archives-ouvertes

Relating logic programs and attribute grammars

Pierre Deransart, Jan Maluszynski

» To cite this version:

Pierre Deransart, Jan Maluszynski. Relating logic programs and attribute grammars.

Report] RR~0393, INRIA. 1985. inria-00076163

HAL Id: inria-00076163
https://hal.inria.fr /inria-00076163
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research

https://hal.inria.fr/inria-00076163
https://hal.archives-ouvertes.fr

RN

CENTRE DE ROCOUENCOURT

e e AN e e T

Institut National

en Informefique
et en Automatique

Domaine deVoluceau
Rocaouencourt
BR105
LeChesnay
Fraince
Tél, 2 (1) 396385 11

|
L;
;

Rapports de Recherche

N° 393

RELATING LOGIC PROGRAMS
AND ATTRIBUTE GRAMMARS

Pierre DERANSART
Jan MALUSZYNSKI

Avril 1985

PROGRAMMATION LOGIQUE ET GRAMMAIRES ATTRIBUEES

(Version révisée de [10])

Pierre Deransart
INRIA
Domaine de Voluceau, Rocquencourt
BP 105 78153 Le Chesnay
France

and

Jan Ma]uszynski‘
Department of Computer and Information Science
Linkoning University -
581 83 LinkOping
Sweden

Résumé

Cette etude montre les rapports que la programmation logique et
les- grammaires attribuées peuvent entretenir. Elle présente desconstructions
qui transforment des programmes logiques en des grammaires attribuées
- 8quivalentes et vice-versa. I1 devient alors possible d'appliquer a des
programmes logiques des méthodes déve1oppées pour les grammaires attri-
buées. Ces résultats aboutissent a déterminer des conditions suffisantes
assurant que lors de la résolution d'un but d'un programme logique aucun
terme infini ne sera engendré. De plus on met en évidence une classe non
tfivia1e de programmes logiques qui peuvent &tre exécutés sans faire ap-
pel @ 1'unification dans sa forme la plus générale}

t

‘Mots clés = programmation logique, grammaires attribuées, schémas de
dépendances d'attributs, analyse du flot de données.

N El PAPIER RECUPERE ET RECYCLE

&

RELATING LOGIC PROGRAMS AND ATTRIBUTE GRAMMARS
(Revised version)

Pierre Deransart
- INRIA
Domaine de Voluceau, Rocquencourt
BP105 781563 Le Chesnay |
France '

and

Jan Malusgynski
Department of Computer and Information Science
Linkoping University
581 83 Linkoping
Sweden '

Abstract. This paper shows that logic programs and attribute grammars are
closely related. Constructions are given which transform logic programs into
gemantically equivalent attribute grammars, and vice versa. This opens for

" application in logic programming of some methods developed for attribute

grammars. These results are used to find a sufficient condition under which no
infinite term can be created during a computation of a logic program, and to
define a nontrivial class of logic programs which can be run without employing

unification in its general form.

" Keywords: logic programming, attribute grammars, attribute dependency

scheme, data flow analysis

1. Introduction

The aim of this paper is to study relationships between two computational
formalisms which have been independently developed with different
motivations: the attribute grammars introduced in [14] and the Horn clause
logic considered as a programming language [15]. We show that these
formalisms are closely related to each other and we discuss a possibility of
transforming logic programs into attribute grammars and vice versa. This
makes it possible to use methods of one of the formalisms in solving problems
related to the other. We give a few examples of such applications and we hope
that there are many others.

The paper is organized as follows. Section 2 gives necessary notions concerning
attribute grammars and definite clause programs. Section 3 gives constructions
relating attribute grammars and logic programs and shows differences between
the formalisms. The constructions presented may have different applications.
In Section 4 we present examples of applications of one of the constructions.
The examples concern the occur-check problem, data-driven evaluation, and
unification-free evaluation of definite clause programs.

This paper differs essentially from its original version [10]. In particular, in the
present version, the basic concepts are introduced in more structured manner
that improves the conceptual clarity of the presentation and makes it possible
to simplify the original constructions. Furthermore, we discuss in greater detail
the problem how to transform a logic program into a semantically equivalent

attribute grammar.

