) such that all the attributes in the same subpart
can be computed during the same visit in any tree t. This problem was
shown tq be NP-complete [EF80c].

Faced with this complexity result (impractical even if done at
construction time), Kastens [Kas80] discovered a subclass that can be
tested in polynomial time (in the AG size) called Ordered AGs (in short
OAGs). Barbar [Bar82] showed that there exists an infinity of such
families, incomparable to each other. For the sake of simplicity, we shall
not define them here, but we shall call them, following Barbar, OAG(i),
1 2 0. The family described by Kastens is OAG(0). The OAG(i)
membership test is based upon the way used to totalize a partial order,
which can be done in polynomial time.

3.2.3. Definition .

An attribute grammar is CPO (Closed Partial Order) iff there
exists a family of partial orders {R(X)} for X € N such that the three
following conditions hold:

(i) Compatibility : for X € N, OI(X) C R(X)

(if) Non-Circularity : for p € P, R(X,) U ... U R(X
D(p) is cycle free P
(iii) Closure : for p € P, [R(X,) U ... U R(X,) U D(p)]x"a
S R(X)) ’

) U

BY Ry’ we note the restriction of R* to the elements in Attr (X).

Such a family- has the following properties :

General Classification of Attribute Grammars ‘ -21-

- Categories OAG(i), l-ordered, CPO, well-formed are
strictly included in an increasing order of generality
[Bar82]; see figure 3.5.3;

- for X € N, R(X) is cycle free; ,
- for X € N, I0(X) C R(X) (this property comes from (iii))

From this last property, it follows that R(X) contains the union of
I0(X) and OI(X), so R(X) contains all the possible dependencies

induced by any relation R*(t) restricted to Attr (u) for any complete
tree t derived from the axiom.

The CPO category is especially interesting because there exists a
polynomial algorithm computing the family of minimal R(X) [Bar82].
Starting from this point, it is easy to define the OAG(i) categories
considering the way the R(X) family is completed to give a total order.

We use R(X) to realize a pattition” of Attr (X) by putting in a first
class the attributes of Inh (X) that depend on no other ones and those of
Syn (X) that depend on them or depend on no other ones. In each step,
we forget the attributes already put in a partition and the algorithm is
continued until all the attributes have been processed.

In this way, we obtain in each class, except the first one,
synthesized attributes that depend at least on an inherited attribute of
the same class. The order can now be completed to make all the
synthesized attributes of a class depend on all the inherited ones of the
same class. An arbitrary order can be given between the inherited and
synthesized attributes inside each class. After this construction of a
family of total orders T(X), the l-ordered condition (definition 3.2.1) has
to be tested. This can be done in polynomial time (transitive closures).
If this condition holds, the attribute grammar is OAG(0) and the
construction is done in polynomial time as the test is constructive.

To our knowledge, no system has been built for the categories CPO
or l-ordered. Only the OAG(0) category is implemented in some
systems, the most famous of them being the GAG system [KHZ82] -
whose properties correspond to those of l-ordered AGs evaluators.

The l-ordered category is particularly important as any non-circular
AG can be transformed into an equivalent l-ordered AG (with the same
semantic definitions) but of an exponential size [Fil83b]. This fact leads
to assume that it would not be interesting to build evaluators for larger
categories (between l-ordered and well-formed). But this would be wrong
as it can be deduced from the existence of evaluators based on AGs
called strongly non circular AGs (SNC) [CF80a] or absolutely non

7 We give here the OAG(0) algorithm

-22- General Classification of Attribute Grammars

circular (ANC) [KWT6].
3.3. Strongly non circular AGs

3.3.1. Definition

An AG is SNC iff there exists a family of partial orders {R(X) X €
N} such that the conditions of non-cireularity (ii of CPO) and closure
(iii of CPO) hold.

This definition - was first given by Courcelle and Franchi-
Zannettacci[CF80a]. This category is equivalent to that defined by
Kennedy and Warren [KW76]. See also Knuth’s first algorithm [Knu68],
and [LP75], [Jou82]. It is a super-category of CPO as its definition is

“that of CPO with the first condition (i) forgotten.

It satisfies the following properties:
i Categories CPO, SNC and well-formed are strictly includ-
ed in each other [Bar82]. See figure 3.5.3.
- for X € N, IO(X) C R(X).

- There exists a polynomial algorithm that computes the
minimal R(X) family if the AG is SNC [CF80a).

3.3.2. Example

In order to illustrate the Qtrict inclusion of l-ordered, SNC and
well-formed AGs, we give two school examples.

1)
Z--e a—b-X—¢c-—d- -b—X— -
L/a@ ™ d\ [\ i \

This AG is well-formed as in each of the two possible trees R(t)
is cycle free. ’

But it is not SNC: taking R(X)=I0(X)= a\w

there is a circularity in the. first rule.

General Classification of Attribute Grammars C «23-

2)
Z_e

[y e

This AG is SNC: taking R(X)=IO0(X)= a_b c ™
there is no circularity in any rule. The closure condition is trivially
satisfied.

By opposition, it is not CPO as OI(X)= a@d
and with R(X) at least equal to a* B _c d , there is a trivial cir-
cularity. —Z A

It is not l-ordered.

This fact could have been noticed by considering that in each of
the two possible trees, no total order can cover the two partial ord-
ers.

Let us call Use (X,a) = {b | b € Inh (X) and b R*(X) a} the set of
inherited attributes of X on which a depends.

The most interesting characteristic of an AG belonging to this
category is that actual dependencies between inherited and synthesized
attributes induced by R(t) in a tree t derived from X are covered by
R(X) (that property comes from IO0(X) C R(X)). It follows that any
synthesized attribute a associated with a non-terminal X can be
considered as a function of the tree derived from X and of the attributes
in Use (X,a). The entire AG is equivalent to a set of functions
recursively defined over the structure of the tree t, as shown by
Courcelle and Franchi-Zannettacci [CF80a]. Kennedy and Warren
[KW76] gave an iterative version of such an evaluator.

More generally, it was shown that any well-formed AG can be given
as a system of recursive functions with fixed point [CM78] or without
fixed point [May81, Fra82].

One of the advantages of the SNC evaluator is that it is a top-down
evaluator. However as often I0(X) < R(X), it will compute too many
inherited attributes and thus compute a set UsefulR (t) larger than
UsefulR 4(t). In addition to this, its time complexity is exponential in

the size of W(t) if no information about the assigned variables is
maintained (it is the same case as pure-S AGs). Of course, this is not
acceptable and Jourdan’s implementation [Jou84a] keeps the values of
synthesized values, but recomputes inherited attribute values. In that
case the SNC evaluator cannot be time-optimal even if all attributes are
computed because the proportionality constant is greater than 1. Some

-24- General Classification of Attribute Gra!hmars'

experiences studying SNC and l-ordered approaches [Kav84] show that
in practice they are comparable®,

The dynamic size of the SNC evaluator is interesting as one keeps
only t and the synthesized attributes of W(t) and a recursion push-down
stack whose maximal height is given by the tree height but containing
in each element as many information as inherited attributes in the -
corresponding set Use (X,a).

The static size of the SNC evaluator depends on the way
information is coded. But it can be considered as linear in the size of
the graph

R(X,) U .. UR(X_) uUD(p)

P
hence polynomial in the AG size.

