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Abstract 4 :

‘We gathered here some notes on Milner's calculi of processes. We interpret
the terms of these calculi as transition systems. We intoduce a calculus called
MEIJE built on a monoid of synchronized actions and illustrate some general
semantic notions : '

- we show the equivalence of this calculus with some others

- we give an implementation in a calculus restricted to purely atomic actions,

- we show the universality of MEUE with respect to the notion of effective
transition system and sketch its expressive power with regard to synchroni-
zation operators. : ‘

Finally the concept of subcalculus is illustrated through the description in our

language of the class of rational parallel place machines.

Résume

On présente guelques notes sur la notion de calcul algébrique de processus
due & Milner. Ici les termes de ces calculs sont interpétés comme des systémes
de transitions. Ayant introduit un calcul appelé MEIWJE, qui est construit sur un
monoide d'actions synchronisées, on illustre quelques définitions générales con-
cernant la sémantique : , : _ |
- en montrant I'équivalence de ce calcul et de quelques autres,

en donnant une implémentation dans un calcul a actions purement

atomiques, '

en démontrant I'universalité de MEUE par rapport a la notion de systeme de
transition eflectif et en esquissant son pouvoir d'expression quant aux
~ opérateurs de synchronisation.

Enfin la notion de sous-calcul est illustrée par la description dans notre langage
de la classe des machines a places rationnelles.

=

PAPIER RECUPERE ET RECYCLE ' -
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Foreword : This paper presents an overview, thus is not written according to the
rules of mathematical rigour ; in particular il does not contain any proof.

1. Introduction
This paper sets some researches working on Milner's ideas about calculi of
processes {[20] and especially [22]). We mainly address two questicns regarding

concurrent systems :

(1) what is a process ?
(2) how do systems compose one another and communicate ? ~

Concerning the first one we find a rather general concept at the cross-road of
various approaches ([1,5,6,18,28]) : a process is a labelled transition system
([19]) or automaton (cf. [10]), in which states perform some discrete actions
and become other states in doing so. This transition relation is denoted

2 e

pp’

However to be entitled to say that one has parallel systems, one must be able to
take into account the global actions resulting from simultaneous activity of
components. Moreover we shall assume that this activity is the only means to
cooperate. Therefore actions themselves must carry out some kind of communi-

cation. o
" The first point is formalized by Milner in [21.22] by requiring that the set of
actions is an abelian semigroup : to perform simultaneously two actions is to.
perform their product, obviously associative and commutative since it
represents co-occurrence. It is perhaps more correct to understand composite
actions as non-interruplible rather than instantaneous events (see § 6.2) and
_co-occurrence as the synchronization product, ensuring temporal atomicity.
Composite actions are not just multisets : that some actions carry out communi-
cations means tha their co-occurrence creates something new. Here, since we
deal only with pure synchronization, not value passing (as in [20], but see also
[22]), communication will be handshaking : some actions have an inverse, and
they set the abelian group of signal exchanges. Notations: a.b for the product,

a” for the inverse.

Hence parallel processes are transition systemé where transitions are
labelled by actions belonging to some abelian monoid. To compose systems or

’




nets of processes, one usually put them into a synchronization structure or

architecture. For instance the most basic way to combine two processes p and q °

is to build their parallel composition which we shall denote (p || q). More gen-
erally, any composition or synchronization mechanism appears to be a function
" on processes ; we call them operators, and given a family of primitive ones we
construct compound systems by applying operators to constituents. This means
thal we describe processes by terms of a free algebra which sets up a syniazr ;
such an algebraic approach is now widely followed, even if semantical options
differ (for instance see [6,8,15,22,25,26,30]).

On the semantical side we shall keep the informal hypothesis thatl "all hap-
pens through actions” : if the behaviour of a compound system depends on com-
ponents, it only depends on their activity (no shared memory, for example).
This is formalized by specifying the behavioural effect of an operator by means
of structural rewriting rules, following Plotkin's styie ([28,29]) of operational
description. For instance in the "asynchronous” parallel composition we regard
the arguments as independant. Thus the semantics of (p || ¢) is described by
three rules according to the idea that either only one of the components runs,
or both run synchronously : '

a a
if p=»p' then(p | q)-(p'liq)
. b b
Jif g»g' then(p |l q)-(p!¢q’)
3 ] ad ,
if po»p’ and g-q' then(plig)-(p'iq)
c
Moreover a transition {(p || ¢)»7 must be deduced by means of one of these
specification rules. As another example, we shall also use a synchronizalion

operator called ficking and denoted a ¥p by which each action of a process p is

linked to a given action a :
] abd

if p»p' thenasp-axp’ ‘

In most cases a will be an authorization signal sent by a synchronizer.

The first three technical sections of the paper set off the syntactical
aspects of our MEIJE calculus : algebra of terms, built on a commutative
monoid of action, and:operational semantics. In such an algebraic setting, the
above two questions become :

what kind of transition systems and operators can we denote by expressions

of our language ?

However we may only claim to describe the behavioural capabilities of transi-
tions system or operators, even if they are operationally given. Indeéd if one
takes algebras of processes as an approach to programming languages (cf.
[6.16,20]), this means that one wants to "program" for example synchronizers or
synchrenization mechanisms ignoring what are the internal states of such
objects, provided they do their jobs. Therefore we have an informal postulate :
nothing can be said about a system unless it results from observation of its
actions. )
This assumption may be interpreted in many ways (see for example [6,8,12,14]) ;
here and in the work of Milner and others it is brought up through the notion of
bisimulztion, due ‘o Park ([26], see also [5,22]). For we want to describe how
systems operate, not how they can be observed. The idea of bisimulation on
transition systems is the following : you have a (possibly infinite) set of colours ;
then you paint each state of the system one colour. You get a bisimulation if
your painting (partition) satisfies :
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if there is a transition from, say, a blue state to a green state perfofm'mg
the action a then from every blue state your can perform a reaching a

green state.

~ In this formulation "performing the action a” is actually relative to an abstrac-

tion criterion (or set of experiments, see [12]) : a may be an abstract action

realized by some sequences of concrete actions, including perhaps invisible
ones.

This leads to our semantical universe of processes regarded as quotients by
bisimulations, which are still transition systems, on abstract actions. We also
introduce in this universe the notions of morphism (various other attempts have
been made in this direction, see [11,18,31,35] and references in these papers)
and simulation. The latter is here the central semantical concept ; simulations
are "concrete" state mappings which are morphisms on an "abstract” level.

Regarding the operators we interpret the above postulate by assuming that
a semantics is not only a bisimulation but also a congruence, compatible with
the given operators. This means for instance that specificalions and verifications
of a compound system are modularized, coming from specifications and
verifications of the components. Thus an algebraic calculus of processes consists
in : . :
- . a syntax, which is a family of operators (relative to some set of actions)

" - building a free algebra of terms,

- an operational semantics specifying the behavioural effect of the operators.
Thus we get a transition system, the states of which are terms,

-. a semantics given through a bisimulation compatible with the algebraic
structure.

Particularizing simulations to this algebraic framework we get definitions for

(syntax directed) translatjons (cf. [13]) and the notions of -

- realizability of a transition system in a calculus
- definability of an operator

- subcalculus '

which evolve from Milner's work [20,22].

This technical apparatus is presented in the central section (which may be par-
tially omited at first reading). The rest of the paper is devoted to illustrate these
general definitions. :

In section 6 we show that our calculus could be presented by means of other
primitive operators, with the same expressiveness. We also show that parallelism
involving global actions may be simulated, up to an abstract view on action, by
interleaving. After these basic examples (others may be found in [2]) we return
to the motivating questions in section 7. There we show that every effective tran-
sition system is realizable in MEIJE and give de Simone 's result [33] concerning

operators.

The universality of our calculus, as it is stated here, means that in some
respects it is too strong, entailing the undecidability of some basic questions.
Therefore we have to search for less powerful subcalculi. Moreover it is too
abstract : we wo. !d like to have more concrete interpretations such as transi-
' tion systems determined by some kind of parallel machine for instance. The last
technical section is an attempt to progress in these directions. There we intro-
duce the rational parallel place machines which generalize Petri nets. We con-
_clude in discussing some semantical aspects of our propositions.




2. Actions

MEUJE is a synchronization calculus parametrized by a commutative monoid
IM of actions : it inkends to provide some tools for organizing the concurrent
behaviour of procegses which perform actions in M. These actions may them-
selves be communications. If for instance an equation w=v is valid in M we may
understand this equation as a law of interaction reflecting some communication
structure (a similar idea is that of Winskel's synchronization algebra [35]). In
this paper we will not go very far beyond this allusion with regard to action
morioids.

We have to formalize the idea of global action of concurrent system. This
activity results from the behaviour of components running together. Thus a first
approximation is that a global action isa sef of particulale actions. But distinct
components may perform the same action. Therefore global ones are rather
multisets, and even finite such since weshall assume that there are only finitely
many active components in a system. let A be some set of atomic actions ;
here atomicity is ternporal as well as spatial. These may be for instance names
of programs written in some language. If we use a,b,c... to range over 4, a mul-
tiset on 4 is written

Cfa,..ab.nbice
But a more convenient notation is
a™b™c* ... (in any order)
where the positive integers n,m k... are the respective numbers of occurrences.
And union is the sum of respective exponents, thereafter denote as a product :

(anbm ck ).(a"'b m'ck')=an+n' bm*m'cnk'

with unit 1. .

From this point of view, multisets on A (or IN-sets, in Eilenberg’'s terminol-
ogy, [10] chap. VI) are elements of the commutative monoid IN<A >. Technically
IN<A > is the set of mappings f from A to the additive monoid of positive
integers IN such that f (a)=0 for almost all e €4. This monoid of multisets on A
is also well-known to be the free commutalive monoid generated by A. This is
our first example of commutative monoid of actions.

