-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A model to analyse the causality in synchronous real
time systems
Albert Benveniste

» To cite this version:

Albert Benveniste. A model to analyse the causality in synchronous real time systems. [Research
Report] RR-0411, INRIA. 1985. inria-00076145

HAL 1d: inria-00076145
https://hal.inria.fr /inria-00076145
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50448702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00076145
https://hal.archives-ouvertes.fr

Sl
=

e

£

DN

Rapports de Recherche

>

s

=8
25

N° 411

S
¢
W

o
3

A MODEL
TO ANALYSE THE CAUSALITY
IN SYNCHRONOUS
REAL TIME SYSTEMS

T ok

Ve

A,

S

3T

S SRS T S, S

TS

SN

e G

L%

D

o

o

U S e SN

SRS G

BRI

Albert BENVENISTE

Mai 1985

] RI S a INSTITUT DE RECHERCHE EN INFORMATIQUE
' ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
Avenue du Général Leclerc

35042 - RENNES CEDEX Publication_Interne n° 252

- FRANCE Avril 1985
Tel. : (99) 36.20.00
Teélex : UNIRISA S5 0473 F 28 pages

A MODEL TO ANALYSE THE CAUSALITY ‘
IN SYNCHRONOUS REAL TIME SYSTEMS " """

Albert BENVENISTE
IRISA/INRIA
Campus de Beaulieu
"F 35042 RENNES CEDEX
FRANCE

ABSTRACT: we present a model to handle the causality in synchronous real
time systems. Synchronous real time systems communicate with the external
world through a specified fixed set of interfaces. Among them are the input
stimuli, which mainly govern the behaviour of the system. The present model
takes into account that events as well as processes are indeed functions of
these input. stimuli; to study the corresponding objects, the notions of clock
and causal process are introduced and studied. The present study served as
one of the bases for the design of the language SIGNAL.

RESUME: nous présentons un modéle pour étudier la causalité dans les systémes
temps-réel synchrones. Ces systémes communiquent avec le monde extérieur
& travers un ensemble fixe et connu d'interfaces. Parmi ceux-ci figurent les
stimuli d'entrée, qui pilotent le fonctionnement du systéme. Le modéle que
nous présentons prend en compte le fait que processus et événements sont
en fait des fonctions de ces stimuli dentrée; afin d'étudier les objets
correspondants, on introduit les notions d'horloge et de processus causal.
Ce modéle a constitué l'une des bases de réflexion pour la conception du langage
SIGNAL. ‘ . g

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
- (L.A.227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES 1 LLN.S.A. DE RENNES (LABORATOIRE DE RENNES)

’ 1. INTRODUCTION.

According to Young (1982), a real time system is "any information process-
ing activity or system which has to respond to externally generated input
stimuli within a finite and specifiable delay”. A further‘feature of synchronous
real time systems is that to every event can be assigned a time at which this
event occurs. A consequence is that, to avoid any non determinism, the set of
the input stimuli has to be fixed and specified in advance. Since our aim.is to
study the notion of event in real time systems, we shall consider events as Junc-
tions of the input stimuli; this will allow us to take into account the causality
constraints in a natural framework. Note that this is exactly the point of view of
Le Guernic & al.(1985); a suited formalism is presented in a preliminary form in
Caspi & Halbwachs (1984), and we shall in fact follow the same approach in a
more systematic way. We should say that the ideas underlying the present
approach go back to the classical point of view of the probability and ergodic

theories to handle the time (Dellacherie & Meyer (1976), Benveniste (1974)).

1.1. What is the "time" in real time synchronous systems ?

While classical (i.e. non asynchronous) real time languages do implicitely or
explicitely refer to some external and universal time reference, the notion of
"time" is completely different in synchronous real time systems. To be more
explicit, synchronous real time systems differ from asynchronous ones in the
following aspects:

(%) concerning the internal mechanisms of the system.: every action is instan-
taneous, i.e. has a zero duration.
(*) concerning the communications with the external world: the set of the possi-

ble input stimuli is fixed and known in advance, and input lists are specified

N D PAPIER RECUPERE ET RECYCLE

-3.

through both 1/ the values their carry, 2/ a total ordering of the “instants” at

which these values are available at the input ports.

Of course, the specification 2/ above is the 'tundarnental feature which
characterizes the way synchronous real time systems cémmuniéate with the
external world, compared to asynchronous ones. Let us illustrate further this
point on a simple example. ’

-Consider a real time system, which has two inputs:

(i) a data input carrying an ordered file of data named x,
(ii) an interrupt inpﬁt port named s,
Then, the specification of an input history according to the synéhronous point of -
view must bé of the form

z,,(z2,52).23.5,.etc...
i.e. both the values and their global ordefing must be specified; the integer
index t= 1, 2,... is used for this purpose. And this indez ""t" has to be considered
as the proper notion of time in synchronous systems. In other words, the essen-’
.t.ially nondeterministic character of the communications with the external \iorld‘
in real time systems is concentrated here inéide some (ignored) external
mechanism which decides this global ordering. Hence, the advantage of the syn-
chronous point of view is that._t.he nondeterminism of the external communica-
tions is strictly concentrated in this ektemal mechanism, and is thus by no
means propagated inside the body of the system itself. For this reason, G. Beyry
oftens refers to synchronous real tizﬁe systems as reaclive systems, i.e. systems

which react instantaneoulsly to external input stimuli in a functional way.