3.4. Evaluators for general attribute grammars

The search for universal time-optimal evaluators led some people to
show that SNC construction could be applied to well-formed AGs.
Katayama [Kat80] showed that every well-formed AG can be
transformed into a SNC AG. This idea can be used to build top-down
time-optimal evaluators for well-formed AGs. The evaluator is made up
of two phases:

1) Pure-S phase : bottom-up computation of relations
sd(X,) in each node u of tree t.

2) Top-down computation (time-optimal if all the values of
W(t) are stored according to the SNC ‘method). K is
sufficient to select during the previous phase the functions
to use .

A second method consists in building the total order T(t) during two
preliminary phases and then in applying the l-ordered method. The
evaluator proceeds in three phases [Eng84] :

1) Pure-S phase : bottom—up computation of relations
sd(X,) at each node u of treet.

2) Pure-I phase : top-down computation of relations id(X))

at each node u of tree t and transformation of the order
into a total one.

3) Bottom-up time-optimal (if all the attributes are useful)
computation using a l-ordered method.

® Recomputed inherited attributes are almost always identities.

General Classification of Attribute Grammars -25-

This approach is based upon the property that any well-formed AG
can be transformed into a l-ordered one. _

Both approaches can be efficient if all the possible relations sd and
id are pre-computed during the evaluator construction (otherwise the
plan construction time could be important). But in each case the
transformed AG size is exponential and this would be the same for the
evaluator’s static size. This is a good reason to understand why those
approaches have never been implemented although they were proposed
" by many authors [Kat80, CH79, Eng84|. In fact, they do not seem to be
applicable unless optimizations corresponding to those proposed in
- [DJL84] are applied. But in that case, it is not sure at all that the
benefit gained in generality balances the increased complexity of
evaluators that could not, in any case, be time-optimal because of the
optimizations.

The only case, to our knowledge, where the second approach was
applied is in the Reps and Teitelbaum’s incremental evaluator [RTD83|.
In this system, relations sd and id are updated during cursor moves and
this cost seems tolerable because of the practical slowness of moves in an
interactive editing framework.

Other evaluation methods, top-down and time-optimal, applicable
to well-formed AGs have been proposed by Heeg [HV80], Jallili and
Gallier [JG83] and Jourdan [Jou84b]. The main idea is to consider each
defined attribute as a function of the tree and the attributes it depends
on. The evaluator static size is linear in the AG size, its dynamic size
can be considerable because one needs to keep in memory t and W(t) in
order to avoid useless recomputations and the stack size corresponds no
longer to the tree height but to that of the cycle free graph R(t). Some
experiments about the ERN method [Jou84b] show that if an ERN
evaluator construction is quick, the evaluator dynamic size disallows to
compile large examples. This kind of approach seems to be more
convenient for language design than for the realization of production
compilers.

3.5. Summary

Going on in our survey of AGs categories, we must mention two
categories introduced in the literature but not yet implemented. We
mention them because they seem to be interesting, at least from a
theoretical point of view : benign AGs and partially-ordered AGs.

3.5.1. Benign AGs definition:
An AG is benign iff forallp € P

I0(X,) U ..U IO(an) U D(p)

-26- General Classification of Attribute Grammars

is cycle free.

Introduced by Mayoh [May78], this category is placed strictly
between SNC and well-formed in the categories inclusion order.
Franchi-Zannettacci has shown that it is the largest category for which a
recursive functions system can be built without using an undefined
element [Fra82]. It is also the largest class for which a top-down
evaluator based on the SNC method can be built, but, in such a case, a
call-by-need language is necessary. The well known inefficiency of this
kind of call is probably the reason why no practical evaluator was built
for this category.

3.5.2. Ordered AGs definition:

An AG is partially-ordered or PO (resp. totally-ordered or TO) iff
there exists a family of partial (resp. total) orders {R(X)} for X € N
such that:

i) compatibility : for X € N, I0(X) U OI(X) C R(X) °
ii) non circularity : R(X) is cycle free.

Barbar has shown that this category is between CPO, whose
definition implies the PO conditions, and well-formed, but is not
comparable with benign and SNC [Bar82|. He also showed that TO and
PO are equivalent categories decidable in an exponential time.

Figure 3.5.3 summarizes the inclusion relations between all the
categories. Continuous arrows denote a strict inclusion and dotted lines ,
connect not comparable categories (the intersection of which may be not
empty, for instance CPO = SNC n OP).

Before concluding this section, we must examine the sncremental
evaluators with a specific care. In fact they are attribute evaluators and
re-evaluators that take place in systems for tree transformations defined
by means of AGs (see, for example, the Cornell Program Synthesizer
[RT84b]), or OPTRAN [MWWS84]. In such a case, the system handles
consistently decorated trees (i.e. correctly decorated), and each
transformation locally changes the tree which becomes locally
inconsistent. So there is a need to recompute the attributes that have
changed and only them.

‘The notion of time-optimality must be redefined in such a
framework: an incremental evaluator (or re-evaluator) is time-optimal
iff it recomputes only once the attributes in Useful r(t) whose value has
changed. If we consider that all the attributes are useful, that means

that t and W(t) must be kept. This optimality criterion raises many
questions:

General Classification of Attribute (%%aminars -27-

Most general AGs
well-formed (exp)
/ t\\
| (exp) benign - - - - - - - -PO = TO (exp)

(polyn) SNC~~

PO (polyn)

l/-'ordered (NP-complete)

/7

OA(&({—- - ---/-OAG(O) (polyn)
purLS (linear)

Figure 8.5.8 Categories and test complemty

- one may hope not to visit the whole evaluation plan (even if the number of
semantic functions calls is time-optimal) [Eng84|;

- to test in an efficient way wether a value has changed,
closely depends on attribute values representation [Rep82b).

Few experiments exist in this area and looking for the maximal
efficiency (in time) does not automaticaly lead to a good practical
efficiency. :

To our knowledge, two approaches for re-evaluators construction
were proposed: Reps and Teitelbaum [RT84a] implement a bottom-up .
re-evaluator, very close to time-optimality. The second one, by Jallili
and Gallier[JG83), is top-down; it avoids to compute semantic dead-
ends. Reps [Rep82b] uses both approaches, putting apart attributes to
be systematically computed again (in a bottom-up way) after each tree
modification and attributes to be re-evaluated only when needed.

In conclusion, our study shows that there is no best AGs category,
leading to an evaluator (or a re-evaluator) that, at the same time, is
time-optimal and has a static and dynamic size allowing to use it

-28-] General d??sa'lﬁcation of Attribute Grammars

practically. One may point out a general rule which is somewhat
amazing:

“The largest the category is, the closest possible time-optimality but also
the largest static size of the evaluator can be reached”.

The sequel of this study will show that time and space are related
in a still more complex way.

4. EVALUATION BY TREE WALK

Using Engelfriet and Filé notations [EF81c|, we study here the sub-
categories of l-ordered AGs. Up to now these classes have given rise to
the largest number of implementations. In addition to that, some sub-
categories seem to play an interesting role from a theoretical point of

- view. If one takes into account time and space efficiency, we shall see
that the evaluators built up in these categories (except Pure-S AGs)
cannot contain notable improvements over l-ordered AGs, at least
theoretically speaking, whereas their practical expression ppower is
largely reduced (see §6.2).