Another basic example is that of free commutative group fcg(S) generated
by some set S of signals. Each of the elements of S, say s, is here a synchroni-
zation action, endowed with an inverses™. The interaction law s.s”"=1 (together
with freeness) says that the primitive communication act is a handshake
between two participants temporarily unavailable for other interactions. For
instance (see [20,22]) we may have ports p,g,r... such that for each value v of
appropriate type there are two inverse actions p,, and p,” for sending and receiv-
ing the value v through the port p. '

If we let for a while s,p,q,... range over S then the actions of fcg(S) are
written

s"p™q* ... (in any order)
with n,m k... integers. For it is well-known that fcg(S) is isomorphic to Z<S>,
the set of mapj‘ngs f from S to the additive group of integers Z such that
f (s)=0 for almost all s € S. This will be our synchronisation group : our calculi
are parametrized by product monoids

T(M)=MxZ <A>

where



- IM is any given commutative monoid

- = {An/n €N} 1s a denumerable set of signal identifiers , or variables, dxs-
Jomt from M. :

We shall use a,8,7... and u.v.w.... to range over A and T'(M) respectively. A pair

(u,v) € T(M) is also written as a product u.v. Thus actions may be denoted

w. a®f™y*... with w € M and n,m k... in Z. -

We say that a € A occurs in u € I'(IM) if a is an irreducible faclor of w, that is :
VBCA.u € MxZ<B>=>a€B : .

For instance a occurs in aaba™2 but not in afaaa™2

Let us recall that a morphism over I'(IM) is a mapping ¢ such that
(1) = (where 1 is the unit of I'(M).)
p(u- V) = p(u).¢(v)
Thus if » € T'(IM) has an inverse u~,p(u”) is the inverse of p(u). In the pure
MEIJE calculus over M we only use pure synchronization morphisms. These are

morphisms which change nothing but a finite number of signal identifiers into
packs of other ones. Thus they are denoted

@ = <UL/ e, U S0 > With uy € Z <A
For instance if ¢ = <af/a> and u E-M then
} e{ua?) = ua?g? and
p(ua™f) = ua”
In the applied version of our calculus the basic monoid IM is a product
M = IN<A > x Z<S>

where 4 is a set of atomic actions, S a set of signals (and A,S A are assumed to
be pairwise disjoint). Here we shall use (applied) synchronisation morphisms ¢
given as

<'U.|/b1 beooy uk/bk> .

for some finite subset B = {by,..., by} of AUS UA.

It will also be convienient to work with finite sets of actions, thus with the
semiring K(IM) of finite subsets of I'(M). We ambiguously use u,v,w... to range
over IK(IM) and denote as usual (cf. [10]) .

0 for the empty set of actions

w  for the singleton {u} when u € T'(IM)

u +v for the union of u and v

w.v for the product {z.y /z€u and y€v |
We assume well understood the notation ué€w for w€I'(IM) and v€lK(M). Here
again we say that a€T" occurs in u¢ I'(M) if

VBcT wCM x Z<B>=>a€B

(a is an irreducible factor of at least one elernent of u).




3. Syntax

Syntacticaly a calculus of processes is a free algebra of terms, relative to a
commutative monoid M of actions. In order to define (by recursion) infinite
processes we assume given a countable set

= {zn/n €N}

of variables or identifiers. We let z,y,z... to range over X. We have two versions
of our calculus : : A
- apure one, where we denote the set of terms by i{X ). In this case we only

use pure synchronization morphisms : intuitively we only will be able to -

schedule processes in these calculi.

- an apphed one, where the monoid M is a product 1‘\'<A >xZ<S> and the set
of terms is denoted dl ¢4 55(X).

In this case we are allowed to use arbitrary synchronisation morphisms ; conse-
quently we will be ‘able to describe more discriminating synchromzatlon
mechanisms, depending on what actions are performed. :

In both cases we use p,q,7,... to range over terms.
The syntax is the following :
(i) each identifier z € X is a term.
The constant 0 is a term
(ii) action: For each u € K(IM) if p isa term then u : p is a term

(iii) morphism : if ¢ is a synchronization morphism and p is a term then ¢p is a
term (if we only use pure morphisms, we are in a pure calculus, otherwise
we are in an applied calculus, with the implicit hypothesis on the form of M)

(iv) recursive definitions : if Zi, 1.0 Ty, Are identifiers and p,p, .,..., p¢ are terms
then
(p where Ty, S Pt Tip = Pr)is a term

(v) restriction : for each signal identifier a € A if p is a term then p\a is a
term.

These are, with slight lexical variations {(but the same semantics, see below)
among CCS's or SCCS’s primitives. This is not the case of the following :

(vi) asynchronous parallel composition : if p and ¢ are terms then (p || ¢) isa
term
(vii) ticking : for each uw € (M) if p is a term then u ¥p is a term..

Let us have a words on static semantics (cf. [28]) : bindings in our language
are recursive definitions and restriction. Therefore occurrences of variables (in
X or A) may be free or bound and may accordingly be substituted or not. We
shall not be very formalist on that matter since it is standard. We merely point
out that:

- an occurrence of a € Ain a term comes through the action, morphism and
ticking constructs. It is bound if it is under the scope of a restriction \a,

that is in a subterm g\a.

- an occurrence of z € X in a term is bound if it is under the scope of a
recursive definition, that is if it is an occurrence of an zi, ing or p;... or pi

in a subterm (g where 7, =Py ... 7, =p;).



- _synta.ctic equality of terms is, as,usual, the conversion equivalence, that is
identity up to the name of some bound variables in some subterms. For
instance

(z where z = ¢ :zx) = (y wherey = a :y)
(o + £) + a=ON\a = (A + ) % A~ D)\A
- " in the course of substitution, we may have to convert bound variables in

order to avoid captures of free variables. For instance, in an applied cal-
culus let '

P =(z where z = ((<a.a/a>z || <a".b/b>y\a | ﬂ*z))
g= axla:z),r = a"x(b:y) '
and let ¢ be the substitution gz , 7 /y. Then .

plo]l = (z'where2' = ((<ya/a>q | <y b /b>r)\7 || B#z’)).

' We call agept any closed term (i.e. without any free variables) and expres-
sion any term without free signal identifiers. For instance

(asz || a”xy)\a
is an expression, but not an agent.

We denote by J‘?}M and En(X) respectively the sets of these terms (and
ot <4.5> € .s>(X) if we are in an applied calculus). o

)

4. Operational semantics .

In the operational interpretation each agent of the calculus is a state of a

transition system, performing some actions in M. Moreover these possible tran-

sitions only depend on the syntactic struture of the term. The word "opera-
u

tional” roughly means that we have a set of rules to get transitions p-»¢ and 4
clause which says that valid transitions are only the ones we get after a finite
game. Therefore it should be more correct to cali operational semantics of an
agent the set of proof trees of its transitions. In this setting a primitive operalor
or an expression without recursicn determines a finite set of rules, thus a way to
transform sets of proofs, and recursion comes tiircugh least fixed points.

A set of rules associated with an operator is iis semantic specificalion, or
operational description. In the following these rules will take the form :

%y % ‘
P1291 e P ™

u
r-q
also written as:

9k . . - o
(with scrme additiona! conditions on aclions)

Uy ©

k u
P17g1 e PG () [T g

-The consequence symbol — must be read, as usual, "if...then..."” or more accu-
rately "from...deduce...”. The transition relation over MEIJE terms

> C (X ) x T(M) xpy(X )

_is the least one satisfying the following rule schernata :-




u

(i) Ri:u€evl vip-p
This is the standard rule for action (or guarding) except that we allow finite sets
of actions as guards. It means that v :p is a process which may first perform an
action in v and then behaves like p. The rule for morphisms is equally standard :

u© elu)
(i) R2:pp' = vop—¢(p)
The most technical case is that of recursion. The behaviour of a term

(p where z; =Py ... &, = Pt)

is that of p in which the identifiers T; stand for p;. But this binding is recursive,

thus in p; itself an identifier zy behaves like p;. Therefore the rule is
(iii) letr; = (zij where z; = py..., 7, = p;)
and

q; = }'7;"[“"1/-7:1'l veser Tk/zig] forisjsk
Then
u u
) R3 1}7[9‘1/?«‘1, reses ‘Ik/zz‘,]"P' F (p where iy TP1 e Ty, = P )P’

The rule for restriction is also well-known ; the effect of the construct \«a is two-
fold : from an external point of view it hides the signal a and from an internal
point of view it constrains the exchange of the signal a

u u
(iv) R4 : p»p’'and a does not occur in u = p\a-p\a
As we have already indicated there are three rules for the parallel composition
which is thus a nondeterministic operator :

(v) R5.1:p5p' (0 119)5®' Il 9)
R5.2 :pop' g’ F (0 1la) > |l ¢)
R53:q¢' - (@ lig)> Il g
Finally :

u uv
(vi) R6 :p>p'andv €Ew [~ w*p->w#*p’

Examples 4

(1) No rule applies to ®. Thus this term does not perform any action. The sarne
is true for O :p and O #p. '

(2) Let
“p = (o % (axa 0| axb 0O)\a
g = (a2 % (asa (D i b :0))\a

(with aeA,a,b €M)



" Then

Rl——a——
RS&: a0 — 0

asa 0 — a0
(oxa 0 || axb:D) = (a»® || axb:0)
a” s(axa D || axb D) = a” #(aD || axb:0)
P - a”#(asd || asb D)\

RS5.1:

R6:
R4:

‘ ”Simivlvarly one may prove, using R5.3, that
b
p-(a” * (a*a 0 || a+D)\a

The reader can verify that the transition graph for p is

/\
\/

Forg: :
Rl—a— 5

. ad— 0 ' h0 — 0
R6: [ ' v ab

asaD = ad axdb:0 — ad

R5.2:— Y
(axa D [axd 0) = (aed || axD)

. ab
a?x(a2a D || ad D) = aPx(asd || asd)
ab
g — (Fad | ad))\a

R8:

R4:

The reader can verify that this is the orily possible transition from gq.
(3) Let

P =(z wherez =a :x).then
e a '
PP R PP

Thus the transition graph of p is pDa.

Similarly if we let ¢ = (z where z = (a+b):z) one easily checks (using R1
and R3) that the transition graph of g is

bcq{)a
More generally for each u € K(IM) we define the clock on u by
[Zu = (z where z-= u 1) ! ‘

Such processes will play a fundamental role. Their transition graphs are .
h.uOv €u ‘

i.e. they are processes which repeatedly perform some action in u (if any) and
reconfigurate in themselves. As in [22] we denote::
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f=h

Another kind of "clock” is :
p = (z where z = 1:(a xz))
Here the number of a actions gives the current date, since we have :

1 a . a? a”
P AP A AL AP . ... DL
(4) Let

p = (z where z = (e ©lz)).