2. Preliminaries
2.1. Attribute Grammars and Attribute Dependency Schemes

The formalism of attribute grammars has been introduced for assigning
semantic values to the nodes of derivation trees of a context-free grammar.
With every symbol X of the grammar a finite set of attributes is associated,
denoted Atér(X). The cardinality of this set will be denoted ny - The
attributes are names of the semantic values to be associated with any
derivation tree node labeled X. Each of these nodes has attached ny places to
which one assigns values from some fixed semantic domains. We call these
places attribute occurrences or posstions. In this paper we assume without loss
of generality that only the nonterminals of the grammar may have attributes,
but not the terminal symbols. To deal with attributes under this assumption it
suffices to consider only abstract syntax trees, not including the terminal
symbols. Following [5] we base our definition of attribute grammar on the
notion of abstract context-free grammar. It is a pair < N, P > where Nis a
finite set of nonterminals and P is a finite set of context-free productions over

-3-

N. In this way we follow the algebraic view of a context-free grammar as a
many-sorted algebra (see e.g. [6]). However, in this paper we do not use the
algebraic terminology for that purpose.

Let p be a production in P of the form

XO —»XI y ooy Xn
For each § = 0,...,n and each a in A#tr(X,), we introduce a new symbol a(s)
called an occurence of the attribute a in p. The set of all such symbols is

denoted Pos(p). Its elements are also called posstions of p.

We want to specify the semantic values to be assigned to the positions of a
given derivation tree. Each derivation tree comsists of instances of the
production rules of the grammar. The idea of an attribute grammar is to
associate with each production rule a restriction on the semantic values which
should be observed by every occurrence of this production in any tree. To
formulate such restrictions we introduce a logical language; Since it is assumed
that different attributes may range over different domains we take a

many-sorted approach.

Let S be a set of sorts. The S-sorted language consists of formulas constructed
in the usual way from atomic formulas by means of logical connectives
(possibly including quantifiers). The atomic formulas are constructed from

variables, functors, and predicate letters.

The set V of variables is sorted: it is the union of the family of disjoint sets
{Vs}seS)

The set F of functors is typed: each functor has associated a pair (o, 8), 0€5?,
scS, called its type. If for some f in F the string o is empty f'is called a

constant of sort a.

The set R of predicate letters is typed: each predicate letter has associated a
string o in S* called its type.

To define the syntax of atomic formulae we refer to the notion of term. The

terms are sorted.

A term of a sort s is defined as follows:
1. Every variable in V is a term of the sort 8
2. Every constant of sort s is a term of the sort s;
3. If (s...s,,) is the type of a functor f, (n>0) and ¢, is a term of sort s,
for i =1,. ,n then f(ti, tn) is a term of the sort s;
4. Nothing else is a term of the sort s.

If S is a singleton this definition reduces to the usual case of one-sorted term.
. The set of atomic formulae consists of all strings of the form r(t g+t)y where
r is a predicate letter of the type 848 and for ¢ = 1,...,m, t‘- is a term of the

sort 8; -

To define an snierpretation & of an S-sorted logical language we proceed as

follows.

For each sort s in S we define a semantic domain D -
With each functor f of the type ("1""’1;’ 8) we associate an operation from

Dislx...xD“jﬂ into Ds.
With each predicate letter r of the type 848, We associate a subset of

D x..xD_ .
% n
We extend & for the formulae of the language in the usual way, using the

notion of assignment. An assignment o is 2 mapping of the variables in V into
the domains of the corresponding sorts. We extend it to terms and tuples of
terms in the following way:

Let ¢t be a term of the form f(tl""’tn)’ where tI""’tn are terms and fis a
functor, and let fS‘ be the function assigned to fin . Then oc(f(tl,...,tn)) is
defined to be fs‘(o&(tl),...,oc (tn))'

Let z be the n-tuple of terms <t seeesty > Then o(z) is defined to be the
n-tuple of values <oc(t1),.,..,0((tn)>.

We adopt the usual notion of validity of a formula for a given interpretation
and a given assignment of its free variables.

In the sequel we assume that an Ssorted logical language L is given. We will
use L to formulate restrictions on attribute values associated to the nodes of
derivation trees. For this we will use attribute positions as variables. Given a
set W of S-sorted variables we will denote by L(W) the set of all formulae
whose free variables are in W.

Relational Attribute Grammars

We introduce first a general conceptual framework for defining more restricted
types of attribute grammars used in existing implementations. We adopt here
essentially the definition given in [5].

Definstion 1 : Relational Attribute Grammar (RAG)
A RAGisa5-tuple G = < N, P, Attr, RS > where:

(1) < N, P> is an abstract context free grammar ,

(2) Attris the union of a family of finite sets of attributes
{Attr(X)} xeN 2nd every attribute a in Attr has a sort sort(a)
in some set of sorts 5.

(3) R={ Rp } p» where R is a formula of the language L(Pos(p))
(that is, the only free vanables of R_are the attribute posntlons of p);
The formulae are called semantic rules of G;

A.s-

(4) O is an interpretation of the S-sorted language L.