The classification introduced here is based on a non-deterministic
evaluator called PURE-VISIT whose non-determinism may be tuned in
order to get different useful categories. Evaluators associated to these
new categories are based on specific ways of visiting the syntactic parse
tree, visits that are predefined in the tree t and during which values are
assigned to the variables W(t). This is why we call these methods tree-
walk evaluators.

4.1. Definition

We give first the general Pure-visit algorithm as introduced by Filé
[Fil83c page 157]:

4.1.1. Algorithm

1- procedure visit-and-evaluate(u)
{ u is the current node of tree t, sort (u)=X, label (u)=p }

2- begin C(u) := C(u) + 1 |
C is a counter associated to each node u, initialized to 0 }
3- compute some inherited attributes of X,
4- guess a sequence v=<v(1), v(2),..., v(m)>
withm > 0 and v(j) € [1..np] for1<j<m

5- for j:=1 to m do visit-and-evaluate(uv(j))

Evaluation by Tree Walk

6- compute some synthesized attributes of X,
end visit-and-evaluate

7- procedure evaluate(t)
{ t is the tree to decorate }

8- begin initialize all the counters to 0

9- guess kO

{ k0>1}

10- while C(root(t))<kO do visit-and-evaluate(root(t))
end evaluate ‘

It is important to note in which sense the procedure evaluate is
non-deterministic. It describes a way of visiting a tree t and recur-
sively calls the procedure wisit-and-evaluate at nodes of the tree.
Each time one can visit a node, the counter associated to this node
is incremented (line 2) and some inherited attributes (maybe none)
are guessed and evaluated (line 3). The choice is not defined here
and this is the reason for the non-deterministic nature of the algo-
rithm. Then a sequence, empty or finite but unbounded, of sons of
the node u is guessed (the same node may appear more than once)
(line 4). Such a sequence is called a visit-sequence. Procedure uisit-
and-evaluate is then recursively called for each node in the visit-
sequence following the order specified by the sequence (line 5). When
back, some synthesized attributes (maybe none) of node u are
chosen and evaluated (line 6). The main procedure evaluate is easy
to understand. After successful termination of evaluate (t), the wvisst-
counter C(u) of every node u of t contains the number of calls to
visit-and-evaluate (u) that have been executed during the computa-
tion. Each such call is in fact the beginning of a visit of the subtree
issued from u. Therefore, we say that the call to evaluate(t) is k-visit
(k > 1) if, after the computation, the visit-counter of each node is at
most k (with k0 < k).

A computation of evaluate(t) may fail before evaluating all at-
tribute instances if one chooses to evaluate some attribute that
depends on not yet evaluated attributes. If this failure does not hap-
pen and the computation stops after evaluating all elements in W(t),
it is said to be complete (it is successful in the sense of Filé [Fil83c]).

Now we are ready to introduce eight classes of attribute gram-
mars based upon the non-determinism tuning inside the Pure-uvissi
procedure. As pointed out in [EF81c], basically there are two kinds
of non determinisms:

-29-

-80- . Evealuation by Tree Walk

Non-determinism of type a : at each visit to a node u, attri-
butes to be evaluated are chosen arbitrarily (line 3 and 6).

Non-determinism of type b : at each node labeled p, the
vissi-sequence is chosen arbitrarily (line 4).

Removing non-determinism of type b only leads to four
categories called Pure-multi-Y where Y € {visit, sweep, alternating
pass, (L or R) pass} whose meaning is:

Y = visit : no restriction »
Y = sweep : v is a permutation over [1..np]
Y = alt :v = [L.n] (same order or L) or [n,..1]

(reverse order or R)

Y = (L or R) pass : v is always [1..np] (L) or always v[np..l]
(R)
By r:amoving non-determinism of type a, we get four new

categories called Simple-mults-Y. In concrete terms, algorithm 4.1.1
is transformed in the following way: there exists a partition over
Attr (X) for X € N, say

{A(X)for1 <1<k}
such that lines 3 and 6 can be changed into
3- compute the inherited attributes of AC(u)(Xu).
6- compute the synthesized attributes of AC(u)(Xu)'

Doing this, we avoid any non-determinism for Y = pass, but we
must take care of modifying line 4 in the three other cases:

4- take the visit-sequence vé’(W) associated to rule p.

This implies that, in addition to the partition on the attributes
of each non. terminal specifying which attributes are to be evaluated
during the i-th visit, one can determine for each rule p the i-th
corresponding visit-sequence.

For a given k, we shall denote by T-k-Y strategy the eight stra-
tegies previously defined with
T € {Pure, Simple}
Y € {visit, sweep, alt, pass}
k is the maximum number of visits to a node.

}
}

Ev;i,luation by Tree Walk

7

4.1.2. D*eﬁnition

An attribute grammar is T-k-Y iff for any tree t, the computa-
tion of evaluate(t) with the strategy T-k-Y is complete.

4.1.3. Definition

An attribute grammar is T-multi-Y iff there exists some k such
that it is T-k-Y.

In order to illustrate these definitions, we give two algorithms
corresponding to Simple-k-sweep and Pure-k-alt.

4.1.4. Example, Simple-k-sweep

Each node is visited at most k times. There exists a partition
over the attributes A,(X) C Attr (X) for 1 < i < k, and in each rule

p € P, k permutations on the right hand side non-terminal symbols
are defined for each visit, say v].lp the i-th permutation for 1 < i< k.

1- procedure Simple-sweep-evaluate(u)
{ u is the current node of tree t, sort (u) = X, label (u) = p

{ i is a global variable }
2- begin
3- compute the inherited attributes of A,(X)

4-5~ for j:=1 to m do Simple-sweep-evaluate(uv,P(j))

6- compute the synthesized attributes of A(X)
end Simple-sweep-evaluate

7- procedure evaluate(t)
{ t is the tree to decorate }

8- begin
9-10 for i:=1 to k do Simple-sweep-evaluate(root(t))
end evaluate;
This algorithm performs k walks over the tree in an order
depending on the rule and the visit number.

In the case of a Simple-k-L-pass, there are k top-down left to
right walks. ‘

-31-

~32- Evaluation by Tree Walk

4.1.5. Example, Pure-k-alt

The only restriction is the following one: vP tells whether the

right hand side non-terminals of rule p are processed in a left to
right order (L) or a right to left one (R).

1- procedure Pure-alt-evaluate(u)
{ u is the current node of tree t, sort (u)=X, label (u)=p }
{ i is a global variable }

2- begin
3- compute some inherited attributes of X

4-5- for j:=1 to m do Pure-alt-evaluate(u v;P(j))

6- compute some synthesized attributes of X,
end Pure-alt-evaluate

7- procedure evaluate(t)
{t is the tree to decorate }

8- begin

9-10 for i:=1 to k do Pure-alt-evaluate(root(t))
end evaluate;

It is clear that any well-formed AG is Pure-multi-visit, since by
an appropriate choice of the attribute to be evaluated and of visit
order of the nodes (following the evaluation order R(t)), there ex-

ists an integer k (equal to the maximum number of attributes associ-
ated to a non-terminal symbol) such that the Pure-k-visit is com-
plete. In the sequel of this section, we shall restrict our attention to
Simple classes for which there is no non-determinism, as categories
Pure play essentially a theoretical role or correspond to categories al-
ready studied in the previous section.