-4

-

1.2. What is the proper notion of process in reactive systems?

It is usual to consider that processes that have the same external behaviour
are indistinguishable; usual descriptions of external behaviours in (asynchro-
nous) real time systems are, for example, the éairs {traces, failure set] used in
CSP (Brookes & al. (1884)). In reactive systems, however, the notion of external
behaviour can be defined in a more rich way, thanks to the synchrony assump-
tion. |

Consider a real time system, and denote by

X = (% (1)....zy(n)) | (1)
the set of its input stimuli, where the index "t" refers to the time index. Denote
by

Ang=Xn ... %) (2)
the initial segment up to time t. Then, a natural definition of the external
behaviour of a process is the set of its traces defined informally as the collection
of tﬁe inputs and outputs up to time t, where t ranges the time index set. This is
a refinement of the usual definition of traces, which takes into account the syn-
chronous character of reactive systems; on the other hand, it is known that
traces entirely characterize deterministic processes, see Brookes & al.(1984). As
a consequence, the basic notion to study reactive systems is the set of the func-
tions which map initial segments of the inputs to corresponding initial segments
of the outputs, a point of view close to Kahn (1974); as usually, fixed point argu-
mel}t.s can be used to define a global input-output map, the restrictions of which
are consistent with the previously given collection. These maps will be referred
to as processes. Since our mode! intend to support the language SIGNAL, which
is not of imperative type, but rather of functional type, we need to be able to
characterize the processes P which are correct in the following sense: can the

output of P up to time t eflectively be defined with the only knowledge of the

-5-

iﬁput up to time t? Such correct processes will be referred to as causal

Pbrocesses.

1.3. What is the proper notion of event for reactive systems?

Reactive systems are closed worlds,' since they do communicate with the
external world through a fixed set of input stimuli. As a consequence, events can
. be caused only by the monitoring of the inpuf. stimuli, or of any of the outputs of
some process. In this way, eventé‘ appear naturally as functions of the inpu(
stimuli. Such functions will be referred to as clocks. Suitable time correctness

conditions can be also introduced for clocks, and will be defined subsequently.
To summarize, the questioris we have to answer are the following:

(i) How to guaranty that a data requested at time "t" can be effectively pro-
duced with the initial segment X[,4) ? An infinite file indexed with the time of

such data will be referred to as a causal process.

(ii) How to characterize events that are produced by the monitoring of
causal processes ? Such sequences of events will be referred to as clocks.
Clocks can be used to generate time changes, and new causal processes and

clocks can be generated subjected to this new timing, and so on.

(iii) How to guaranty that this procedure will preserve the causality with

respect to the original input stimuli ?

(iv) What are the convenient primitive operations on the time to be able to

build any new time reference from the originai one ?

-8-

2. BASIC NOTIONS: HISTORIES, CAUSAL PROCESSES, CLOCKS.

2.1. Histories.
In the sequel, the symbols N and N, denote respectively the ordered sets

{1,2,...,) and {0,1,...,}.

“DEFINITION 1: By a history, we have in mind an object

{n.m,)mv,}
where
* Qs a set.
* for every t, I1; is a partition of the set Q the members of which are referred to
as atoms.

* for s<t, Il; is finer than Il, , denoted by

M, <TI,
.Le. every atom of Tl, is a union of atoms of I1,.

The terminology is borrowed from Kahn(1974), and is in accordance with
the usual notions of history, as the following example will show. When there is nc

ambiguity, we shall simply denote (II;) instead of (II;);c Ny

A basic example: the canonical history associated to a synchronous real time
gsystem.

Consider again a system whose input stimuli is denoted as in (1). Set

fd

where X denotes the set in which X; takes its values, and denotes by w the ele-

ments of (: every w represents thus a possible trajectory X, X,.... of the input X.

V- 7 -

Then,) is endowed with the following equivalence relation
e~ o il w(s)=w'(s) for every s<t (4)
The partition II; is then defined as follows: w and o’ belong to the same atom of

Il iff @ ~; o'. By convention, . -

To=§¢,0]

| rep_resehts the information available in the initial conditions (constants....‘),
which do not depend upon the values of the inputs. Then, {Q, (II;)} is the canoni-
cal history associated to the input X; note that only the input is relevant_m this
definition. The partition II; is interpreted as the information available at time t,
iLe, any data available at time tin the system is nothing but a function deﬁned
on the set (), which is constant on the atoms of the partition I, i.e. a tunction of

the initial segment X[, ;).