Then we have a proof tree T :

a a a
Ea 050 (a0 lp)>@lp)p +0]
e £ e ~0lp)

With T'; we build a proof tree T,

Rl:hﬂ‘- N Tl
R5.2: 2D — 0

Ra— (28 12) > @] © ] p)
P = @I @5

a® '
More generally if we have a proof tree T, of a transition p-p, we build, following
) a1 ’
the same scheme, a proof Tp410fp - (O} p,).
We shall see that semantically p denotes the process
pOa" (n >0)

This suggests to generalize the definition of clocks to subsets U of M (not neces-
sarily finite). For instance we denote, for u € K(M) :

[hu‘ =(z where z =(u0iz)) ,!

We will see laler for what U the clock hy is actually definable in MEIJE.

(5) Another basic example is that of a hag. Let us assume two actions a and b
respectively meaning putting and rermoving a token. Then the behaviour of a
bag p, initially containing k& tokensis as such:

One can simultaneously
- put (performing a) as many token as one wishes
- remove {performing b) at most k tokens.
In figure :

k\ _aﬂbm

for msk, n+m>0.
These precesses are realized (see [3]) by
[ po = (x where z = {(a:b 0 z))
Pisr = (b0 || pi)

' (po may be seen as an infinite parallel juxtaposition of elementary cells).
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(8) We let the reader find the initial transitions of
P = (z where z = (a0} <ab/a,b%/b>z)).

Once provided this machinery we associate with each agent p a transition sys-
tem, the statius of which are terms reachable from p after a sequence of actions.
The operatioral semantics of expressions is given by functions on these transi-
* tion systems ; examples will be given in section 6 since this is only meaningful at
an abstract level. )

5. Semantics

5.1. Transition systems

We just have shown how operational semantics brings a structure of labelled
transition system on the set of agents. Generally speaking a (l1abelled) transition
system ([19]) (abbreviated t.s.) on a set A of actions is a triple

. ® = QA T) where

- Qis the set of states
- A is the set of actions

- T, the transition relation, is a subset of @ x A* x @ where A* is the set of
finite sequences of actions. ‘

We qualify ® as elementary if T € Q x AxQ
Notations : we abusively let u,v,w,... range over A* ; the concatenation of v
« :

after u is v :v and ¢ is the empty sequence. P29 stands for (p.u.q) € T. We

extend the transitions to sequences by

[4
(@) p=pr
u v

i) it 3g. pog & g=>7 th
(i) if Zg p2g & g=>7 then p=>7
and even to sets u C A* of sequences by

v 173
(#i) if =S u.p=r>q then p=T>q
Remark 5.1 © usually a transition system is given provided with some initial
state. But such systems ® = (Q A,T,q) are themselves states in a "universal” t.s.
if we define

u u
0-0'iff © = (QA.T.q") & q(;q')-

Nevertheless all the following definitions and considerations are trivially
extended to tran.ition systems with initial state provided that in this case we
assume the set § reduced to the states reachable from the initial one through

the extended relation =1'>'

As we have pointed out, it is necessary to somehow abstract from such sys-
tems. For instance one may remark that in the examples above agents such as
@, 0:p and O %p or p and (0] p) have the same behaviour. Therefore we want to
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regard them as "equal”. Equality holds through an abstract view on actions
which we call an abstraction {or observation) criterion. Such a criterion on a set
A of actions is a set of abstract actions (or observables, or experiments, see
[12]) which themselves are non-empty sets of sequences of actions. The intended
meaning is that all sequences of a single experiment eCA®* are held to carry out
the same abstract action. Thus it is natural to assume that elements of a given
criterion are disjoint ; stated differently : an abstraction criterion is determinis-
tic. But it needs not be total : some sequences may be invisible or meaningless
from a given point of view ; similarly a prefix of an observable sequence of
actions may be unobservable (deadlock). Thus an abstraction criterion on a set
A of actions is a partial partition over A* i.e. a set € = {¢; i€/} of disjoint

ahstract actions e; C A* . We also say that a sequence w€A* is observable Jrom T’

if JdeeC.u€e.

The best known examples of this are criteria defining the strong
congruence and the observation equivalence of CCS ([20], see also [22]). Both
are special cases of criteria obtained from projections : let B ¢ A be a set of
visible actions ; then two sequences are observationally equivalent if their visible
content is the same. Therefore observables are here classes in the equivalence

relation
_ uSgy <=> pp(u) = up(v)
where pp : A* - B* is the projection on B. This projection is the morphism of
monoid determined by
up(a)=1if a€Bthen a else ¢
When B = A (i, is the identi‘ty) we get the strong crilerion on A in which each
sequence of actions is observable and distinguishable from any other one.

We intend to define a concept of congruence of a transition sy'st,em in such a
way that we would be able to define the quotient as a transition system on
abstract actions. A congruence of a transition system @ = (Q,A,T) (abbreviated

t.s.-congruence) is a pair p = (C,R ) where :
- € is an abstraction criterion on A and

- R is an equivalence relation on § such that two R -equivalent states can not
be distinguished by means of the observations from €. Formally :

Vgeq Veel Vpeq Vg'eq
ifg=>p & (9.9") €R
then 3p’€Q.q'=;>p' & (p.p)eER

This commutation property is usually drawn

P - - - - e =@

Brookes & Rounds [5] call such a relation R invariant ; it seems that these are

weak homomorphisms of Ginzburg (see [26,31]). The terminological situation

about "bisimulations” is rather confusing (compare for instance [5,22,26,31]).
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¢

Note that since we require R to be a symetric relation, the symetric schema
also holds :

— R—.
"

e [

v R_..%

" We call C-congruence of transition system (or simply C-congruence, and strong
congruence when € is the strong criterion) an equivalence R on states such that .
(C.R) is a t.s.-congruence. o '

For a congruence o = (C,R) on @ = (§,A,T) we define the quotient system
8/p to be

®/p =@Q/RLT/p)

where (denoting by np :®@ » @ /R the canonical surjerftion)
[-] . e
mplg) itf Ir p=> -
ﬁa(p)r-/*p r{g) i T ppr & (rg) e R

In diagrams :

o

‘et —

v - i
Vo TR Y 4 v R

|

A quotient of a system 8 may also be called a reduction of this 'system.

Remark 5.2 : if € is the strong criterion and @ is elementary we shall regard 8,/p
as an elementary transition system on A. .

Examples 5.1

(1) With the strong criterion, the elementary transition system (where all the
arrows are implicitely labelled by the same action)
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(2) Vith the criterion on A = {a,b} associated with the projection on B ={a} in
which observables are T= {b™/nelN} , {6 'ab 2. 6% ab ™ /n, € N} = &
the system

(GO
is a reduction of
[
AN
. [ ]
VAN
L ] [ ]
‘y .
Y \

(3) In MELJE the equivalence relations on agents generated by

0l p)/p <ol
el q.9 lp)/P.g €}
foll (g lir)@lg)lir)/p.q.r ety

are strong congruences. :

An interesting fact (see [2,5,22]) is that an abstraction criterion € in itself
determines a C-t.s.-congruence in which the only means to distinguish states is
observation of actions (for instance this constrasts with example (3) above
where the "structure” of states is taken into account).

Lemma 5.1
For any transition system @ = (Q,A,T) and for any observation criterion € on
A there exists a coarsest C-t.s.-congruence ~¢ on 8 i.e.
(i) ~gisaC-congruence on @
(ii) For allC-congruences R on® (p,g) €R =>p ~¢ g
Notations : we shall use ~¢ uniformly disregarding the transition systems ; simi-
larly the equivalence class of a state p in ~¢ is denoted [[p[{l¢ (respectively [Ip{]
when € is the strong criterion). Following [5] we might use the name '"C-
bisimulation” for ~g ; in order to avoid misunderstanding we prefer to call it C-
equipollience. : '
The above assertion may be stated as a very useful proof principle, which is
nothing more than Park’s induction :

Proposition 5.1 (the proof principle)
Let ® = (@Q,A,T) be a transition system and € an abstraction criterion on A.
Let S be aC-congruence on ® and R a symetric relation over Q.

If forall e €C

. R s,
e "e
(£}

V...(RuSY.. ¥
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e e
ciep=>p' & (p.q) € R=>3q'-q=r>q' & (p'.qg') € (RuS)™

(where (RUS )* is the reflexive and transitive closure of R uS)
then (RUS)* is a C-congruence

thus(p.g) € R =>p~q
In this statement S is a set of already proved "equalities” which serve as
hypotheses to prove R C ~¢.

The notion of morphism is usually strongly related to that of congruence.
Here the intended intuitive meaning is that a morphism from a system 8 to
another one €'is a representation of © in 8'. Therefore it is natural to assume :

- soundness : if the representation of a state ¢ of ® can carry out the
representation of a sequence of actions u then ¢ actually carry out a
sequence v with the same representation.

- completeness : if a state ¢ of @ can carry out a representable sequence of
actions u then its representation actually carries out the representation of

u.
Let 8 = (Q,A,T) and @ = (Q.B.T"') be to transition system. A morphism from 8 to
@' is a pair (y.¢) such that S,

" ¥ is a partial mapping from A* to B* which tells which sequences of actions
in 8 are represgnted by sequences in @', and how

- p:Q-Q tells how states of ® are represented in &’
and this pair is subject to satisfy the properties :

LT S 4w
{-}—i?—————b. . qﬂ :'
for  wveE(AY) . for w € dom (Y)

(we omit the formal statements)g

This notion of morphism is only an attempt among others called reduction,
abstraction, contraction... see references in [1 1,18,31]. It is easy to check that it

fulfils the usual requirements :

(1) for each 8 = (Q.A,T) the pair of identities on Q and A* is a morphism. The
composition (Yoy'.pog') of two morphisms is a morphism.

(2) Letp = (C.R) be a congruence on 8 and
v :A*-»C  (partial) given by
Y(u)=eiffu €e
"Then (¥.ng) is @ morphism from ® onto the quotient 8 /p.
(3) Let ®<¢cQ BCA and 8 be the subsystem (Q.,B,T') where
T'=Tn (@ xB*xqQ).
Then the pair-of canonical injections is a morphism. .
(4) If (¥.¢) is a morphism from © to ©' and -
C={y ' (¥(u)) /v € dom(y)}
(P.g) € R <=> ¢(p) = ¢(q)
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then € is an abstraction criterion on A and R is a C-congruence. Moreover
8 / (C.R) is isomorphic to the image subsystem (¥.¢)(8) of €.