4.2. Results (Simple categories)

The first results are concerned with the relative positions
between the categories Simple-X-Y of which there exists an infinite
number. Figure 4.2.1. summarizes the results obtained by Engelfriet
and Filé [EF80c|; some categories among those defined in the previ-
ous section are also given again in order to help in giving the
correspondence between both hierarchies.

Evaluation by Tree Walk ' -88-

well-formed Pure-multi-visit

sy

l-ordered P Simple-multi-visit

4

k+1-visit m}lti-sweep

-

k-visit k+ 1—swé<;p I;mIti-alt

TN

2-visit k—st_v'eep k+ 1- :alt 13u1t1—p ass
1 2-sweep k-a.lt k+1—pa.ss
1-visit = 1-sweep\ \ /
2-alt k- -pass

] }.p&s

l-alt = 1-pass = I-AG U R-AG

pure-S

Figure 4.2.1. : Classiﬁca.tion based on tree-walks

Arrows denote strict inclusion. No arrow indicates incomparability.

Note also another result: Simple and Pure categories are strictly in-
cluded in each other (Simple in Pure) and OAG(i) are incomparable
with multi-sweep and other subclasses [Eng83|, with the exception of the
1-sweep category which trivially is a strict subclass of OAG(i). These
results are illustrated in Figure 4.2.4 and we give now two examples in
order to show the incomparability between OAG(0) and Simple-multi-
sweep and the strict inclusion of OAG(0) in l-ordered.

4.2.1. Examples.
This first AG is 2-sweep (in fact 2-alt) but is not OAG(0).

-84- Evaluation by Tree Walk

Z - a—X—b (C“Y“ dj

a C

It is trivially 2-alt using sequences LR or RL. It is not OAG(0) sixice, by
computing CPO relations, we obtain

R(X)= a b R(Y) = ‘c d

Thus it is CPO but the totalization process, by putting all the attri-
butes in the same partition class, introduces new dependencies from a to
b and c to d, leading to a cycle in the first rule.

‘This second AG is OAG(0) but is not multi-sweep

a—X_b-c- a-X-b-c

e X

It is in fact CPO with ~
R(X)= a b ¢ =10(X)u OI(X
R(®) = b ¢ = 10(x) U OI(X)
and OAG(0) with

A (X) = {b} A,(X) = {ac} and R'(X) = R(X)

The total order in each rule is easily deduced.

It is not multi-sweep since in a tree of height 3, for example, it is
not possible to compute all the instances of one of the attributes in a
unique sweep, thus no attribute can be computed either in one (sweep)
pass nor in more, :

Both grammars are l-ordered.

Some among the categories introduced in Figure 4.2.1. are well
known in the literature.

The L-AG class described in [Lor74, Boc76] corresponds to attribute
grammars for which attribute evaluation can be done in parallel with LL -
parsing methods (i.e. top-down left to right tree-walk).

Evaluation by Tree Walk -35-

The Simple-1-sweep category seems to be particularly important be-
cause of its ability of modeling program schemes [CD84, DM84b|. It has
a very simple relational characterization [Fil83c].

For each production rule
p: X, — X, . X

n
P

we can define the brother graph B(p) to be
B(p)—({12 oIl }’)

where i — j iff there exists a,b such that (a,i) D(p) (b,k)

4.2.2. Definition (AGs are supposed to be normalized)
An AG is Simple-1-sweep iff B(p) is acyclic for every p.

Multi-Y evaluators were the first ones studied and implemented.
One can think that people tried to increase efficiency by some restric-
tions on AGs. They had probably in mind to model attribute evaluators
as classical compilers by means of passes (phases in [EF81c]). Neverthe-
less, it appears now that theoretical results do not come up to their ex-
pectations.

On the one hand, the way an AG works allows precisely to free one-
self from the notion of pass as the only thing we are concerned with is to
describe local computations without worrying about the way the compu-
tations are done elsewhere. On the other hand, it is not obvious that one
can get more efficient evaluators by restricting the class of attribute
grammars used (unless when the L-AG category is reached).

The time complexity of a Simple-X-Y evaluator is the same as a |-

ordered one. Its dynamic size is approximately the same as one must in
general keep t, W(t) and a stack for tree walking whose size is bounded
by its height. So it appears that the only saving is the evaluator static
size which is largely decreased as it essentially consists of predefined
tree-walks._But it- is necessary_to wonder if this improvement is not
counterbalanced for by a new inefficiency factor : the plan may be pro-
cessed many times as it is replaced by the tree in the control of the
evaluator. So a new problem arises: the optimization of the number of
visits in the tree. But we must note that even with this improvement,
there is no guaranty that the plan will be processed in an optimal way.

These AGs categories raise two main problems to solve for the
evaluator construction which have been extensively investigated [RS77
Alb83, EF81c, JP77a, JP77b, PJ78a, PJ78b, Poz79) :

Problem 1 (Characterization) : decide whether an AG is
Pure/Simple-multi-Y.

-86- Evaluation by Tree Walk

Problem 2 (Optimization) : considering a Pure/Simple-
multi-Y AG G, find the smallest k such that G is
Pure/Simple-k-Y.

Figures 4.2.4. and 4.2.5. exhibit time complexity results for
these problems in the Simple case (results taken from [EF81c]).

l-ordered = multi-visit (NP complete)
multi-sweep (Polyn)
multi-alt (Polyn)
1-visit=1-sweep multi-pass (Polyn)
(Polyn)
’ L UR-AG (Linear)

Figure 4.2.4. : Complexity of the characterization problem ¢

multi-visit (NP complete)

multli-sweep (NP complete)
. multi-alt (NP complete)

multi-pass (Polyn)

Figure 4.2.5. : Complexity of the optimization problem

The question of finding optimal evaluators (in the number of
passes) for Simple-multi-alt evaluators has been studied and it has been
shown that some constructions [PJ78a, PJ78b] requiring lower complexi-
ty lead to evaluators close to optimality [RS77].

4.3. General classification

We summarize in Figure 4.3.1. the most significant categories from
a theoretical and a practical point of view, especially for evaluators con-
struction. Results about the characterization and optimization problems
in the construction of multi-Y evaluators are mentioned again.

Now we reach the end of this section and the rule stated in §3.5.
seems to be correct : except if we accept to go down to very restrictive
categories such as L-AG, going down in the categories improve evalua-

Evatuation by Tree Walk - -817-

tors sizes but bring no benefit to their eficiency in time and space; they
even could be less efficient. And practical experiences, according to such
systems implementors, show that the lowest categories have a very poor
expression power. It remains to evaluate a factor we have not deeply
studied till now: the plan optimization and its effect on the evaluator.