The semantics of such an object is formally defined in [5). 1t is based on the
notion of decorated derivation tree. Derivation trees are constructed by
"pasting together” instances of production rules of P. For a given tree T one
can enumerate its nodes. We shall assume that such an enumeration is given.
By a position of a tree T we mean any pair a(k) such that a is an attribute of
a nonterminal X and k is the number of a node of T labeled by X. The set of
all positions of T is denoted Pos(T). By an instance of a production rule pin T
we mean any subtree ¢ of T consisting of a node u and all its sons 4y,

and originating from p. Clearly, there is a one-one correspondence between the
positions of p and the positions of the subtree t. This is illustrated in Fig.l.
The subtrees t, and 'tg are occurrences of the production rule p in the
derivation tree T The attribute position a(n+2) of T is a position both of t,
and of t If considered as a position of t it corresponds to the position a(2) of
p. Otherwxse, if considered as a posmon of t it corresponds to the position
a(0) of p.

A valuation of a tree T is a function from the positions of T to values in the -
corresponding semantic domains. A valuation is valid iff for each occurrences of
any production rule p in the tree T the formula R_ is valid under this
valuation. A finite complete tree T with a valid valuation will be called a

decorated tree.

Now, a given RAG G = < N, P, Attr, R, Q' > can be considered to be a
specification of the set of all decorated trees T of the abstract context free
grammar < N, P > . Note that R and & may be such that the set of the
decorated trees of a RAG is empty.

This definition of the semantics differs slightly from that in [5]. The latter uses"
the notion of decorated tree to associate relations with the nonterminals of the
grammar. For the purposes of this paper it is more convenlent to refer directly
to the decorated trees. ‘

Ezample 1

To illustrate the formalism we use it to describe the behavior of a reversible
counter. The counter accepts sequences of input sigﬁals. At each step of its
operation its state may be characterized by a natural number. There are two
input signals: sncrease, denoted +, and decrease, denoted d which cause
corresponding changes of the state. The behavior of the counter is
characterized by associating with each sequence of input signals a binary
relation on the states of the counter descrxbmg the global change of the state

caused by this sequence.

-6-

The sequences can be described by the following grammar:

(po) X—e
(pI) X IX

(p2) X - DX

(P3) I

(p 4) D-—d

The nonterminal X is used to derive sequences of signals. Its particular
instance in a derivation tree corresponds to a particular sequence of signals.
Therefore we associate with X a pair of attributes whose values describe,
respectively, the initial state (initial) and the final state (final) of the counter
when the sequence of signals derived from X is accepted. We assume that the
initial state is determined by some outside factors, and we relate the final state
to the given initial one and to the sequence of signals derived from X.

Now we relate the attribute instances in the production rules of the grammar.

For Py the derived sequence of signals is empty. We assume that the initial
state remains unchanged when such a sequence is accepted. Formally, using
the notation for representing the attribute positions of the productions, we
express this condition as the following semantic rule

(R) final(0) = initéal(0)
For any instance of the production rule p 1 the sequence X derived from its
left-hand side is the sequence X derived from the nontermmal X of its
right-hand side preceded by the nontermmal I generating the increase signal.
Thus, the initial state of X is that obtained from the initial state of X by
accepting the increase sxg'nal while the final states of both sequences are the
same. In our notation we express this as follows:

(RI) snstial(2) = f;(initial(0)) A final(0) = final(2)
where f‘. is a function describing the effect of the signal 1, and 0 and 2 are
numbers of the nonterminals in the production p It

Similarly for pp we have .

(Re) initial(2) = f d(snitsal(0)) A final(0) = final(2)
where f d is a function describing the effect of the decrease signal.
The semantics of that example depends on the meaning we attach to the
functions [‘. and f 4" For example, j’- may be defined to be the successor
function, and f 4 the (partial) predecessor function. In this case the RAG
defined above relates the final state to the initial state for any sequence of
signals which is acceptable for the initial state. For example for initial value 10
(value of the attribute snitial of the root) and final value 8 (value of the
attribute final of the root), the sequence sddd is acceptable, as shown in Fig. 2 .
On the other hand, it is not acceptable for initial value 1. Since the predecessor
of 0 is undeﬁned thus the truth value of R is also undefined. Hence for this

-7.
initial value there is no valid valuation for the considered tree.

In terms of Definition 1 this example describes the RAG
G =< N, P, Attr, R, > where
N:{ X, I, D}
P:{ X—e, X— IX, X— DX}
Attr : Attr(X) ={ instial, final } Attr(I)=Attr(D) ={ }
R:{RO’RI’Re}
Q is defined as follows:
D.

snits
f; s the successor function,

cal a.nd D,. inal is the domain of natural numbers,

f d is the predecessor function,
= is the equality on natural numbers.