This formalism will be very easy to use, and covers without difficulty the
case of several inputs with different data rates, provided that, as we mentioned

before, the interleaving of these input streams be a part of their specification.

2.2. Clocks.

Our notion of clock is apparently.dit.”ferent from, but in fact closely related
to the notion of event used in Caspi & Halbwachs (1982,1985); connections also
do exist with the work of Cardelli(1962). The main contribution is that we con-
sider here clocks as functions, which map the input values & into the set of the
events (in the sense of Caspi ‘& Halbwachs), and furthermore satisfy again

appropriate caﬁsality constraints.

DEFINITON 2: Given an history {Q,(IT,)}. a {Q,(I;)}-clock H (or, simply a clock

when there is no ambiguity), is a time-indexed family of functions

. H:0-» 5 ' ' (5)
(where Z is a denumerable, totally ordered set containing N,, and isomorphic to

-~

-8~

N,). satistying the following properties

H.(©) =0 foreveryo . (8.i)
s<t and H,(0)<e imply H,(w)<H;(w) (8.ii)
s<H(w)<s+1 and o'~y imply H(w')=H;(w) (8.iii)

The last condition is a causality condition: it expresses the fact that, to
know if the t-th occurrence of an event H(w) takes time strictly before s+1, it is
sufficient to observe the initial segment up to time s. Finally, since our aim is to

avoid any nondeterminism, any multiple occurrence of an event must be time

ordered; hence, the use of oversets of N, is necessary, since we want to handle

. multiple events. The relevance of the time correctness constraint (6) will be sub-

sequently illustrated in the forhtcoming examples and counterexamples.

Counters.

Counters are extensively used by Caspi & Halbwachs (1982, 1985) to moni-
tor events in real time systems. Counters are associated to clocks as follows.

Given a {Q,(I1;)}-clock H, the formula

wf(w) = # {s €N, : Hy(w) <t +1 (7)
defines the counter associated to H. Note that it is generally not possible to
'recover H from its counter u¥, unless £=N,, since counters do not provide any
information about the ordering of the events whi{ch occur between t and t+1;
this would cause difficulties when time changes are of interest, as we shall see

later. Thanks to (8.iii), counters enjoy the following property:

LEMMA 1:
w'~w implies pfi(w') = ufi(w)

The proof is easy, and is left to the reader. This lemma expresses that the

counter associated to a clock is a causal process in the sense of the definition 4

Y

below.

Examples and counterexamples.

1) Any strictly Increasing function H: N, = N, which do not dépend upon
the input stimuli is a clock, since the causality constr;int .(ﬁ.iii) is trivially
satisﬁed. The events generated by such clocks are known prior to the observa- |

tion of the input stimuli, i.e. before the running of the program. .-

2) Take £ = N2 endowed with the lt_exicograph;‘c order, deﬁned by

(m,p)<(n.g) it [m<n]or [m=n and p<q]
and set

H = (s,k) it t=sp+k with O<k <p
This is the simplest case of oversampling, where the new sampling rate do not

deperid upon the input stimuli. This procedure will be properly generalized later.

3) Consider a process X of type T, such that

o'~ w implies X;(o') = X;(w) (8)
and let A be a subset of T. Define

HQ(D) =0 '
Hy(w) = rnin{s>0 : X,(w)EA} ' (9)
H (@) = min {s)H,(a;) : X,(U)EA}

where, by convention, min(¢)==. Then, H is a clock, for it satisfies the time-

correctness constraint (6.iii) since X is a (causal) process.

4) Here follow two counterexamples. First, modify (9) as follows
H, = min {s:X,mEA]

Hiyp = min {s)H‘ ' X +u €A }

where u>0, and w was deleted for convenience. Then, H is clearely a {02,(TT;,4)3-

-10-

clock, but not a {Q,(I1;)}-clock, since the time-correctness constraint is violated.
More subtle is the following example: let k,.kp,... be an increasing sequence of

integers, deflne

H; = max [s <k X, €A] max()=0"

Then, H is not a clock, since the time-correctness constraint is violated.

History associated to a clock.

This notion will be a first step towards the technique of time change. Tﬁe
idea behing time changes is the following: suppose you have a clock, and you are
interested in an infinite ordered file of data which are available at each
occurrence of this clock. Then, you would probably like to torge;t thé original
time reference, and prefer to work with the above mentioned clock as it were
the time reference. Our aim is to justify such a procedure. A first step in this

direction is the following definition:

DEFINITION 3: Let H be a §{0,(I1;)}-clock. Define

¢

©~y o ifl s<H(w)<s+1 and w~, o' (10)
This is an equivalence relation; (10) defines {0.(Iy,)} as the history associated to

the clock H.

The fact that (10) defines an equivalence relation is due to the property
(8.iii) of time-correctness of the clock H. This history summarizes the flow of
information corresponding to every new occurrence of H, a fundamental notion

when the study of time changes is of interest.

-11-

’ 2.3. Causal processes.