Most general AGs

well-formed (exp)
SNC (polyn)
l-ordered (NP complete) [NP complete]
(polyn) OAG(0) multi-sweep (polyn) [NP complete]
multi-alt (polyn) [NP complete]
(polyn) l-sweép multi-pass (polyn) [NP complete] |
I-AG (linear)
pure-S (linear)

Figure 4.3.1 : General classification
(time complexity of the characterization test)
[time complexity of the multi-Y optimization]

-38- Reduction of the Dynamic Size of Evaluators

5. REDUCTION OF THE DYNAMIC SIZE OF
EVALUATORS

The most important problem the attribute grammars method must
overcome, apart from the time efficiency of evaluators, is the amount of
space needed for their implementation.

This space is composed of:

1) The derivation tree t.
2) The set of variables to be assigned values W(t).
3) The space for complex attribute values.

4) Additional data created by the evaluator (e.g. an evalua-
tion stack).

The space for complex attribute values corresponds to the space
needed to hold values too complex to fit into a memory cell. In fact,
the variables in W(t) are associated with positions in the tree t and
their values are placed into areas linked to each tree node. Most of
the systems memorize the complex values in a sharable way and the
place associated to the node is limited to a fixed size cell whose con-
tent is either a numeric value or a pointer to a shared area. The
space needed to hold all attribute values can be divided into |W(t)|
simple values and what we call the size of space shared by complez
attribute values. '

To decrease the dynamic size of the evaluator is to act on the
four factors previously given in order to minimize them as much as
possible. This way of doing induces necessarily a feed back on the
evaluator time efficiency. Therefore a global approach to complexity
in time and space is needed. Some standardization is also necessary
in order to compare all the approachs. Finally, there is good reason
to set apart the theoretical complexity in the worst case, from the
practical efficiency which depends on a specific computer, a specific
- system or the class of examples taken into account. Most of the ex-
isting systems implementors supply little complexity analysis and
still less study about improvement provided by some optimization.
This question has yet received little investigation but seems neces-
sarily to become the focus of attention in the future.

First we define some standards as a basis to build a complexity
study in order to be able to make comparisons between evaluation
systems. Then we tackle the global optimization problem and, in a
third part, we get to the practical efficiency of some families of
evaluators.

Reduction of the Dynamic Size of Evaluators

5.1. Criteria for a study of the dynamic size com-
plexity ~

One of the four criteria previously stated seems little significant:
the size of complex attributes. Most of the systems use a sharable
data structure (GAG, FNC and many others). Some of them, but
few, such as LINGUIST 86, work on the basis of alternated passes
and copy of values, and, as a consequence, cannot share attribute
values. Other systems, such as GAG or CSG deal with specific
representation for data in order to optimize some processing for the
most used structures [Asb79, Rep82b]. Because of the wide range of
topics covered and of the appropriate solutions, it does not seem
possible to include this point in a comparative study. According to
[KHZ82], this storage corresponds to 20 to 25% of the whole space
required. .

It is therefore worth noticing that, in the case of a shared
representation for the values, attributes method correctness can be
proved only if the semantic functions work without side effects on
the data (an applicative style language is needed: ALADIN in GAG,
pure LISP in FNC), and this aspect leads to inefficiencies. These
ones can be partially overcome if the user knows precisely the places
where he can free himself from the applicative style, for instance if
an attribute along with all the attributes it depends on can be con-
sidered as a unique global variable. Few works have been done in
this area; only the GAG system deals with this approach [Kas84] by
looking for attribute classes that can be implemented in the same
global variable. It would be very interesting that the user could be
freed from such a constraint or that the attribute definition language
by itself could allow the system to detect in an automatic manner
some inconsistencies in the data processing introduced by the user.

Considering now the additional data created by the evaluator
(fourth point), they can come from the evaluator for its execution
(recursive calls stack for SNC or l-ordered methods, tree-walk stack
for Simple-X-Y methods, state storage at tree nodes for general
iterative methods, or specific), or from the optimizations which need
some space to be realized. In all the cases -and this fact can be no-
ticed in practical implementations- additional data must have a
complexity linear in the tree size to be acceptable. The general func-
tional methods (ERN [Jou83], [JG83], LINGUA [HV80]) need a
stack whose height is linear in the size of W(t) (in the worst case)
and seem to be untractable for large examples even when used on
very large computers. Is can be observed that additional data, when
of an important size, must be measured in connection with the size
of t and W(t). So we shall remind n=|W(t)| and m=|t| as complexi-
ty parameters. : '

-89-

-40- Reduction of the Dynamic Size of Evaluators

Moreover it is useful to keep in mind that there is some relation
between n and m, depending on the number of attributes associated
with each node. Considering some restrictions, as suggested by Reps
[Rep82b|, we can formulate this relation. If we call Maznbattr the
largest number of attributes associated to each node and if we sup-
pose that

for all X € N, Attr (X) ¢ this relation is m < n < m x
Maznbattr °

Finally, in order to facilitate comparisons between systems, we
suppose that all AGs are in normal form (this helps the complexity
formulation in some cases) and that we are only interested to com-
pute the values of the synthesized attributes of the axiom. In the op-
posite case, no improvement in the size of t and W(t) could be done
(sublinear evaluators). However in order to make comparisons
between top-down and bottom-up methods easier, we suppose that
there are no dead-ends because avoiding computation of attributes
in dead-ends in a top-down method leads to time and space savirig
that must be added to improvements coming from other optimiza-
tions.

5.1.1. Criteria

The following criteria summarize the set of conditions to be fol-
lowed in order to be able to measure theoretical and practical com-
plexity of an attribute evaluator:

- AG in normal form
-for X € N, Attr (X) £ ¢
-n=|W(T),m=]t, m<<n

- The only interesting attributes are synthesized attributes
of the axiom but all the attributes take part in their com-
putation

- We do not consider the attribute values actual size, which
is supposed to be one unit

- All the semantic functions have the same duration, in-
cluding even identities.

® These inequalities are not symmetrically balanced: if n practically corresponds to

actual memory cells, m is associated to nodes often implemented by numerous memory

cells,

This fact makes the left inequality uncertain, so the criterion used in the sequel

will be m << n in order to make comparisons at least at a theoretical level.

Reduction of the Dynamic Size of Evaluators -45~

the latter case, the attribute values size can be increased!! and the
evaluator code augmented by the stack processing instructions.
Result is positive for W(t) but negative for time (only for attributes
represented as stacks). Following published results, the gain is about
60% [KHZ82 page 63] if one takes into account only variables
changed into global ones and if one considers that attributes are reg-
ularly distributed among trees t.

In the evaluator FNC [Jou83], such a method cannot be applied
as there is no total order (category SNC). On the other hand, inher-
" ited attributed are not kept in the tree. If time and space remain
roughly linear in n, but with possible repetition of inherited attri-
butes computation, there is an improvement on W (t).

All the results given in this section are put together in Table
5.3.1. where n+ and n- denote a linear complexity in n with an in-
creased (n+) or decreased (n-) coefficient.

I'd

HLP GAG FNC DELTA
Observed W(t) reduction none 60% ? 95%
Time n+ n- n+ n?
Space o+ n- n— n
Attributes Variables Allocation Allocation
Prevailing Optimization Values Globalisation of Inh outside
Deallocation in a stack tree t

Table 5.3.1 : Practical Efficiency Results

A study of this table leads to numerous observations:

1) Practically, we have little information about actual
efficiency of evaluators. It would be desirable that any sys-
tem provides measure elements allowing to quantitatively

11 ag noticed in [KHZ82 page 68| as a result of the additional space required for

implementing global stacks.