In these notes we regard semantics of a system ® as a quotient by a
congruence p. Therefore a question raises : how can we "concretely” define a
representation of ® by another system @' in order to get a semantically sound

_representation ? Or technically stated (with the previous notations) :

let
- p'=(C.S) be a congruence on &'
— ¢ a partial mapping fromC* (o C'
We want to find "concrete” mappings ¥ :Q » ® such that there exists
¢ QR - Q. /S satisfying
(i) (¥.¢) is a morphism from 8/p, the semantics of 8, to 8 /p’
(ii) the diagram

. 8

/S

Q@ /R

commutes (ng0¥ = pong)

An immediate observation is that if such a p exists then it is unique (notation :
¥7), thus "concretely determinded” by 1.

We call such a triple (¢,9,p') a simulation of (8,p) by or in @'

Another observation is that a necessary and sufficient condition of exitence for ¢
satisfying (ii) is

(p.g)eER => (B(p)¥(q)) €S

and if moreover the converse is true then ¢ is injective. (We have a "simulation
criterion"” analogous to proof principle for congruences, but it is rather
technical ; and since we shall not give proofs explicitely using this criterion, we
do not state it here).

The semantical notion of simulation is the central one of this paper, once
particularized in two nested kinds:

- a simulation (¢,3.0') is a (correct) implementation of (8,p) in © when ¥
does not shade off the semantical criterionC, i.e. is an injection from C toC’,
and similarly ¥~ is injective. Thus an implementation gives a concrete and
semantically exact image of a system, up to an observation criterion on the
target system, where actions of 8 /p are "implemented" as abstract actions.

- Let us assume that ® and ©' are t.s. on the same set A of actions and
p' =(C,S). Then ¥ is a C-realization of (8,0) in (',p0') if (idg.¥,0') is an imple-
mentation. Here we get a fully exact image of the semantics of @ as a sub-
system of (8',0') by means of the concrete state mapping . 'When C is the
strong criterion we call ¥ a strong realization.
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5. 2. Algebraic systems

In these notes we are mainly interested in algebraic transition system
(abbreviated a.t.s.) 8 = (A, T) with respect to a family F of operators. This
means that the set of states is the domain of an F-algebra. Thus for all f € F of
arity k we have a mapping

fo:Q -Q
(we omit the reference to 8 if it is understood)
N.B. : we assume here some famlhanty with the standard concepts of algebra ;
see for instance P.M. Cohn "Universal Algebra" (Harper,and Row, New York,
1965).
Let us take F as a set of operator symbols and X as a set of variables or parame-
ters. Then we get syntactic objects which are the terms built on X by means of
the constructors f € F'. These set up the domain 7g(X) of the well-known free
F -algebra on X.
Notation : T for 7¢(¢), the set of ground terms. For instance this is the way in
which MEIJE agents and expressions are built.

As usual terms ¢ € Jp(X) are interpreted on an algebraic system @ as func-
~ tions ¢® of evaluations of the parameters in §. These are mappings v : X - Q
assigning to each variable a value. Let us recall the definition :

z®(v) = v(z) forz € X

I (tytn)(v) = Falt 2 (V). t:2(V))

Obviously t®(v) only depends on the value of variables occurrmg in £, thus ¢t®
may also be regarded as a mapping from Q toQ, if there are k distinct variables

occurring in ¢.
Examples (in MEUE) :

t = (z where z = (1:z || y)) will represent a function of one argument
(narned y ) on processes, while

‘t'= (a” * (axa | axy))\a will be a function of two arguments named z and
v.
A value £8(v) of such functions is called an instance in Q of the term t.

This allows to specify the transition relation of an algebraic system by a set
of rules, as for the operational semantics of MEIJE (or CCS [20], SCCS [22] and so
on). If we regard the operator f as a synchronization mechanism, each rule is
one element of a non-deterministic strategy for f indicating"

.- which components of a system (composed by f) are allowed to proceed,
L. what are the simultaneously permitted actions, and

- how the system recomposes a global transition (actlon and reconﬁgured
state).
Therefore these rules take the following general format (cf. [33]) :

u; u;
;,-il-»x'il....,x,-k—)z'ik,('u.x....,‘uk.'u) ey
R: =
£ @) 1

(a rule for f on A, also differently stated ..;=...) where :

~ TynTn Ty Ty, are distinct variadles and izil,...,x,-tf C{Tyn 2y}
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We let for 1£75n ' ‘

z'y 1fj=% for some I (1slk) ,;'

= T - otherwise

|
c
2

¢ A**!is a predicate on actions

- tisaterm ofyp"(i:r’;,....x',,}) in which each z'j occurs at most once.

(thus look-ahead in the future of the arguments is forbidden as well as duplica-
tions). - '

Examples 5.2
The generalized clocks hy for U ¢ A are specified by

. u
~‘u€Ul'_hu-*hU

(considering hy as a constant symbol)
We even generalize a little more to U ¢ A¥*!:
u; U .
oz T 2T (U ) e U

u
hu(x free0sTh )"’hu (:z: '1""':’1:)

(for instance ticking u ¥z is such a synchronization mechanism)

We call semantic specification (of a set F' of operators, on a set A of actions,
abbreviated (#,A)-specification) a set & of such rules. We say rather informally
that an elementary F-algebraic transition system © = (Q,A,7) satisfies this
specification iff

for any state ¢ = fa(g 1. qn)

u
q—qu' iff this transition is the conclusion drawn from an instance in Q of a &

rule.

Remark : a "specification” here is thus required to be exact and complete. We
shall not study the interesting notion of "satisfaction of a specification up to an
abstraction criterion on actions”.

Now when 8 = (QAT) is an F-algebraic transition system we obviously
refine the concept of congruence : an F-a.t.s.-congruence (for short F-
congruence or even congruence if no confusion is possible) on ® is a pair
p = (C,R) such that

- p is a t.s.-ccngruence

- R is compatible with the algebraic structure, i.e.
for all f €F if (p1.91)€R,....(Pn.qn )ER then
(Fo(P 1 Pn)f (@1 qn))ER
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In this case, where we still qualify R as C-congruence or (F .C)-congruence. the
quotient system 8/p is also an F-algebraic system. We recall the standard

definition: :
£ 0p(mR (P )reeTR(Pn)) = TR(F 6(P 1. Pn))

(we recall that mg(p) is the equivalence class of p in the relation R).
And we have

Lemma 5.2

let 8 be an elementary F-algebraic' system satisfying a semantic
specification ® of F. . o '

(i) if R is a strong F-congruence -on @ then the quotient system satisfy the
same specification ,

(i) the strong equipollence ~ is also an F-congruence (i.e. compatible with the
algebraic structure).

Let us now introduce the notion of algebraic calculus of processes. A simple
algebraic calculus of process is a structure Q= (F,A,®,p) where as before

- F is a family of operators
A is a set of actions P
. ® is a semantic specification of F on A

- p=(C.R)is a semantics

Let us see what a semantics is : first we call agents of the calculus the ground
terms belonging to Jr. Then we define an operational transition system on
agents

Op(@) = @r AT)

where T is the least transition relation satisfying the specification &. Then p is a
semantics if it is an F -congruence on Op (@).

The semantical universe of the calculus ( is the quotient system
' Sem (@) = 0p(@)./p = Tr/R LT /p)

in which the states {equivalence classes of agents) are the processes of the cal-
culus. Equivalently process determined by an agent p might be seen as a sub-
system of Sem (@) with ng(p) as initial state (cf. remark 5.1). The transition sys-
tem Sem(®) is also an F-algebraic one. Moreover it satisfies the specification b

if € is the strong criterion. Expressions of Jp(X) give derived operators on this
system with which the semantics is still compatible. ‘

‘However these calculi are too simple : there are no binding operators. When
we have such operators the semantics of expression is given by means of substi-
tutions. It seems fairly easy to extend a simple calculus to another one with
recursive definitions of processes (see Prop. 4.6 in [22]). The situation is more
delicate concerning operators such ‘as restriction. A more careful analysis of
the syntactical aspects of the semantic specifications is needed here. In particu-
lar one has to bring out the action parameters of an operator, occurring in the
corresponding syntactic construct. This point is not yet clearly elucidated.

‘Therefore we shall keep a rather vague notion of algebraic calculus of
processes. Such an object is a structure :

Q= (F.AT.p) - \

where
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- F is a set of operators. We assume that some are bindings with respecl to a
set X of process identifiers and a set of action identifiers (disjoint from the
set A of actions). Accordingly one defines the setscty of agents and Ep(X) of
expressions. As in MEUIJE agents are closed terms and expressions are terms
in which action identifiers are bound.

We also assume defined the operation of substitution and denote t[p,,...,p, ]
the term t[p;/zil..--.pn/r.;“] if z; ...z, are the free process variables

occurring in £.
- T cotr x Axdty is the transition relation
- p=(C.R)is as before a semantics, i.e.
(i) R isaC-congruence on (Ar,A,T)
(i) R is compatible with the expressions : for all expression ¢, for all
agents py,....pn.q1.....q

(;:-ql)ef? v (PniGn)ER => [Py pn )t [q1e.ongn ])ER

Then expressions ¢ define derived operators [J¢ ﬂ& on the quotient semantical sys-
tem

Sem(a) = & /RE.T /p)

The "extensional equivalence between expression is defined by
(t.t')e R iff' ﬂ‘”a= I]t'[]a

(when R is the C-equipollence ~¢ we get the notation ~)
Obviously we regard simple calculi as special cases of algebraic calculi. Con-
cerning MEIJE we have :
Proposition 5.2

the strong equipollence ~ is a semantics of the MEIJE calculus.
In fact all the calculi considered in the following will be equipped with the strong

equipollence as semantics. One may observe some apparently strange
phenomena in MEIJE such as

\a~zx

However this is not so surprising : since ¢\« binds « in the "text" of the expres-
sion ¢ , if a does not occur in ¢ then obviously t\a ~t.