Consider an history {{).(II;)}. For every we(), we shall denote by
. w/ ¢ o a
the atom of Il; which contains w; referring to the canonical history of a system,
@/t is nothing but the initial segment of length t of w. Then, the set of the initial
segments of (? is endowed with the following partial order
w/t </t | (12)
iff, £,<tg, and w/t, > w/ t; Then, every chain w/1 < w/2 <... has a unique maxi-

mal element, which is nothing but the atom (,w/¢. This upper limit defines a

unique point of ! when the atoms of {JII; are the points of 0, which is for exam-
t=0 o

ple the case for the canonical history of a system. Then it is reasonable to define

a causal process X as a time indexed set of functions of @ such that X;(w)

depends only on the initial segment w/t. The following definition generalizes this

idea.

DEFINITION 4: Let H be a {{).(Il;)}-clock. By a {Q,(II;),H}-process (for short

instead of causal process), we have in mind a time-indexed family X = (X;) of

. tunctions

X 0 -»7
(where T is a set defining the type of the process), satistying the following time-

correctness condition:
o g, o implies Xe(&)=X; (@) (13)
The definition 2 expresses the fact that X;(w) depends only on the initial

segment w/H;{w); this initial segment is well defined, since H is a clock. In other

words, the value X; has to be considered as available at time H;.

2

-12-
3. THE CLOCK ALGEBRA.

The aim of this chapter is to study the set of all the {Q),(T1;)}-clocks, we shall
simply refer to as clocks, since no confusion can occur thrqughout this chapter.
We shall introduce two primitive operations on this set, the filtering, and the
multiplezin‘g. And we shall prove that these primitives allows us to buit in

finitely many steps any (reasonable!) clock.

3.1. A partial order on the set of the clocks.

It is defined as follows: 'given two clocks H and K, we say

KcH it ‘Qn{x,(o)} c ‘Q{Hg(w)] (14)
for every w. In other words, KcH means that the set of the occurrences of X is
contained in the set of the occurrences of H whatever the input w is, i.e. Cis a
partial order on functions. This order is different from the order introduced in

Caspi & Halbwachs (1982), the aim of which is the study of precedence of events;

this order is however introduced in Caspi & Halbwachs (1985).

3.2. The filtering.

Every process of Boolean type will be said to be a test. In the sequel, we

shall sometimes identify the boolean values "true” and “false” respectively with

the integer values “1" and "0". Let H be a clock, and T a §Q,(II;),H]-test. Then, a

new clock K is obtained by filtering H by T as follows:

Ki () = max {H, (o) : 3 T (w) < ¢ (15)
u=l
To refer to the filtering operation, we shall use the notation

K=H:T (18)
In other words, AT eztracts Jrom H the instants H, where T, is true. It is easy

to verify that HiT is still a clock. Conversely, the following result is true

-13-
- LEMMA 2 1t H'CH, then H' = HiT, where the {Q,(I1;),Hj-test T is given by

Te(w) =trueit H(w)eH (), =0 otherwise. (1)
In the formula (17), we used the notation

H,(w) for short instead of U{H,(w)] ; (18)
- .

PROOF: elementary, left to the reader.

The filtering is the basic operation. to build the Sét 61‘ all the clocks which
are dominated by a single one. Note that this is the only operation, existing real

. time languages provide to handle the time; see for e'xample the synchronous
real time language ESTEREL (Berry & al.(1983), Berry & Cosserat (1964)). and
the preliminary version of the language SIGNAL which is presented in Le Guernic -
& al.(1985); the usual instruction implementing the filtering is of course the IF
statement. However, when the ovérsampling of data rates is of interest, which is
actually very often.the éase. no tool is érovided to the programmer to handie
properly the corresponding time index. Our purpose is to investigiat-e‘ théoreti-
. cally the diﬂicdti_es behind the notion of oversampling. ;I'he corresponding

operator will be the multiplexing, for short instead of time-multiplexing.

3.3. The multiplexing.

Let H be a clock taking values in the overset Z of N, (see the definition 2),
and let C be a causal {Q.(Ik),Hj-process of integer type, such that G >0 for t
finite, and C.=0. Set |

A 5 = ExN _ (19)
endowed with the lericographic ordar, defined by

(£.k)<(t k') iff (t<t')or (t=t and k<k') _ (20)
where, by convention, (=,k)== for every k. Then, the maultiplexing of the clock H

by the ceeling (1) function Cis denoted and defined as follows:

(1) this name, originated from architecture theory, is justified by the fig.(1), where the dep-~
icted object looks somewhat like Manhattan.

-14-

K = H*C (R1)
K (w) =
= (Hy(w).u)
it Js: O0<us(G(w) and t =C)(w)+...+ G-y (w) +u
= o otherwise

The fig.(1) depicts this procedure; the * arrows mean an increase by 1 of the
second component of the clock HtC, whereas the replaces at the same time

H, by H, .3, and u =C, by u=0.