-46- Reduction of the Dynamic Size of Evaluators

evaluate the optimizations effects.

2) It appears that there is no objection to consider that a
system which is located in a general category of AGs could
be as efficient in time and space as another one placed in a
lower category (in the inclusion sense).

3) Each system puts emphasis on a specific optimization
when one can imagine to combine some of them. They are:

- Variables globalization (GAG) (allocated outside the
tree).

- Lack of allocation for some variables (FNC).
- Deallocation of variables values (HLP).
- All allocations outside the tree (DELTA).

One could add:

- Deallocation of W(t) and t [JP77a).
- Optimization of the tree itself (FNC, GAG, HLP).

This last optimization already exists in most systems when sim-
ple productions with trivial identities are eliminated, with a decrease
of m and n.

Finally, one can notice something else: criteria we have used do
not exhibit all the optimizations that can be automatically done and
put at hand in order to improve attribute definitions when perfor-
mance measures are known. It is really noteworthy that experiments
done inside the GAG system [KHZ82 page 67] show that, on a total
benefit of 60% of m+n (space tree), about 20% are obtained by
manual changes and the 40% automatically obtained can be split
into 10% for variables globalization and 30% for simple productions
elimination. This factor is less interesting in systems dealing with
abstract tree decoration. It would be attractive to be able to observe
the same points in other systems.

And to conclude this study on optimization, we can say that,
till now, too few studies have been done and especially too few meas-
ures. If, considering the GAG system experiment results, many infor-
matjon provided to the user allow him to change his definitions in
order to improve the global size of compilers he is writing without
diminishing their performances, much work remains to be done to
automatically improve them. We think that such researches must
impose a priori no restriction on AGs categories.

Reduction of the Dynamic Size of Evaluators -41-

Practical experience makes these criteria acceptable, although
they do not take into account the precise nature of data processed in
the semantic definitions. For instance, it was measured with the
GAG system running large examples of Pascal compilation that the
storage taken up by the tree t and W(t) (variables are put at tree
nodes in a cell containing either a numeric value or a pointer to a
complex value) is about 2 to 4 times larger than space needed by at-
tribute values [KHZ82]. This point was confirmed by comparisons
between GAG and FNC [Kav84| and shows that n and m are the
essential parameters in the formulation of time and space complexity
for an evaluator. According to the relation between n and m, it ap-

pears that the main target is the optimization of nl®

Comparisons given in the sequel consider that criteria 5.1.1. are
obeyed. ;

5.2. Global complexity analysis

We are interested here in the question of minimizing W(t) and
its influence on the evaluator time complexity. We also try to situate
the methods described in the previous sections from a complexity
point of view.

Whatever the method we consider, an evaluator must follow the
evaluation order R(t). This problem is similar to the optimal alloca-
tion of registers which is well known to be NP-complete [Set75]. It
turns out that minimizing W(t) for a given relation R(t) is a NP-
complete problem. Ganzinger set up this result for the attributes
method [Gan79b] and showed that the problem remains NP-
complete even for the L-AG class. So it is hopeless to reduce the
complexity by taking into account restricted classes of AGs, and, in
general, the inefficiency in time of such an optimizer makes it unus-
able in practice.

The methods described in sections 3 and 4 (SNC, l-ordered,
multi-Y without optimization) are O(n) in time and space in the
worst case. As we described them, all these methods contain no
specific optimization and, if in the top-down method, inherited attri-
butes are not kept, they are pushed onto a stack whose height is less
than n (height of the tree in the worst case with m<n).

19 Considering a previously made remark related to the implementation of trees
and of information at each node, optimization of m remains an important practlca.l ele-
ment. See for instance [KHZ82).

-42- Reduction of the Dynamic Size of Evaluators

Reps [Rep82b] proposed two evaluation algorithms the space
complexity of which is, respectively, O(y/n) (for a time O(n) algo-
rithm named REPS1) and O(log n) (for a quadratic time, algorithm
REPS2). Furthermore, he proves that if space complexity is O(log
n), time complexity cannot be linear. It is likely that one reaches
here a lower bound in W(t) optimization if we keep in mind that a
non-linear evaluator cannot be considered as acceptable. This fact
seems to be confirmed in practice in DELTA where evaluation is
quadratic in time [Lor74}, but can be slowed down by experi-
ment of the HLP system [Rai80a] where quadratic optimizations
seem not to be too detrimental to the evaluator efficiency. We shall
give more details in § 5.3.

Results are given in Table 5.2.1. It is worth noticing that for an
increasing size (from top to bottom), time can be considered as de-
creasing since in REPS1 evaluation is linear in time but with repeat-
ed computations (other methods are supposed to be without repeti-
tion). ‘

This kind sof comparison shows its limits as there is no guaranty
that for the same class of examples, all the methods behave correct-
ly.

Evaluator time space
Optimized N P-coniplete optimal'
REPS2 ‘ n2 logn
REPS1 n Vvn
SNC,l-ordered, general n n

Table 5.2.1. : Global Complexity of an Evaluator

There are two remarks to be made about this table:

1) An important saving in space must be paid for by an im-
portant loss in time. Results in the last line are for non-
optimized evaluators. We known little about the practical
influence of optimizations in time and space.’

Reduction of the Dynamic Sige of Evaluators -43-

2) Reps’ results show that a global approach can be made
and that a more systematic analysis of this problem could
lead to more efficient evaluators both in space and time.

5.3. Practical efficiency

" Qualitatively we analyse optimization results obtained in some
systems and we deduce some evaluation criteria for optimizations in
existing systems.

In the system DELTA [Lor74] which produces an equations sys-
tem, optimization is done in the following steps:

- graph R(t) is built in a time O(n) (size O(n)).
- during the topological sort (time O(n)), a dead-ends elimi-

nation and a variables allocation are carried out in a qua--
dratic algorithm in the worst case (additional space O(n),

time O(n?)).

As an effect of these optimizations, there is a saving of about
90% and the tree t is no longer kept. An advantage of this method is
to allow a quicker processing of resulting equations. In practice, the
saving does not compensate optimization time. The method remains

O(n) in space and O(n?) in time in the worst case. It can be ob-
served that we are very close to time linearity, the allocation algo-
rithm, the only quadratic factor, behaving rather linearly.

Up to now, it seems that no efficient implementation was ever
done for this method.

Ja.za.yerl and Pozefsky [JP77a, JPT79, JP80a.] applied a similar
approach in the multi-alt case. Starting from a preliminary tree visit
(which may be done during parsing) they propose to build ordered
lists of computations to be done in each pass. Time complexity
remains O(n) but the tree t may be discarded or better never built.
Some optimizations could be done, but no running system was real-
ized on such ideas. Space complexity remains O(n).

In the system HLP [Rai80a] based upon multi-alt AGs, dealloca-
tion of attribute values is aimed at. Managing space with garbage
collection allows to save space needed to keep attribute complex
values. The salvage technique is strongly connected to this AGs
category for which the (dynamic) order T(t) between variables of
W(t) can be computed efficiently. The basic idea is that two attri-
bute occurrences are ordered by the order of the passes they belong
to (this order is statically defined), by passes direction (L or R) and
according to their nature (synthesized or inherited) and if they are
associated to node located on a same path or not.