We conclude this section by particularizing the notions of implementation
and realization to algebraic calculi of processes (an implementation of a cal-
culus into another one might be called a compilation). Let @ = (F,A,T,p) and
2 =(G.B.,T"p') be two calculi of processes where p=(CR) and p' = (C.R")
respectively. Then
(1) we first want to formalize the idea of syntax-directed implementation. Here
each primitive construct of the source calculus is "implemented” as derived
operator, ie. expression, of the target one. Let ,

- p" = (C",R") be a t.s.-congruence on the semantical system Sem ((A)

- %:C > C" an injective mapping '

- ¥:F -7U;(X) a mapping such that if the arity of f €F is n then 9(F) has
exactly n free variables.

This mapping is algebraically extended as 9* from 7 (X) toT,(X) by

(
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9*(z) =z for z€X
O*(F (E1,etn)) = B(F)[0*(¢1).....9%(tn)]
(note : we keep the same notation for its restriction to-agents)

We suppose that 9* preserves the notions of agent and expression. Finally let
- ¢ be given by the commutative diagram

ot A

? ~ . ﬂRI

~

A 1
(A:G/R

Then (¥,9.,0") is a translation (or a syntax-directed implementation) of the cal-
culus @ in the calculus B if (¥,p.p") is an implementation of the "concrete” (or
syntactic) system (dfr,A,T) in the system Sem(B).

(2) ‘the calculus Q is a subcalculus of B if each primitive construct of & is
definable as a derived operator of B. Let us assume that A = IB and € =C'. Then
@ is a subcalculus of B if there exists a mapping ¥ as in the point above. such
that ¥* (restricted to agents) is a C-realization of Qin 2.

The remainder of these notes is devoted to illuétrate all these abstract
semantical concepts.

6. Equivalent Formulations and Implementation -

6.1. Subcalculi

Cur ﬁrst,examp}e of MEIJE-definable operatdr is Milner's synchronous pro-

duct [21,22] (p xg) given by the specification (on any monoid IM).
. u v wv

pop' . 90 g (pxq)- (p'xq))
This is a.kind of parallel éomposition in which components are not allowed to
proceed mdependen-tﬂly."l.’o define this operator in MEIJE we have to "tick" the
two cc?mponent -a priori independent- by the reception of a signal and to place
them in a context which sends two signals synchronously. Thus we let

[zxy ~ (c®x{a" %z || o~ sy ) \a | .

(for some a€A)
In [2] we gave other formulae :
zxy = (a*z || a”+y)\a
o (@i || axy) | A \a

Remarks : this is ‘the first step to show the equivalence of some calculi, in the
sense that each will be a subcalculus of the other. Thus we could have formally

defined a translation

8(x) = (a®#{a” %z || oa"xz2))\
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amlsoﬁon : however we shall stay at a more intuitive level. A second remark: is
that if we would not take the restriction as a binding operator, then we would not
bfa able to define uniformly operators by formulae. For instance if \a does not
bind a then e[a0.a:0] where e = (a®s(a" 2z || a”#y))\a does not perform the
synchronous product of a:0 by itself. On the contrary we avoid here sorting con-
siderations (for processes as well as for the semantical equivalences of expres-
sions). :
Obviously ticking is strongly related to the synchronous product since

buzzhuxr |

Wif.h ‘tl‘mis fundameptal o.perator we can define another one which was l’.ak!-i'l’-l";SA
ermltwe in [2], tngge_nng (u=>p)ofp by u , foru € IK(M). This synchroniza-
tion has the effect of linking each initial transition of p to some action in v and
then vanishes :

v . . wy
p-)p"weu l—— (u:)p)—;p.

The definition is :

'l=>z: ~ (u:l) x z |

(let us recall that 11 = &, , cf. [22] and example 4.3).
This suggests to define for each u €K(IM) a process called the trigger (on u) by

Then we derive an operator which is very often regarded as primitive, the well-
known (binary) sum (p+q) :

u u
pop' F opgop’
v v
g»q' = p+g-g’
In order to realize the sum, we have to trigger the two arguments on the recep-

tion of some signal and put them into a context which sends only one signal. The
expression we gave in [2] was

z+y ~((a"=>z || a”=>y) | a:0)\a

Another one is :

lz+y ~ (o =>(a"=>z || a~=>y))\a |

Thus we see that in our calculus non-deterministic choice results (with the pres-
ence of confluent non-determinism in the parallel composition) from unarbi-
trated cornmunications.

Remark 6.1: at tpis point we must mention the fact that oﬁr primitive operators
u:p and u xp might have been restricted to w € I'(IM). If we are in a calculus
applied to <4,S> they even may be restricted to

w€Y where Y =A US USTUAUA-
(with A= = f)x‘/A*EAI'a'ndsimilarlyfor S7).

For we have :
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0:z2~0%x =0, 1%z >z

iz (a0 || a:z)\a
(utv)iz 2u:z +viz
(u+v)#z = huiv)XT

(wv):z =u=>(v:z)

(wv)*x ~ u #(v *z) .

Yet another derived operator : the interleaving parallel composition (p |q)
in which the components are not allowed to proceed synchronously :

pop' F @19)3('lq)
q:q' = (plq):(plq") :

The expression _deﬁging'th-is operator in MEIJE is similar to that which defines
the product but obviously we have here to send only one occurrence of the sig-

‘nal to the components :

(2 ]y ~ (@ + (o-#z [ a-sy))\a |

This. operator allows to express a desynchronization construct similar to that
used in [21] by which the behaviour of a process is at any time delayed :

-V (p) ¥ (@)
pop' F V()27 (@)

| It is trivially given by '

[V(z) ~ (z]m)|

As we shall just see the situation is summarized by saying that we have (at
least) three equivalent formulations of our MEIJE calculi. That is we have three
calculi M (MEWUE), ¥ (a variant of the early SCCS [21]) and 6, each of which
being a subcalculus of the others :

) Mo | S | €

action

wip (uwel(M))

restrictionp\a - A all primitive

recursive definitions

morphism ¢p : optional

ticking derived . derived
| uap (uel(®)) ’

parallel composition derived - derived
| (pllg) ‘

_ desynchronization derived derived

v (p)
__fproduct D Xg derived
__Eltérleaving plg derived ~ derived

(the blank -spaces ought to be filled with "primitive”)
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Remarks : implicitely
- all these calculi are relative to a monoid I'(IM)
- the common s 2mantics is the strong equipollence

We have seen how to derive the primitive operators of ¥ and B in MEUE, and
some other equaticns : :

Uz = hy Xz
u=>z ~Tyxz (with 7, = u:1l)
V(z)x(z!1)

Thus for the other "inclusions” :

[(z]y) = ((h xz) x V(h_xy) x h)\a |

This allows to define the sum in ¥ (and in'G) :
z+y = (a=> (a"=>z | a"=>y))\a
Therefore we can define for example a clock

harapep = (z where z = a:z + af:z + B:x)

Th"eﬁ

Lz I y) = (a+ap+p) + (Yo~ +z) x V(F~ sy ))\ouB |

- The equivalence of b and f is that of two standpoints out of which

- the former sets an "asynchronous" parallel composition, where the com-
ponents are priori independant and synchronized by some tools (ticking,
restriction)

- The latter comprises a synchronous parallel composition and a construct to
desynchronize (but also a synchronization mechanism : restriction).

The calculus & seems to be the "most primitive" one (exercice : write the exact
formulation -without ticking and sum- of || in ¢?). The calculus & lies upon the
distinction of the two fundamental aspects of parallel composition :

- mutual exclusion enforced in the interleaving operator, used as desyn-
chronization

- temporal atomicity of global actions insured by the synchronous product
(see below, chapter 6.2)

We shall not distinguish these calculi, using the primitive of one or the other
according to which is the more convenient. '

Remark 6.2 : in SCCS [22] Milner uses some "infinitary” constructs : infinite
sums or recursive definitions, and also more general restrictions parametrized
by subsets of the action monoid :

u v
pop' u€B—p N Bsp' N B

_(this is a genera, zed clock, see example 5.2)

Here we want to have more "syntactical” (effective) constructs. We shall see
what is lost in doing so. But pursing this spirit we might have define a calculus

A5 with
- action, parallel composition, recursive definitions and .

- a unigue synchronization construct called interfacing.
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In such an operator p |U (p interfaced by U) the given subset U of (M) x I'(IM)
tells what actions are allowed to pass through the interface and how they are

modified :
’ u . v
pop . (uv)el |- piU-p'|U

This is a generalized clock (cf. example 5.‘_2) which gAat_hers restriction, morphism
and ticking.- ' o . .

However such a construct is too abstract (for instance how does it bind signal
identifiers ?). ' - . .

Some other remarkable classés of processes are realized as subcalculi of **" "™~

MEIJE. A first example is that of finite processes, or finite automata but without
" terminal states. A finite process is given by a transition system with initial state
8 = (Q.A.7.9) such that Q and T are finite sets.. These are our finite objects in
the semantical universe of transition systems. It might be rather clear that if
A ¢ M then finite processes on A are strongly realized by agents of the subcal-
culus 7y of MEIJE whose syntaxis ' ' .

- the constant® B ) .
- actionu:p for u€K(M) .
- :sum p+gq , recursive definitions

Indeed Milner [23] has given a complete (with respect to the strong equipol-
lence) axiomatization of this calculus ; as usual completeness lies upon the
" existence of normal forms for agents of the calculus. These are terms of the

form
(z; where ....z; =- 3, uliz;,..)
1575k

in which it is easy to recognize a.ﬁnite automaton : zy,...Zix represent slates
(with z; initial) while the system of equations is nothing else than a linear gram-
- mar representing the transition table.

For example the equations of
‘ a
O—— &
PO —— .
s,\ / b

are .
.z, =0:z,+a:zp+ (b+c)izg + 0:z,
z:=0:z, + 0:Tp +cizg+a:z,
and so or. _ .
 With 1 as initial state, this process is'also reatized by the term

(b+c)D + a:(z where z = c:0+ biyy =a:z)
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In a similar way one may describe the: context-free grammars by a subcal-
culus A’of MEUE called in [2] that of sequential non-deterministic processes. Its
constructors aure .