‘

€ (’\

s t i
(;

N AN
‘TN T ¢

s $ gt
¢\ G\l gy

PR LY R W N L G 9 S G

4 L (I -\o’\‘o’-"(o ~\(o\;‘(0 \(0 - H
H, e K H H K H

fig.(1): construction of HtC

The following result holds:

THEOREM 1: K=H*C is a {Q),(11,)}-clock.
PROOF: We have only to verify the time correctness property (8.iii). Using (20)
and (21), the inequality |

v K (w) <v+1
is equivalent to

‘v€ H,(w) <v+1 © (22)
Choose o' such that w'~,w. Then, (23) and the fact that C is a process of clock H

-15-
’ imply that

Hy () = H, () (28.1)
G (') = G (w) for every k<s o (23.ii)
Finally, (21) and (23.i,iii) imply the desired property, namely

K (o) = K () (4)
This finishes the proof.

The.following theorem is the first fundamental result. It expresses the fact
that allmost all {{2,(ITl;)}-clock can be obtained by applying finitely many times
the operations ﬁlteﬁng and multiplezing. Hence, these operations can be con-
sidered as primitives to build any clock from an original one. Corresponding
primitives instructions are provided in the language SIGNAL, see Le Guernic &

al.(1984) and (1985).

THEOREM 2: Let H be a {Q,(IT;)}-clock taking values in the set

== NyxNk1, O<k <= (25)
endowed with the lexicographic order. Then H can be decomposed as follows

H(O)=HW, , (28.1)

H(1):= HOLAT(1) (28.ii)

for m>0, Hm):= Hm-1)* C(m)i T(m), (28.iii)
H:=H (k) (R8.iv)

where, for m=1,... .k, T(m) (resp. C(m)) are suitable tests (resp. ceeling func-

tions), and Id denotes the clock "identity” defined by

1d; ()=t (27)
" Furthermore, among all the possible decompositions (26), there is a minimal

one, we shall denote by H*(0),...,H*(k), such that

He*(m) c H(m) (28)
for any decomposition associated to H through (286). _

-18-

COMMENT: Z's of the form N* are not the most general, so that the theorem do
not cover all poéible clock. However, N¥ endowed with the lexicographic order
is nothing but the (non denumerable) set of the denumerable ordinals, which is
of no practical interest for us. Anyway, ='s of the form Nfuare the only for which

a construction of clocks in finite steps is possible.

PROOF: by induction over the index m. For.m=1, the result is.a direct conse-:

quence of the lemma 2. For m>1, we can decompose H(m) as follows

H(m)y () = b (0).% () € Nm=1xN (29)
The values of A (w) are non decreasing in N™!, Group them as follows
hy(@)=...=hp (W) = H(m-1)i(w) . (30)
< hp (o)1 (@)=... =hp () eDyu)(®) = H (m-1)s(w)

<...and so forth
Our first task is to verify that the so defined H(m-1) is indeed a clock; as usually,

the key property to verify is the time correctness property (8.iii). According to

the definition of the lexicographic order, we have

s<H(m), (w)<s+1 iff s<H(m-1);(w)<s+1 (31)
where t and t’ are related through

H(m), () = (H (m-1);(0) 2 (<) (32)
Using (32), we get

@' ~, w implies
H(m),(v") = H(m), (») for vst'
which implies '

H(m -1} (') = H(m—1),(w) for ist,
so that H(m-1) is a clock. On the other hand, taking

C(m), (v) = max {uao: at':H(m)y (0) = (H(rri—l); (w),u)} (33)

we get (26.ii) with T(m) given by the lemma 1. Clearely, the decomposition we

-17-

’have built is precisely the minimal decomposition of the clock H. This finishes

the proof.

WARNING: The decomposition (28) is by no means unique. For example, take any
ceeling function C' associated to Jd, and choose a 1dtC'-test T which deletes
from 1d7C' some entire segments of the form [(t.1).....(t.C¢)]. Then clearely. the
correspondmg “t* indices could be deleted directly from the original clock Id,

betore the ceeling function C' operates.

A FUNDAMENTAL REMARK: existing real time synchronous languages explicitely
assume that every clock is defined in f,erms of the finest one. The usual underly-
ing argument is that, when a new faster clock has to be introduced in the pro-
gram, then all the events have to bev reexpressed with respect to this faster time
reference. This argumént is incorrect, as shown by the theorems 1 and 2 above:
the master clock (when it exists) is not necessarily the fastest one, but is rather
the clock from which every other one can be derived. For example, if C is an
input dependent ceeling function, thé clock 1d*C (whére Id denotes the identity
clock: Id; =t) is faster than Id, but u.;:es C to be built, so that 1d*C is derived from

1d, while the converse is not possible.

3.4. Synchronizable clocks.

DEFINITION 5 Two clocks H and H' are said to be synchromzable if their associ-

ated counters u¥ and u¥ are equal.