The grammar specifies the set of all decorated trees which can be obtained
from the derivation trees by finding decorations satisfying the formulae
associated with the occurrences of the production rules. An example of a

- decorated tree is given in Fig. 2. _
End of Ezample 1

Functional Attribute Grammars

The relational attribute grammars, as defined above, provide no way of
computing the values which can be assigned to the positions of a given tree.
Their semantics is purely declarative and can be easily related to the semantics
of logic programs as will be discussed in Section 3.

However, the formalism of attribute grammars was originally introduced with
some additional restrictions which make it possible to compute attribute values
of a derivation tree in a deterministic way. In this section we formulate these
restrictions in order to be able to refer to the attribute evaluation problem.
Most of the results obtained in the field of attribute grammars have been
motivated by this problem and we claim that some of these results may be
applied in the field of logic programming. (In section 4 we show some
applications reinforcing that claim). It seems also probable that some results
obtained in logic programming could ‘be applied in the field of attribute
grammars.

The restrictions we are going to formulate concern the form of the formulae in
R. Assume that for each production rule p the semantic rule R is a

conjunctlon of formulae of the form

A z = Tz .
where z is a position of p and Tz is a term of the sort sort(z) (such formulae
will be called semantic definitions). Knowing values of the attribute positions
in T one can easily compute the value of z. One can require that any position

in any derivation tree can be computed in that way, ‘and that each posmon is

- 8-

defined by only one definition of this type. To formulate this restriction in a
systematic way we introduce an auxiliary notion of splstting of the attribute set
Attr. A splitting is defined by specifying disjoint sets: Inh (of stnhersted
attributes) and Syn (of synthesized attributes), such that Attr = Inh U Syn.
Thus for all X'in N Attr(X) = Inh(X) U Syn(X) with empty intersection.
Let p be a production rule of the form

X 0~ X 1...Xn
A given splitting of the attributes induces a splitting of the positions of p into
the ¢nput positions defined as follows:

Input(p) = { a(s) | ac Ink(X,) ora € Syn(X‘.) and >0}

and the output positions defined as follows
Output(p) = { a(i) | ac Syn(Xp) ora € Inh(X.) and >0}

Clearly
Pos(p) = Input(p) U Output(p)

The intuition behind the splitting of the attributes concerns the intended
organization of the process of computing attribute values for a given derivation
tree. As mentioned above, each formula R_ will be restricted to be a
conjunction of semantic definitions, and each of the definitions will be used to
compute the atiribute value of one attribute position of p. Consider a
derivation tree of a given attribute grammar. Any inner node of the tree is
shared by two different instances of some production rules within the tree. We
call them, respectively, the upper production rule, and the lower production
rule of the node. For example, the node n+1 of the tree in Fig.1 occurs in the
subtrees t1 and t2 which are different instances of the production rule p, which
is in the same time the upper production rule and the lower production rule of
the node. As mentioned above, the value of a position of the shared node is to
be defined either by the semantic rule of the upper production, or by the
semantic rule of the lower production, but not by both of them. In our
example the only attribute position of the shared node is afn+1), which in t
corresponds to the position a(2) of p, and in ty to the position a(0) of p. In this
case the requirement means that the semantic rule of p includes either a
semantic definition of ¢(0) or a semantic definition of a(2), but not both of

them.

A given attribute splitting is a pattern for writing semantic rules satisfying the
requirement. Let X be the nonterminal labeling an inner node of a derivation
tree. Let p’ and p’ be, respectively, the upper production and the lower
production of this node. The attribute positions of this node corresponding to
the inherited attributes of X are to be defined by the semantic rule of p’, and
the others (i.e. those corresponding to the synthesized positions of z) by the

-9-

semantic rule of p”. Thus, the semantic rule of a production p consists of the
definitions of all positions which are output positions under a given splitting.
The input positions are not defined in the semantic rule since their values will
be determined by the outer context. However, sometimes it may be covenient
to state explicitly some conditions on input values. We allow them to be
included in the semantic rule. _ '

As discussed above the notion of splitting may be considered a tool for writing
RAG’s with functional dependencies between attribute positions. The splitting
can be deduced from the form of the semantic rules of a RAG written in this
way. Therefore it is not necessary to give it explicitly with the definition of the
RAG.

The intuitions discussed above are reflected in the following definition.