- the constant 0

- actionu:p for u€K(IM)

- sum~p +¢ and sequential composition p.q
- recursive definitions

Let us explain what our sequential compoesition is (s.a. [6,20]). Assume we are
in calculus applied to <4,8>, whereseS is a distinguished termination signal.
Then the specification of p;g (implicitely parametrized by s) is
u 1’3
p-p'.s does not occurinu pig-pig

us
P~ .,s does not occur in u ua

v Fpig-g’
q-q

This operator is expressed in MENE (ct. [2]) by means of another one p \ s
z\ s x (a%<fs/s>z || (y where y = o™ 1y + a~f 0))\a.B

(z u:ntil S, which kills X as soon as it has signaled its termination)
z;y =~ (<a/s>(z\( s) || a=>y \a

Remarks : here we see a use of applied mo: phisms in order to synchronize on
specific actions. Qur formulation, compared to that of CCS [20], shows the fruit-
fulness of Milner's idea of action monoid : here we do not have to look at this
synchronization upto an observation criterion hiding internal .communications.
Moreover we do not have to modify the fezt of the synchronized agents : ‘we sim-
ply put them into synchronizing expression.

Then for example the well-known grammar for the language of sequences of
n a's followed by n b's (n20) is translated as

(z where z = s7:0 + (a :z);(b :5 D))
~ And for the Dyck’s language on {a,b}
(z where z = s™0 + (a :z );(b :z) + (b :z)i(a 1))

(see [2]). '

We have given in [3] another example of a class of process realizeble as a
subcalculus of MELJE, that of systems determined by labelled Petri nels. From
an informal point of view, a calculus seems to correspond to a lunguage where
one frelly uses the primitive constructs to "program’ processes or synchroniza-
tion mechanisms wheras we have an image of the idea of architecture as expres-
sions built with some "static” operators. For instance in MEIJE the static opera-
tors are restriction, morphism, ticking and parallel composition : they set an
immutable structure upon their arguments. Let us call for a while "synchroniz-
ing net expressic 1s"” the expressions got from this syntax. Then any such term ¢
with free process variables z,,..,z; each occurring once only may be shown
equivalent to a normal form

(ux*ﬁf’l:x | Uy *@ T || Asyn)\V

for some finite subset V of A, where syn €F is a finite synéhronizer



- 27 -

6.2. Implementation

It is often.argued that parallelism is legitimately simulated by interleaving.
Here we give a precise meaning to this assertion. It lies upon the duality of the
notion of atomicity { = non-interruptibility) in the action monoid and the notion
of abstraction criterion introducing atomicity at an abstract level.

A preliminary remark :'in a MEIJE calculus (in any formulation) we may res-
trict the morphisms to be alphabetic , looking like relabellings of CCS, that is of
the form <... u/a ..> where u€A. This was already pointed out by Milner in
[22]. We leave its proof to the reader (hint : use the clocks h .). We want to

implement the B calculus applied to <4,S> (with a termination signal s€S) in ...
which the action constructs u:p are restricted to u € YU{1] (see remark 6.1.
Werecallthat Y =A US US"UAUA),

The crucial observation is simply that the commutative monoid
(M) = N<A > x Z<SUA>

is nothing else than a quotient of the free monoid Y * of sequences on Y'*. Namely
by the congruence given by the relations: :
ww=viuforalluw
~ w:u” = & (the empty sequence) for u € SUA
Notation : n(u) € Y*is the equivalence class of u in this congruehce. :

In the target calculus ©' only "particulate” actions (cf, [22]). ie. in Y, are
allowed. Then in our translation of 8 into €' a composite action u of I'(M) is
represented by any sequence v such that n(v) = u. But this is not yet sufficient
since we also have to distinguish sequences of composite actions. Therefore we
need two particulate actions d and f, not in Y, indicating respectively the
beginning and the end of a non-interruptible action in 8. For instance a

sequence d :a :a” : b :a:f represents a.b . Thus an action u € I'(M) is
represented by any sequence of the set

Yu)=1{d :v : f /u=n()

Let
$=1{tu} /u eT(M)}
C = {y(u) /u € (M)

These are observation criteria respectively on T'(IM) and Y' =Y U {d.f}. And
v:$-C is an injection. .

Remarks : § determines the same equipollence ~ as the strong criterion. Note
also that some sequences of Y'* are unobservable fromC.

Now in the target calculus 8’ the parallel composition acts as interleaving
but with some rendez-vous mechanism in order to synchronize. Thus this cal-
culus has some similarity with TCSP [6]. The syntax is :

(i) Oisatermof §';each identifier z€X is a term of €'
(ii) ifa€Y' and is a term thena:p is a term
(iii) if p is a term and ¢ an alphabetic synchronization morphism then ¢p is a

term ,
(iv) if p and g are terms of €'then p+q and p:q are terms of &'

(v) if p and g are terms of &' and B is a finite subset of Y' then p |p g is a
term of B’ ;
(vi) recursive definitions, as usual. : .
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g
Note : the composition operator | binds the identifiers a€A such that a€B or
a"€B. :
The semantics of the parallel composition operator |g is that the two com-
ponents are interleaved except when they perform actions in B, on which there
is a rendez-vous. This is similar to Milner's conjunction &g , see [22.2] and to de
Simone ' s “produit de mixage” [32] :

pi‘»p-'uza (s 9)+(®' |5 q)
p-*p q-'q "beBt (o 15 q)
q"?'-u,fﬂ @ I Q)"(P ls q')

In order to define a syntax directed implementation of 6 in ' we obviously
need some synchronizers :
- the first one ensures the correct scheduling of abstract actions, excluding
overlapping :

sem = (z where z =d : f : z)

This is just a simple semaphore, performing repeatedly the sequence d :f .

- . “the second one, used in the translation of restriction, controls the balance
between occurrences of a and a~ (a€A) during the course of an abstract
action :

(d:y)i(f :z).
s7:0 + (a:y )i{a:y) + (a™:y)i{a:y))

(y perforrns sequences in a Dyck’s language, in which a occurs as mahy times as
a”, and z is the iteration of y, see [2,6])

syn, = (z where. z
Yy

The translation ¥ is now fairly obvious :
@ »0)=
(ii) ¥9(a:=)=d :a : f :z ForaeY
and 9(1:=)=d : f :z
(iii) ¥(p-) = oz

(iv) ¥(- where Ty = ey, = -) = (z where Ti) = Y 1Ty, = Vi)
(v) B8(-\a) = (z|p syna) with B,={d,f.aa"}
(vi) 9(—|-) = ((zly)lpsem) with B'={d,f}(and | = |,)

(vii) #(-x-) = (z |5 ¥)
Our purpose is achieved since
proposition 6.1
the triple (¢,%,(C.~¢)) is a translation (syntax- dlrected implementation) of
€ in %"

The situation in this implementation is muh simpler than, for instance, the
more realistic problem of transla'ing CSP in CCS (cf [13]).

7. Definability results

Unt:ll now we have seen only examples of what can be defined in MEIJE or
any equivalent calculi, that is examples in the semantical universe of MEIJE
processes and operators. But the two fundamental questions remain '
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- what is the class of MEIJE-realizable processes ?
- which operators can be defined by MEIJE expressions 7 -
To the first one we get, by means of de Simone ' s results {33,34], a rather com-
plete answer. The second one is more difficult. 4
We study these problems in the part-culdr case of processes on & free com-
mutatwe monoid IN<4 > of actions with 4 = {ay,...,2;,3 -
It is well-known that such a monoid is isomorphic (by Pari)}'.h‘& mapping) lo
IN™ , the additive monoid of m-uples of positive integers. Taus we have a notion
of recursively enumerable or computabie subset of IN<4 >
U ¢ N<ay,....a,; > is computable iff
(M yreerin) / @ Yoo @™ € U3 is a recursively enumerable subsel of N,
This definition is obviously extended to predicates, that 1s U ¢ I<4 DL
corresponding to subsets of N¢™
In the sequel we let M = IN<ay,...,a;, > X .71. :S> (though the set § of signals does
not play any rdle). The crucial result is : '
Lemma 7.1 {de Simone [33,34])
Let f :IN*»IN be a primitive recursive function, u €4 and x{(a.f) the opera-
-tor sppmﬁed on (M) by the rule:

u,a ™ ya "
\Zy xl,...,:c,,_ nd I‘k.
w; € N<A—{a]>xZZ<Suh>,
I(ng..ny)

v =uUp.U @

v
= oxa.f )Xz . ooze) 2 x{a SNz
Then x{a.f ) is strongly definable in the MEWE applied calculus obcs,s> *

The proof (sce [33,34]) gives a construction of an expression e, for f (we impli-
citely asssume a fixed) by induction on the scheme of definition of f :

(i) If f is the constant function f(n,,...n,) = 0 then
ey =<1/a>z  x...x<1/a>z

(ii) If f is a projection f (ni,....nk) = ny then
ey =<1/a>z % ... X3 x...x<l/a>

(iii) If f is the successor function:
ey = Q *T, '

(iv) If f is a composition :

[

f(nl-"--nk) = g{g1(n1n)engi(mynny))
then ' '

ey = epleg, ZTieq /7]

(v) vaf is defined by primitive recursion, for instance
f(on)=g(n)
f(+1n) =g (f(Ln)lm)
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then

e, = (<a/a> z;x <B/a> zp X syn)\o.B
with

syn = (z where z = e [t,1 + a~ => (¢, {<ab/a N B>r.Lyt3]\A.5))
where

t) = (y wherey

non
— -
& o
+ +
o ™
& 1
TR
\J ”
« V
< @

t2 = (y wherey

and

t; = (uw where y = 1iy + B Aa=>y)

An easy coréllary of Lhis Lemma is:
Proposition 7.1

Let U be a computabie subset of N<aj,...,a;n>**! and Hy the operator
specified on I'(IM) by the rule :

uv, Uy vy
Ty 2 T Ty 2 T € LS UA>
and u; € N<A> (for 1Sisk),(uy....,upu) € U,

VS V..U

F Hy(zy....m) 5 Hy(z'y....x";)

Then Hy is strongly definable in qu 5> °®

Remark 7.1 : in fact this is true in the restricted calculus 3 «.s> which is S 55
without the desynchronization operator V but with sum as a primitive operator.

This result has quite a lot of consequences. For instance if U ¢ IN<4 > it means
that any effective clock hy (with U/ computable) is strongly realizable in MEIJE.
This contrasts with SCCS [22] in which one always rmay define :

hy=fizz. {z= ) u:z]

uell

even when U is not computable.