Synchronizable clocks are not distinguished in the framework of Caspi &
Halbwachs, since these authors work only with counters. However, we preferred
to distinguish them (when they are not equal!), since the instruction set of the

language SIGNAL will allow the programmer to construct objects as in (28), .

-18 -

’ whereas the condition of synchronizability is generally very difficult to check.

The name of "synchronizable' is justified by the following result:

THEOREM 3: If H and H' are synchronizable, then their associated histories
{0.(1y,)} and {Q,(Hg')i are equal. In other words, two S):nchronizable clocks

define the same flow of information.

PROOF: Denote respectively by (H(m)) and (H'(m)) the minimal decompositions
(R6) associated to H and H'. The clocks H and H' are synchronizable, if and only
if the following property holds:

SSHy(w)<s+1 iff s<Hy(w)<s+1 (34)
which proves the result, thanks to (10).

It is clear that the matching of synchronizable clocks is nothing but the
reordering of the set of the events which are not anterior to t, but anterior to
t+1. Since our ultimate goal is the design of a synchronous language, we must
provide to the programmer tools to specify such an ordering (to avbid any non-
determinism in the language); the theorem 3 indicates the degree of freedom

which is available to the programmer.

4. TIME CHANGES.

As it were mentioned in Le Guernic & al.(1985), time changes is a key issue
when modularity is required in the language SIGNAL. Roughly speaking, the
probiem we want to solve is the following. Suppose you have written a program
whose input stimuli are summarized in the flow X=(X;). and you want now to con- -
sider this flow X as produced by some other program by identifying X with some
output, say Y, of this for;:ner program. When Y is a H-causal process, where the

clock H differs from the identity, such a connection results in a change in the

-19-

fime reference for the program with input X. In such a case; are the notions of
causal process and clock conveniently embedded in the so obtained new time
reference? 'Before to investigate the problem in a general sétting. we shall

turther develop this first example.

4.1. Cascading systems.
Consider an history {1,(Il;)}; let H be a clock on this history. Let X be a
- {1,(T1;), H{-causal process defined on the same history. For example, if X' is a
{0, (T1;)3-process of real type, we can oBtain such an X by deliveri'ng the current
value of X' only when it exceeds some threshold. Then, X is an output of the con-
sidered system, but X can on the other hand also be used as an input to some
other system. To study this cascaded connectioﬁ, 1ét us introduce the canonical

history {W,(T,)} associated to X (see (2.1)). The mapping

Q- W, w o w= {X‘,(m),X‘g(w)....}
defines a connection from Q to W. Here, an abstract model of modular program-
ming is the ability to define processeé and clocks on W, and to embed them using
¢ back to processes and clocké on . The purpose of this example was to illus-

trate the theoretical development we shall give now.

4.2. Connections.

DEFINITION 6: Consider two histories {Q,(I1;)} and {0',(11%)}, a {0.(IT)}-clock H, -
and a subset W c (0 (', We define the connection of {0, (T } to {0, (I)} through
(W.H) as being the history

Er)= (a0 @3- t0n @)y (@)

where

Iy = [n. xn'h,,]w -. (386)

-20-

"where u¥ denotes as usually the counter associated to H (see (7)), and "op"

denotes the restriction of « to W,

There is no ambiguity in this definition, since w,;=(w.t";) and wp=(ws,w'z)
belong to the same atom of 1, xrl-“l, if and only if, first, |

Wy~ g (37)
which turns out to imply

whi(wn) = pf(we)

(since counters are causal processes by virtue of the lemma 1), and'second.

@' Ny 2 (38)
Note that the time reference of the first component w of w is the time "t" of II;,
whereas the time reference of the second component o' of w has been changed
to the clock H defined over 2. Hence, the connection is not a symmetric opera-

tion, for it gives a privilege to the time reference of one of the two histories.

4.3. Examples of connections.

4.3.1. Cascading histories.
This example is a formal rewriting of the previous one. Consider a map

:0-0Q
satisfying to the following causality condition:
w; ~ wg implies ®(w,) ~ufl $(wp) (39)
This map is the convenient way to describe the connection between the two pro-
grams we have informally described before. Then, set
¥ .= graphof & (40)
The structure of this connection is quite simple, since the so obtained history

tW.(I})} is indeed isomorphic to the history (Q.(T1;)} via the map

e

-21-
’ © -~ (08 (w))

We have thus described a simple input-to-output connection. The next example

is more involved.

4.3.2. Closing loops. . «

Roughly speaking, this case corresponds to the instruction "@" of the
lgn,guage SIGNAL, which connects output ports of a SIGNAL-prbcess to its input
ports which have the same name. A formal description of lodp closures is as fol-
lows, Take {0 .(IT;)} = {0.(I1;)}, H=Id, and let

W C Axn (41)
where Agxq denotes the diagonal of the set OxQ. The fact that W is contained in
this diagonal indicates that the inputs of W correspond to identical compenents,

so that a single program is indeed involved in this connection. The fact that W is

" asubset of this diagonal expresses that constraints are set on the inputs by this

connection, thus reducing the degree of freedom at those inputs. For example, if
w=(x,y) and z=z(x,y) is ‘some causal process, then a loop closure is for example

defined by w=(x,f(z)) for some suitable function f.