-44- | Reduction of the Dynamic Size of Evaluators

Starting from this order, it is possible to dynamically compute
the last user of some attributes equivalence class, defined as the set
of all variables related by a chain of identities (copy rules). In this
system, all the attributes cells are kept in the tree, so the size is
O(n). Identities are processed by means of copy of pointers. There-
fore all the cells in an equivalence class point to the same shared
value. The last user in a class is the highest element in T(t) which
uses an element of the class in its computation. So, after the compu-
tation of the last user, the value shared by all the elements in the
class may be discarded. The main result of this optimization consists
in a decreasing of the complex attribute values size.

However, time complexity is larger than O(n) in the worst case.
Testing is done in two steps. The first one computes during parsing
in a pure-S way the equivalence classes and the last-user in each
class. In practice, space needed is not changed as cells are used to
implement the equivalence classes. Is added.only a linear informa-
tion, whose size is not significant. The complexity of this step can be

considered as O(m x Maxnbattr®) coming from transitive closures
done in each class.

In the second step, as soon as the last-user of a class is comput-
ed, the complex value associated to this class can be deallocated.
This phase is O(n) in time and, according to our hypothesis (m < n
< m x Maxnbattr), only the first phase may be considered as most.
expensive in time.

Despite of an execution time that seems to be quite long, the
authors noticed no actual change in system behaviour, essentially be-
cause of a space saving of about 40% on attribute values. It turned
out fof them that this space saving improved the execution speed in
a paged environment. Therefore this point remains highly dependent
of the data representation method and of the operating system used.
The important gain is related to the way of implementation of (not
shared) values in the system HLP. From our criteria point of view,
this method leads to time loss without substantial saving in space.

In the system GAG |KHZ82|, another approach is proposed in
l-ordered category framework. The main idea is the static detection
of attribute occurrences that can be implemented in one global vars-
able. Visit-sequences are then built using this variable. There is a de-
creasing in ‘'W(t) along with an execution time improvement as iden-
tities lead to no processing. Test is based upon life time analysis for
attribute occurrences inside a visit-sequence. It is described in
[Asb79, KHZS82, Kas84]. According to life time, an attribute oc-
currence can be implemented as a global variable or a stack, but in

Formal Power of Attribute Grammars -47-

6. FORMAL POWER OF ATTRIBUTE GRAM-
MARS :

By formal power, we have in mind to define to which class of
transductions corresponds a class of attribute grammars or, more
generally, to which class of programs belongs an AG (and converse-
ly). It is clear that the knowledge of the corresponding class of pro-
grams (or of program schemes) is useful to know the properties of an
AG. This also enables to get theoretical results about complexity or
decidability by establishing precise connections between AGs, tree
transductions and program schemes.

We therefore present in an informal way both approaches
(transductions and ‘program schemes) and we give the most useful
results for applications. We first describe a preliminary example
showing, from a practical point of view, the limits of well formed
AGs and the need to introduce more general classes.

6.1. Introduction to the formal power

We know from Knuth[Knu68]'? that pure-S AGs have the same
power as Turing machines.

One could deduce that it is not necessary to introduce other
classes of AGs. This fact is not, in general, sufficient to make a
method easy to use, and, it does not take into account attribute
values domain. When considering the transduction defined by an
AG, we are not allowed to use the tree as a domain for values, in
the way similar ‘to denotational semantics where the syntactic
domain plays a special role [SST71}.

~ We are going to show on a partial example that, from an oppo-
site point of view, the well-formed category does not allow to
describe the (dynamic) semantics of programming languages if the
syntactic domain is not used for the attributes.

Suppose we want to specify an AG that describes the semantics
of a programming language according to the denotational approach.
The basis in this approach consists in associating to a program
structured through an (abstract) syntax a function to compute the
memory states transformation obtained during its execution.

Let P denote the program (syntactic domain), F denotes a state
function

F:P — (S —S)

12 This point is worth noticing only in this framework as one can decide to make
computations in the rule axiom.

-48- Formal Power of Attribute Grammars

where S is the memory state.

For specifying the semantics of statement composition, we shall
write:

FI[IP;P, I i=FIIP,OT(FIMIP,OT 1)

This definition can easily be interpreted by an attribute grammar
with two attributes : Inh = { i } the initial state, and Syn = { f } the
final state. One gets the production and the following definitions (all of
them are identities), where each of P, and P, corresponds to the pro-

gram derived from two occurrences of the non-terminal symbol P.

N\

Pf

~- - -~ -

—i—SEQ —f

. ——,
i—P i
~ 4 A

-

This translation comes directly from the correspondence described
in [CF80a] between primitive recursive scheme (definition of F) and
strongly non circular AGs (SNC).

Now suppose that we want to specify the semantics of a statement
double that would be written in a denotational approach!3;

F[[[[double PTIT] i = FT[PTIT(FILIPTT i)

The corresponding transformation in term of an AG obliges us to
make the following construction, with only one non-terminal symbol P:

i —double —f

where f, gives the result of F[[[[P]]]] i, and s, that of FTTPTT] iy, if
the sub-grammar describing the trees rooted P is supposed to correspond
to the function F[T [P]| J]. But such a construction is not allowed: F[J[]
double double PT] J] cannot be represented in the AG because the non-
terminal symbol double would have two attributes the first time and
four attributes the second one.

The only ways to solve this problem are to allow to use either the
syntactic domain or a circular AG.

13 Example taken from Engelfriet [Eng82b]

Formal Power of Attribute Grammars -49-

In the first solution, we consider that double P is in fact the repeti-
tion of P;P. But in such a case, we loose the notion of function defined
over a syntactic tree (unique); in fact we are handling another object
that describes the recursive function F itself. That kind of object has
been described as dynamic AGs [Gan78b] and is studied more deeply in
[CD84]. The syntax used does not strictly speaking correspond to the
syntactic domain but take into account recursive functions calls.

In the second solution, we may introduce a finite recomputation of
states by giving visit-sequences with different definitions of the same at-
tribute. We shall write

i——double—_f

with two definitions for if (iF=id°"Pe and *=f") and visit-
sequences:

visit(1,double) : if := i9oWle . vigit(1,P) ;
if := fF ; visit(2,P) ; fdovble ;= P,
finish(1,double).

visit(2,double) : if := jdouble ; visit(1,P) ;
if := ¥ ; visit(2,P) ; fiouble .= £,
finish(2,double).

As fF dependé on if in the sub-tree, the dependencies induce a
circularity. This AG is not well-formed.

This example illustrates the need to introduce new classes of
AGs, not well-formed, to process the area of denotational semantics.
One could imagine specific evaluators for these classes. This point
needs to be studied more deeply.

The two approaches we are going to define now show these limi-
tations in a theoretical way: some tree transductions, more complex
than those corresponding to well-formed AGs must be defined in
order to reach the domain of‘denotational semantics [Eng82b]. The
primitive recursive schemes have not enough power to describe deno-
tational semantics. (For instance, the description of a While state-
ment is out of their scope).

-50- Formal Power of Attribute Grammars

6.2. Attribute grammars characterization by
means of tree transductions

This approach consists in defining automata which, taking a
derivation tree as input, compute attribute values. These machines
play for attribute grammars the role that push down stack automata
play for context free grammars. Each machine defines by itself a
class of transductions.