As we have seem clocks are related Lo ticking operators, thus we are able to gen-
eralize this construct :

uf*z: ~ hyxz I

~Similarly every effective trigger 7y is realizable :

Lry ~ (exhy || o= :1\a |

and the associated triggering construct is

[U=>.’L‘ o> Ty Xz I

which allows to generalize the action operator :

lU:z ~ U=>(1:z) |
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- When U ¢ IN<4 >2 the above proposilion indicates the definability of some
interfacing operators. For instance if B is a computable subset of N<A> Lhen
_the "restriction” operator p ' B which is p | U for

U = {(wv.vu)/ueB veZ<S uI>}

is definable.’

Yet another example : effective pure scheduling. A pure scheduling of a
system of k processes is a context which tells al any discrete lime neIN what
are the components aliowed to proceed. Such a control is determined by &

(recursively enumerable) subset V of §0,13¥ x IN : the last component is the -
/

current date, the k first ones are boolzan vaives (not aliowed / aliowed to = -~ -

proceed) We omit the obvious formal specificalion. Assuming that A contains an
action a , the subset V is identified to a computable subsel IV of IN<a >%*1 Then
the itended scheduling operator is defined by the expression

(ay2zy || ... || ap*z {| synchro)\oy.....ax
\ \

with
synchro = (<a/ti SHylt. .t ] x t)ha

and.
b = R(eagay  (15i5K)
t = (z where z = 1:(a”%z)) (sceexample4.3)

Here we do not have morphisms on the arguments since we do not care about
synchromsatmn of specific actions.

Obviously the strong expressive power of our calculu: immediately ‘entails
undecidability results :

Proposition 7.2 .
The (equivalent) questions of whether or not, for agents p €okas s>
(1) p~0 ‘ '
u -
(2) fuep-q)=9
u
(3) tg/Fup-q}=¢
are undecidable.
Indeed if B is a recursively enumerable but not recursive subset of IN<4> and
u€N<4 > we have S :
(u®)PB ~0 <=> u,e’B .
The main applications of proposition 7.1 are to answer the guestions asked at

the outset of this section. We define an eflective transition system on IN<4>
(withA = {ay,...a;m}) to be a system 8 = (Q,IN<4A >,T) such thal -

- Q= {gn/nelN} is a denumerable set of states and
- the transit’»n relation is effective with respect to the enumeration of Q.
That is

V= {(nnynm k) / (gna™a™ g )€ TS

is a recursively enumerab e subset of N™*2
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Theorem 7.1 (first definability theorem)

any effective transition system on N<4> (4 finile) is strongly realizatle in
an applied MEIJE calculus.

The.idea is the following : we introduce two new actions @ and b (not in A) which
will serve as "coloured sticks” to counl the index of the starting slate and target
state of the transitions. Now let (with the previous notalions)

U = fa"anil...an'"mbk /(n,nl....,'nm,k )Cl”z

By definition Lhis is a computable subsel of N<a,ay,...,am. 0> il V is recursively
enumerable. Thus if € is eflective, we know by proposition 7.1 that the clock hy
is strongly realizable in MEIJE. Obviously we shall converl a and b to receiving of
signals a and B. and it only remains to ensure the correatl chaining of states. In
order to do this we need a synchronizer { which satisfies :

J-id
Vo e N t-(a™=>t)
(in fact a™=>¢ is a "synchronous bag” containing initially n tokens, cf.
example 4.5)
It is easily proved that we may let

. [t = (z where z = (B:a:1)xz + 1:z)

Finally with each state g, of & we associate
¥(gn)= (<a"/a.B/b>hy x (a™=>t)Ma.8

and this is the intended strong realization .
Remark : this result holds in 'y g5 (with 4'=4 U {a,b}), see remark 7.1.

To conclude this section we quote de Simone * s theorem about definability
of operators. Let us call for a while effective calculus of processes any simple
algebraic calculus A = (F,M,,p) such that

- F is afinite set of operator symbols
- IM = IN<A > for some finite alphabet of actions 4

- ¢ is a finite semantic specification of £ on M such that for each rule of ®
the predicate U on actions is computable {cf. § 31)

- p is the strong congruence .
Theorem 7.2 (second definabilily theorem, de Simone [33])

any effective calculus of processes is a subcaleulus of an applied MEIJE cal-
culus.

To prove this de Simone builds a syntax-directed translation
ﬂ(f) = (al*¢11'1 :: . ” Oy %Qp Tpe “ syn(f))\V

where the ¢; 's are applied morphisms and syn{f ) controls the correct applica-
tion of the semantic rules for f.

Let us give some examples of definable operators. Let weM and U be a decid-
able (i.e. computable as well as its co_mplement) subset of M

(i) discriminated ticking :
u u
Pop LU b wayp - weyp’

w.u

EY} .
pop ueU - wayp - wayp'
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(ii) discriminated triggerino :

p—-»p ugU - w= >yp -»w >Up
wu

p—»p ‘U.EU}_ w=>yp - p
(iii) discriminated sum :
- u u
popuel— p&yg » p’
v u
g>g' . vel ™ p@yg - g’
and the rules of (p | ¢) with the additiona! hypotheses u,@di,v,?’(.—’ :
173 u
pop' ugVUr p®yg - p'dyg
u v . wv
p—)p',(]-’(]','ll.,(U,‘U,Q’U = p@uq - p’@uq'
v v
g»q' wgU p@yq » p&ygq’

(iv) discriminated synchrony :
.U v , . ©wy
. p—)p',q-ﬁq awelUvel — peuq - p'@uq'
and the rules of interleaving when 42U or vg€U.

(v) conjunction:
u u ) ”
p—»pv'q_,q'luGU [—' pNyg -~ p'nyq’
and the rules of (p || ¢) when u gU v U

8. Subcalculi : rational parallel place machines

Owing to its universality the MEIJE calculus may appear too strong in sorne
respects (undecidability problems). Therefore it is natural tc look for less
powerful calculi. We have already seen such a subcalculus, namely that of finite
processes (par. 6 and [23]) in which one can only define finite transition systems.
Many synchronization problems may be formulated in this calculus which is
closed under many interesting operators (see [1,24,26]). But it disaliows
expressing dynamical creation of parallelism. A typical example of "unbounded!y
parallel” object is that of bag (cf. example 4.5 in § 4).

In this section we propose a generalization of finite processes following the
usual mathematical step in which "finite” is generalized by "rational”.

We have not emphasized algebraic properties of operators (see [22,2]) and
their proofs in this notes. At least we may note that : -

ptq ~g+p
pH{g+7) x(p+q)+r
p+0~p

px(gx7) = (pxg)xr
(p+g)xr pxr + gxr
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and also
PXq =gXp
pxlicy . px0~0

and moreover
(u+v)=>p ~u=>p +v=>p
u=>(p+3)xu=d>p +u=q
1=>p ~75 .0=>p ~0
u=>(w=>p) = (wv)=>p |
u=>(pxg) = (u=>p)xgq

Therefore the set Ap/~ of MEIJE processes is a IK(IM) algebra (see [10], chap.
VII). Introducing a "star” or cross operator :

!j = (y where y = z:xy+11)—.!

we may call, following Eilenberg (idem), the operators
" ptqg.pxg.u=>p,p*

the rational ones over Ay /~.

Note that, using the notations of SCCS [22]
~ ), p" where p®=1p"* =pxp"
nel\

and that the usual identity p™~p xp*+11 is valid.

Reminder : we recall that the family Rat {IM) of rational subsets of a monoid M is
(ctf. [9,10]) the closure of the family of finite subsets of M by the rational opera-

tions A

- union, denoted U+V

- product U'V = fuv uel,vel}

- generated submonoid denoted U™ in order to avoid confusion with the set of
sequences.

When M is a product - monoid (for instance IN¥ |, with operation
(ny.me my,..omy) = (ny+my,....m+my ) the rational subsets are usually
called rationa! relations.

We might call rational the agents of the family Ry closure of the calculus
F m of finite processes by rational operators, but we shall not keep exactly this
denomination.

Example 8.1 : in Ry lie the rational triggers Ty for U a rational subset of M,
since T is a morphism :
T9=0,7,=1
(we recall that O stands for the empty set, and that a singleton {u§ is
denoted u)
TU+y = Tp+Ty
TUV X TUXTy  Tyy 2 u=Dly

TUx ~ (TU




-35 -

Let us try to see what the transition systems determined by agents in R are.
We start with finite processes, expressed by agent of Fy in normal form :

(z, where ..., z; = ), ufi:z;...)
1575k

The operators p+q,pxg and u=>p preserve finiteness, thus let us lock at the
effect of the cross operator. It may be (recursively) specified by

1
p* -1
u v uv

p=g .p* 7T P > gxT

or more explicitely :
ul - u\n ul...un

PPy PP P T py XXy

1
(including the case n =0 where p™-11).

Thus starting with p € Fy the stales of the transition system determined by p*
have the form o

) '((.7:"‘1 x..x z'*, where.., z; = Y uliizg..)

(excepted for p™ itself) _
This means that given the finite transition table, states may be regérded as
belonging to IN*. For example (8.2) if’ '

p =(z where z =a:y,y = b:z +c:y)
g = (y where z =a:y,y = b:z + c:y)

the states reachable from p* are the p™xg™ and the transitions are given by
p"qu ~ Z antym-kck :(pm—kana-k)
ksm
This'suggests the following definition :

a simple parallel place machine on the monoid M of actions is a structure
Q@ = (IP,M,T./') where ’

- IP={py...pe} is a finite set of places

- ‘T ¢ IPx M x IP is a finite set of elementary transitions -

- ] is the set of initial markings which is a rational subset of INP,

Intuitively each place contains tokens and a marking p sets tokens into place,
i.e. is a mapping of INP which itself is identified to IN¥. The states of the machine

are markings. Each elementary transition (p;,u.p;) removes one token from p;

and, performing u , put it in p;. Then the behaviour is the following : given a

marking 4 , the machine performs synchronously elementary transitions. It thus

performs a product of such transitions, by which all tokens are rnoved. Formally

- each place ; ; is identified to the marking where there is one token in p; and
no other one.

- T isidentified to a subset of the product monoid NP x M x INP.

For instance, the elementary transitions in the above example are :

(1.0) 5 (0.1), (0.1) > (1,0) and (0.1) 5 (0.1).
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~ Then the set of transitions of the machine @ is T* , the submoneid of
INP x M x NP generated by T'.