4.4. Time correctness of connections.

4.4.1. Clock transfers.
Let
R ALY T RGATER T G AY (12)
be a connection.
It K is a {0,(T];)}-clock, the connection creates a [W.(I‘g)f-‘clock b_}; simply
taking

L (w,0') = K (w) (43)
The transfer of clocks defined on the second component is more complex, since

-02.
‘it involves a time change. Consider thus a {Q' (11)}-clock K. Decompose it
according to the formulas (R6) of the theorem 2:

K= [fd¢r(1)]f.'-]w(k)wuc)] ~ | (44)
‘Then, set

-

soo)= [[@) pewenrew)
The right handside of (45) do not depend upon the particular decomposition of

K', so.that L is well defined. To. prove: that L.is'a W-clock, it is equivalent to prove
that the counter u! associated to L, via (7)is a W-causal process. This is a direct
consequence of the formula

lQL(‘w) = ML(U:Q') = l“f}i(g)(”') (46)

and of (37) and (38). To summarize, we proved that

THEOREM 4: connections do preserve the time correctness of clocks.

' 4.4.2. Transfer of causal processes.
Consider again a connection (42). If X is a {0.(1;). K}-causal process, then
the formula

% (w) = Yi(ow) | (47‘)

= X (w)
defines obviously again a {W.(T¢).L}-process, where L is defined from K through

(43). On the other hand, given a {0 (IT'y).K'§-process X', set
Y (w) = V(.0 (48)

=X ()
Then, (48) defines clearely a {W,(T}).L}-process, where L is related to K' by (45).

To summarize:

THEOREMN 5: connections preserve causal processes.

i
s

-23.

’ 5. CONCLUSION AND POSSIBLE EXTENSIONS.

We have presented a model to handle the causality in synchronous real time

- systems. The major f'eature of this model is that it takes into account the fact

that real time synchronous systems are mainly governe:d by external input
stimuli. As a consequence, events as well as processes were considered as func-
t'w'ns of the input stimuli. This allowed us to introduce the ‘notions of clocks and
causal pracesses to distinguish events and processes which satisty a reasonable -
time correctness property. A complete set of primitive operators were defined
to buil& any clock from the original one (i.e. from the clock of the input stimuli),

and the change of time references was analysed.

5.1. On the use of this model for the design of the language SIGNAL.

This model to handle time in synchronous real time systems and languages
was at the origin of the language SIGNAL (Le Guernic & al. (1984 1985)) The

consequences of this point of view were the following.

5.1.1. Data flows and events are functions of the input stimuli.

A pfogram. (or "process” in the framework of the above mentioned refér-
ences) is a closed black-box whose communication links with the external world
are fixed and known in a static way. Of major lmportance are the inputs which
represent the possible external stimuli. Such stimuli are modeled in the present
work by the symbol “@&". In the language SIGNAL, data flows and events are thus
considered as functions of the input stimuli, i.e. of w. As a consequence. all the
static timing verlﬁcatlons are performed on functions; see Le Guermc &
al. (1985) for the notion of “clock calculus”, a tool which is not mentioned here

but which is a key tool to build explicitely connections such as (35).

Note that a similar attempt is made in Caspi & Halbwachs (1985) to get

-24-

static verification of the correctness of precedence in real time systems, a
different problem we do not investigated in this paper. The present approach,
however, could serve as a basis to extend systematically the above mentioned
work to handle the same kind of problems when the set of input stifnuli plays a

major role.

5.1.2. Filtering and multiplexing are primitives of the language SIGNAL.

Roughly speaking, a SIGNAL program speciﬁes an oriented network; data
flow along the paths of this network, and are transformed at the nodes (nodes
are referred to as "black boxes"). The inputs of the program specify the input -
stimuli we mentioned above, i.e. the w's, and the time reference, which is noth-
ing but the ordering- of these input data. New clocks are created‘ by temporal
generators, i.e. specific nodes which perform a temporal transformation on the
" data. Let us indicate how the filtering and multiplexing are effectively realized in:
SIGNAL.

The flltering.

This primitive actor takes as inputs: 1) a flow x, 2) a flow y; the values of x
are delivered at the output port of this generator only when x and y are simul-

taneously available. This corresponds to the construction of the lemma 2.
The multiplexing.

This generator takes as input an ordered set X={z!,...,z"} of causal
processes with possibly different clocks. At a given time "t", some of the com-

ponents of X; only are available, say‘fxf ‘,...,zf ™} where m=<n. Since the z,'s are
causal processes, the index m=m, is causal as well. Then, this generator

delivers at its output the ordered values

Z@)T(e.2) T (emy)
which corresponds exactly to the way we built oversampled clocks in (21).