It is not possible to give here all the results obtained through
this approach as the machines built for different classes of AGs are
_quite complex. Almost all definitions and results are stated in
[LRS74, ERS80,Ful8l, EF8la, EF82a, Kam82, Fil83c]. We give as
an example the automaton corresponding to the pure-S AGs class.

A Tree Pushdown Transducer (TPT) is a transducer from a
tree to a string, i.e. a machine that accepts a tree as input, uses as
output a one-direction tape and a pushdown stack as memory. Fig-
ure 6.2.1. illustrates this definition and the way the machine is run-
ning: the stack and the path from the root to the visited point have
the same length.

It has been shown in [ERSSO,Fi183c] that TPTs correspond to
pure-S AGs where attributes are strings.

Extensions of TPT with sets of registers associated to nodes of
the input tree allow to define transductions from trees to any

domain and to characterize larger classes of AGs, including circular
AGs [Eng82b, Fil83c].
One result of this approach is to allow the comparison of

transductions classes defined by AGs categories [EFS8ic, Fil83c]. We
use here Filé’s definitions.

An attribute grammar is supposed to define for any tree t a
value for the attributes in Syn (Z), where Z is the grammar axiom.
An AG defined over a domain D characterizes a transduction as the
relation defined on L(G) x Domains(Syn (Z)), where L(G) is the
language generated by G. We note this relation Tg.

Let C be an AG category and D a semantic domain, thus

T(C,D) = {TG | G € C and D is the semantic domain of G}
is the class of C-transductions on D. ‘Considering two AGs
categories C, and C,, we say that C, has less power than C, if for
any semantic domain D,
T(C,,D) € T(C,,D). In the same manner, C, has the same power as
C, if for any domain their transduction classes are equal.

Comparison results coming from this approach are given in Fig-
ure 6.2.2.

Formal Power of Attribute Grammars

[1}]
it
W,
(3}
A

AT

Figure 6.2.1. : Tree Pushdown Tranducer Automaton

One can observe first that Pure- and Simple- categories are of the same powér.

-51-

In particular, the fact that Pure-multi-visit (well formed) and Simple-multi-
visit (l-ordered) are equivalent shows that any intermediate class does not
increase the expressive power (in term of tree transductions). This result is
not surprising as every well-formed AGs can be transformed into an l-ordered

AGs.

-52- Formal Powér of Attribute Grammars

l-ordered = S-M-V = P-M-V well-formed

S-M-S = P-M-S
S-k-V = P-k-V /
S-2-V = P-2-V vS\k-S P-k-8 §-M-A = P-M-A

S-1-V = S-l-S = P-1-8 A = P-k-A

N

S-k-
S-2-A = P-2-A S-k-P = P-k-P

S-2-P = P-2-P

T

S-1-A = LUR-AG = S-1-P
S-AG

Figure 6.2.2.: Compirison between transductions power.

- arrows denote strict inclusion
- P-M-P : Pure-Multi-Pass
- 5-M-S : Simple-Multi-Sweep

6.3. Attribute grammars characterization by means of
program schemes

This method corresponds to an algebraic approach for attribute
grammars. Most of the definitions and results are stated in [CMT9,
- Kat80, Gan80a, Gan83d, May81, CF80a, Fra82, CD84, Der84].

Because of the extreme variety and complexity in definitions, we
limit ourselves to make comments about Figure 6.3.1. which exhibits the

&
Formal Power of Attribute Grammars : -53-

main results from the most general to the most particular ones.

Any AG Denotational Semantics (DS)

?
I
Well formed DS with fixed point operator {May81]
| Primitive Recursive Schemes (PRS) [Fra82]

l
I

Benign Wel'l—formed_ PRS [May81, CF82]
| .
%
SNC Well-formed PRS without indefinite ‘element [CF82]
|
I
| .
L-AG Imperative recursive procedures,

[Applicative recursive procedures [Der84, CD84]

S-AG Primitive recursive schemes without parameter [CF82]
Turing Machines [Kn 68]

Figure 6.3.1. Classes of program schemes and classes of AGs

We do not give any AG sub-class that could modelize denotational
semantics. Some points have been proposed [Eng82b, Fil83c| but remain
a matter of research. Chirica and Martin [CM79] were the first to use
the algebraic approach to formalize the semantics of attribute grammars
and gave a proof method based on structural induction. The following
studies that go deeper into this approach showed that, in the case of
well-formed AGs, the formulation of algebraic semantics was simplified.
Mayoh [May81] describes it by means of a system of equations without
fixed point, showing that, by opposition to Chirica and Martin’s formu-
lation, it was possible in this case to get a denotational semantics
without a fixed point operator. He also defines the benign AGs category,
for which the mathematical semantics is drastically simplified. Franchi-
Zannettacci [Fra82] showed that it is possible to associate to well-formed
AGs specific program schemes called primitive recursive schemes., in the

-54- Formal Power of Attribute Grammars

sense that the recursion is defined over one parameter (which
corresponds to what we have called the syntactic domain). He reached
the same results as Mayoh and introduced with Courcelle [CF82] the
category SNC characterized by well formed primitive program schemes.
This approach leads to evaluators described in §3.3. The primitive
schemes without parameter define a subclass where only the syntactic
domain appears as a parameter. The authors use them to characterize
the category of pure-S AGs (there is a class equivalence). This approach
is complementary to the previous one but seems to be better adapted to
study the problems of AGs transformations and equivalence. In particu-
lar, it is shown in [CF82] that pure-S AGs equivalence is a decidable
problem. It is also decidable in the case of quasi-pure-S AGs where in-
herited attribute definitions (a, b) are only of the form (a, k) = (b, 0)
with k > 0. This problem remains to study for other categories.

It is shown in [CD84| that imperative recursive procedures, i.e. re-
cursive procedures without explicit loops or global variables but, maybe,
local variables, can be transformed into L-AG whose grammar
represents the possible call trees. This transformation applies also to ap-
plicative recursive procedures with call by value and call by name, under
the condition to accept partially decorated trees.

These last results are not completely surprising as the I-AG
category is the largest one for which attribute evaluation can be done in
parallel with L-parsing. These transformations also show that if no limi-
tation is imposed over domains, the L-AG category is large enough to
describe the operational semantics of any applicative recursive function
and, especially, the denotational semantics.

As a conclusion, we mention two algebraic approaches essentially
devoted to compilers specification by means of semantic attributes :
Ganzinger [Gan83] defines AGs by a language morphism described as an
algebraic abstract types morphism. This allows to introduce a modular
construction of a compiler specification in a framework where known
correctness proofs techniques can be applied and allows to generate an
attribute evaluator to produce the compiler. Other authors [JT83,
CJ83, Pau82| automatically produce a compiler from a denotational se-
mantics specification. In such an approach, an abstract object machine
is first specified. In the system CGSG [Pau81], the attribute evaluator is
mainly useful to build a source program representation in term of
lambda-expressions which is thereafter reduced by appropriate modules.
Only Ganzinger’s approach can be viewed as an attempt to formulate
AGs semantics with the precise target of specifying translators.

ISSN 0249- 6399

i

i