Example 8.2 (continued) :
o anbm-kch
T™={(n,m) — (m-k,n+k)/nmeNksm)

In order to take into account the set of initial states, we define the transition
system determined by a simple place machine @= (IP,M,7./) by
CE(@) = Q.M,U) where

- @=NPU} :

- (qu.gleU<=>qg=I%& 3q"€[. (g"u.g)eT*or (q,u,q')eT™*

This definition yields the .

Proposition 8.1

(1) For any simple parallel place machine Qlon M , E(@) is strongly realizable
in A ’

(2) any agent pe€Ry strongly realizes E{(@) for some simple parallel place
machine @.

From a semantical point of view, simple parallel place machines only correspond
to- a special kind of what might been called rational transition systems. These

are 8 = (R, M,T) where

- @ is a commutative monoid of states
- M is a commutative monoid of actions
- T ¢ QxIMxQ is a rational relation

However these are rather abstract objects, thus we focus on the case where @ is
the set of distribution of tokens in places. Therefore a rational parallel place

machine (on M) is
Q&= (IP,M,T,i) where
- IP={py....p} is a finite set of places
- M is a commutative monoid of actions .
- T ¢ INPxMxINP is a rational relation
- 1€INP is the initial state

As before, this machine determines a transition system with initial state
£(@) = (NP,M,T,i). It corresponds to a synchronous behaviour : all the tokens

must be moved in a transition.
Example : bags are objects of this kind, determined by a one place machine. For

if we denote :
1
e = (1)~(1) (a "neutral” transition)
e
¢, =(0)»(1) (to put atoken)

b
t;=(1)-(0) (toremove a token)
the transition relation T = g* e (£ +£,) ¢ (¢, +£,)" is such Lhat

\bm

T = f(k)—*) (k+n-m)/n+m>0msk)

(cf. example 4.5) '
The transitions g,¢4,t; can be figured, with laubeiled barred lines to make the dis-
tinction with the transition system itself, by
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b e

Obviously each rational clock i.e. hy with U a rational subset of M is also

" defined by a rational machine (with one place and no tokens).

If we want to get an asynchronous behaviour we associate with Q the transi-
tion system C

A@) = (NP, M, T",3)
where R

T'=fey +...+ g 15T

with

_ 1 if p=p;
C g =.(#j=1:ﬂj) #-j(P) =
0 otherwise .

(elementary "neutral” transitions)

In'the asynchronous system A(@) a transition of the machine may be perforrned
as soon as there are enough tokens on the places since

(1w, u2)€T' <=> E'ﬂ-'l-}i'z o(u'up)eT&
1Sy &pe = -y e

For instance the bag is an example of asynchronous system.

173 u .
Note : The sets {u' / au.,u.-*,u.'} and f{u /a,u'.,u—»,u,’i for pé]NlP are rational (got
from T by transductions).

We could have allowed a rational set / of initial states and devised Z(@) as in
the simple case ; but nothing is gained in doing so :

Lemma 8.1
Let &= (IP,M,T./) be a generalized rational place machine, i.e. ] €Rat{INF).
Then there exists a rational parallel place machine Q' = (IP',M,T",i) such
that £(@) and Z(@’). restricted to states reachable from the initial ones, are
isomorphic. - ‘
In the proof one uses some results of Eilenberg & Schutzenberger [9]. We only
mention the fact that non-conservative transitions, which lose some tokens, are
introduced.
We have noted that rational clocks'are determined by some rational paral-
lel place machines. In order to define these clocks in MEUJE we have to intro-
duce a new (tem, oral) iterator. Once remarked that

hy = Ty % (1:hy)

we let

[:z:° = (y wherey = z X (1:1/l)}
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The specification of this operator is
u ° u o
p>g = p° »gxp
For the rest of this section M = N<A> and A = {ay,....an} .
Let %y be the closure of Ry by the family of cperators
- u=>p foruzlM '
- gp for p = <uy/ay,...uUnan>u; ¢ M
- P Ngxq (see § 7) which is denoted p Agyq , for BCA
- pn
For instance hy 63€N for any U€Rat (M) since hy ~ TU .
Proposition 8.2
(1) for any rational place machine @ on M = IN<4 >,E(Q@) is strongly realizable
in Mn<s's for some A’ (ACA’)
(2) any agent p €®y strongly realizes Z(Q@) for some rational place machine on

For the first point, the argument is similar to that of Theorem 7.1. Let
O= (IP,M,T,i) be a rational machine with IP = {py,....0e} . M = N<ay,..,apm> .

Let B = {by,....b¢.C1.....C,} be a set of new action symbols (not in A). Obvmusly
T ¢ NFx M x ]Np is lsomorphlc to a rational subset U of IN<AUB >. We interpret
b; as the presence of an "input” token on the place p; and similarly ¢; as the
presence of an "output” token. We have to control the flow of tokens in the clock
hy '"realizing” the transitions. We need a synchronizer ¢ such that

ny
k
cxc

t —— ((b 105 )=>¢)

for all (ny,....n, JENF _
(in fact (b"’l...b"i )=>t is a "synchronous bag” containing n;,....,n; coloured
tokens).
This achieved if we let

t'—'(z ci:b‘-:]l)”’
1£isk

(which is in An<AUB > ) ‘
Let pp be the projection <1,/b4,...,1,/8;,1/cy,....1./¢ci> .
Then with each state g = (1y,....[;) in IN? we associate

() = pp(hy N ((0",...0%,)=>1))

and this is the claimed strong realization.

’

For the second point one uses Eilenberg & Schutzenberger * s results [9]
again and introduce non-conservetive transitions which this time create tokens.

The proposed elements.in this section do not allow to appreciate Lhe practi-
cal and theoreti. al interest of rational parallel place machines. Moreover a simi-
lar study might be attempted for "rationally specified” operators. At leasl we
may note that raticnal place machines generalize Petri nets -which we showed to
be strongly realizzble in MEUE, in a more direct way, cf. [3]. Let us briefly face
this. A Petri net (with which we assume the reader familiar, see for instance
[27]) is a structure (IP A ,Pre Post) where
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- IP={py....px} is the finite set of places
- A =t{ay....an} is the finite set of transitions

- Pre : ]PX4 -» N and Post : AxIP - IN are the numerical functinns setting the
preconditions and postconditions to the firing of transitions.

S
pen #(p)—-“-‘ ’e<p|a)- /l]ld 'b> ﬁ[“lg a we Uet t.].le mar klng /J- .

(@)= u(p)-Fre(p.a)+Post(a.p)

Let & = (wi.0¢.';) for 1SiSm where w;(p) = Pre(p.a;) and p'; = Post(a;.p)

Then the behaviour of the Petri net with initial marking u is exactly that of the

asynchronous transition system A(®) (which obviously is also Z(@) for some &)
associated with the machine

C@= (PIN<A >, (Ey+ . b))

Remark : it is well-known (see [9]) that for any rational transition relation T
therz exists a finite set U C INPxMxINP of transitions such that T is a rational
subset of U*. Such a finite set U may be represented as a-labelled Petri net.
Thus a rational parallel place machine may also be regarded as a (rationally)
synchronized Petri net : a labelled Petri net provided with a raticnal expression
onits transitions. '

9. Co:_xclusion

We chose to interpret our language in the semantical universe of transition
systems. These are rather general and conceptually simple mathematical
objects. As demonstrated by Plotkin [28] transition systems provide a general
framework to express semantics. They-also set up the natural universe in which

to interpret formulae of some modal logics. For all these reasons the notion of

transition system is a basis for comparison of various formalisms (see for exam-
ple [4,5,18]. In these notes they have been mainly used to evaluate expressive-
ness of our MEIE calculus - something which could not have been achieved
without the very fruitful idea of monoid of actions due to Milner [21,22].

Obviously this is not the only possible approach to the gquestion : what is &
process ? A great variety of models may be found in the literature, among which
we would like (unfairly) distinguish : '

(1) models which lay "below" transition systems. One of the best known exam-
ples is that of formal languages. Although they are sometimes taken as a direct
interpretation of some syntax or algebra (as in [16,17,25,30,32]), formal
languages have been for a long time strongly linked to transition systems (or
automata, see [10]). This is also the case in the area of parallelism (cf. [1,24.26])
where they are very often assorted by some relevant informations (see [8.7.8]).
Indeed these models seem to correspond to some canonical kinds of transition

systems. These models own the advantage to provide a direct semantics (without -

recourse to quotienting), with a direct definition of the operators ; this has not
been achived here.

In the same category one may also put the observational semantics of Hen-
" nessy [14,15] which is near ours since it lies upon operational semantics. As
Darondeau [8] points out this semantics contrasts with bisimulations in that
backtracking along the behaviour of a process is not allowed. It seems also to be
a question of linear vs branching time.
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It is not very surprising that, among all the existing definitions of semantic
equality, bisimulations are very strong as shown by Brookes and Rounds in [5].
However in some respects our equipollences determined by observation criteria
on actions may appear to be too weak. To see why, let us say a few words about -
the second approach.

(2) On the other side one find models of the notion of processes which are
"above" transition systems. The concept of machines or automata belongs here.
They naturally determine transitions between states. In our domain this
category is mainly represented by Petri nets (see [27]). The general idea is : how
do things operate ?

In machines, the structure of states may carry some meaningful informa-
tion (e.g. : boundedness in Petri nets) ; this structure requires a fine descrip-
tion. Therefore if one wants to show for instance that a calculus or language of
processes corresponds to some class of machines (cf. for instance [3,23]) one
has to carefully examine what properties are used in the proof of that
correspondance. From that may emerge a complete axiomatization of the cal-
culus ; we note that completeness is usually shown by means of normal forms, in
which one recognizes the structure of a machine ([23]) or more generally of a
concrete interpretation ([12,14]).

. :¥We have not paid much attention to proof theory in these notes. Many alge-
braic properties are valid in our calculi (cf. [2,22]) and the proof principle, i.e.
Park's induction for congruences provides a very powerful tool. However we
would like to have a more syntactical version, explicitely involving recourse to
specifications of operators (a similar aim holds for proofs of simulation) ; this is
a research in progress. More generally it should be clear that we have
emphasized here an operational or "syntactical” point of view. Let us quote
. Milner about this subject : "operational semantics, since it can be set up with so
few preconditions, must be the touchstone for assessing mathematical models
rather than the reverse” ([22]). Not less clearly, much work remains to be done
towards a smooth theory of that matter.

Acknoledgement : many ideas and results presented in these notes were ela-
borated with the contribution of R. de Simone, and some are his own.
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