[b

-25-

Clock synchronization.

Causal processes subject to different clocks can be used simultaneously
(i.e. asif they had the same clo'ck) provided their corresponding clocks are syn-

chronizable in the sense of the definition 5. Explicit synchro statements are pro-

" vided in the language SIGNAL for this purpose, since the static verification of the

synchronizability property is a very difficult task (a mixture of logic and arith-

metic verifications).
Causality and time correctness are guaranteed in the language SIGNAL.

Since the only temporal primitives of the language SIGNAL are the filtering,

the multiplexing, and the delays (delays must be non negative!), the paragraphs

3 and 4 of this paper show that any SIGNAL program, whose syntax is correct

and whose set of clocks is well defined and consistent (see Le Guernic & al.

- {1985) for the notion of “clock calculus"), satifies the causality and time correct-

ness constraints.

5.2. Further work.

Several extensions of the present work are possible. First, there is no major
difficulty to extend the present techniques to the .continuous time R instead of
the discrete time we used. This would allow to take into account the non deter-
minism at the input stimuli but not the non determinism inside the real time
system itself. This latter problem would require diflerent techniques to handle
at least the time uncertainty inside the real time system, see for example Car-

delli (1982).

Second, this framework allows to extends some of the tools developped to

_analyse events to take into account that they are in fact functions or the input

stimuli in real time systems. A first attempt in this direction is presented in

Caspi & Halbwachs (1885) for the static verification of the correctness of the‘

-28-

’ time dependencies. A second example is the clock calculus developped for the .

language SIGNAL to verify the correctness of the constructed interconnections.

Bibliographical notes. .

As it was indicated before, the notions we presented here are in fact
directly borrowed frorh probability theory. First, histories are strongly con-
nected to filtered spaces, i.e. spaces endowed with an increasingg family of o-
algebras; in fact, c-algebras can be replaced by partitions when the underlying
space enjoy certain properties of topological nature (e.g. so-called Lusin, Suslin,
or Blackwell spaces. see Dellacherie & Meyer (1976)), thus resulting in an object
very close to our histories. Second, our clocks are nothing but increasing fami-
lies of stopping times, a basic notion in probability theory. Finally, our multi-
plexing construct is very similar_to stacks or gadgets introduced in Ornstein's
entropy theory of dynamical systems. What is indeed non classical_in probability
theory is our study of time changes; this is not surprising, since this study is
entirely motivated by the requirement of programming modularity, an issue

which has nothing to do with probability theory.

REFERENCES

Benveniste (1974) : A. Benveniste, "Processus stationnaires et mesures de Palm
du flot special sous une fonction", these d'Etat univ. Paris V1, Seminaire. de pro-

babilites IX, Lect. notes in Math. vol 465.

Berry & al (1983) : G. Berry, S. Moisan, J.P. Rigault,"Towards a synchronous and
semantically sound high level language for real time applications”, rep. centre
de Math. Appl. Sophia Antipolis.

-27-
Berry & Cosserat (1984) : G. Berry, L. Cosserat,"The ESTEREL Synchronous Pro-

' gramming Language and its mathematical Semantics", Rappart de recherche No
327, INRIA, Sophia-Antipolis, Septembre 1984.

Brookes & al.(1984) : S.D.Brookes, C.A.R.Hoare, A.W.Roscoe, "A Theory of Com-
~ Dunicating Sequential Processes", JACM, Vol 31 No 3, 560-59. '

Cardelli (1882) : L. Cardelli, "An.algebraic. approachat‘o-HardWare.‘descri:ption .and

verification”, thesis, Univ. of Edimburgh.

Caspi & Halbwachs (1962) : P. Caspi, N. Halbwachs,"Algebra of events : A model
for parallel and real time systems," Proc. of the 1982 int, conf. on pafallel pro-
cessing, 1982, pp 150-159 '

Caspi & Halbwachs (1985) ; P. Caspi, N. Halbwachs, "Conception certifiee de sys-

temes distribues: un exemple”, rapport IMAG, to appear TSI

Dellacherie & Meyer (1976) : C. Dellacherie, P.A. Meyer "Probabilites et poté'n.-

tiel" , 2nd edition, Hermann, Paris.

Kahn (1974) : G. Kahn,"The semantics of a simple language for parallel program-
ming", /nformation Processing 74, North-Holland Publ. Comp. ,1974, pPp 471,475.

Le Guernic & al.(1984) : P. Le Guernic, A. Benveniste, P, Bournai, T. Gautier,
"SIGNAL: a data flow oriented language for signal processmg" 1984-1EEE conf. on
VLSI signal processing, Los Angeles, Nov. 1984,

Le Guernic & al. (1985) : P. Le Guernic, A. Benveniste, P. Bournai, T. Gautier, "
SIGNAL: a data flow oriented language for signal processmg" IRISA report

nr.246,

Young (1982) : S.J. Young, "Real time languages: design and development" Elis
Horwood publishers, 1982,

,"

L