Definstion 2 : Functional Attribute Grammar (FAG)
A Functional Attribute Grammar is a RAG G = < N, P, Attr, R, S >
such that ‘ '
for each p in P the formula Rp is of the form
' r A ¢C

p P
where '

(1) Tp = AzGOutput('p)z:Tz
and Tz is a term with variables in Pos(p) not including z,

(2) CPGL(Input(p)) -
(that is the variables of Cp are input positions of p)

(3) Output(p) and Input(p) are determined by some splitting
~ of the set Attr.

Notice that any splitting determines in a unique way the number of coujuncts
of I' . Thus, when writing an attribute grammar it may be helpfui to choose
first a splitting and to use it for developing the formulae in a more systematic
way. , ‘

The component C_ of each R_ makes it possible to express some conditions
concerning values of the input positions. If the condition is true it may be
omitted.

Ezample 2
It is easy to see that the RAG given in Example 1 is a FAG with the splitting .

Inh(X) = {snitial}, Syn(X) = {final}.
The formulae include no conditions. : -
End of Ezample 2

- 10 -

If all positions used in the the right-hand sides of the semantic definitions of an
FAG are input positions, the FAG is said to be normalized . It is the case in
‘Example 2.

We are now able to'state the attribute evaluation problem. For simplicity we
will consider, without loss of generality, that the FAG has no condition. Such
attribute grammars will be called pure FAG’s. ,
According to our restriction any attribute position in a given derivation tree is
defined only by one formula referring to the values of some neighboring
positions. In this way the attribute positions within the tree depend on each
other and the question arises in which order they should be computed. This
problem can be formulated as follows.

The Evaluation Problem
Given a derivation tree T find a total order on Pos(T) such that for any

2€ Pos(T) its value is determined by definitions including only positions of
T less than z in this order.

If such a total order is known it can be used for sequencing computation of the
attribute values of a given tree. Fig.3 shows a total order on the positions of a
derivation tree of the FAG of Example 2. The order reflects the dependencies
between the positions induced by the semantic definitions associated with that
tree. We give now a formal definition of the dependency relation determined by
a FAG on the positions of any derivation tree.

Consider a FAG G = < N, P, Attr, R, > . An output position r of p
depends on a position ¢ of p iff q occurs in the right-hand side of the definition
of r. This will be denoted .
The family of the relations — _ for pEP, associated with a given attribute
grammar G, will be denoted DG"

Let T be a derivation tree and let ¢ be an occurrence of a production p in T.
As it was mentioned above there exists a one-one correspondence between the
positions of p and the positions of the subtree . This makes it possible to
define a dependency relation — ¢ on the positions of the subtree #

g, T iff ¢ — p r’ where ¢’ and r’ are the positions of p corresponding to ¢
and r.

Each derivation tree T can be in a unique way decomposed into a finite
number of instances of the production rules. Denote by PT the family of
instances of the production rules from which T is composed. Observe that some
elements of PT have common nodes. This m_a.kes it possible to define the
dependency relation —qon the positions of T: it is defined as the union of all
relations — ¢ for ¢ in PT. The total order of Fig. 3 is the transitive closure of

- 11 -
the dependency relation of a derivation tree of the FAG of Example 2.

A FAG is said to be well-formed iff for every derivation tree T of the
underlying CF-grammar the transitive closure of the relation —r (denoted
-t isa partial order. -

It is not difficult to see that a functional attribute grammar is well-formed iff .

there exists an order of evaluation for any derivation tree [14,11] . The
well-formedness - property is statically decidable, but it is of expoxiential
complexity. However, several subclasses of FAG’s have been discovered whose
well-formedness can be tested in polynomial time [6,12] .

Most of the literature on attribute grammars is devoted to the attribute
evaluation problem. When studying this problem abstractly one usually refers
only to properties of the dependency relation rather than to concrete semantic
~ rules defining this relation. To specify the dependency relation in an abstract
way one can use a notion of attribute dependency scheme. It is similar to a
FAG but it includes neither formulae nor interpretation. Instead the local
dependency relations on the attribute positions of the production rules are
explicitly defined (the definition is essentially the same as in [5]).

Definstion 8 : Attribute Dependency Scheme (ADS)
An ADS is a 4-tuple S= < N, P, Attr, D > where
(1) < N, P > is an abstract context free grammar.
(2) Attris a set of attributes with a given splitting.
(3) D is a family of binary relations { D }peP defined on Pos{p)
such that
{z | prz for some ycPos(p) }C Output(p)

Since an ADS has no semantic rules the attribute splitting cannot be deduced
and must be given explicitly. The condition (3) reflects the fact that an ADS is
an abstraction of a FAG; none of the input positions of a production rule
depends on a position of this rule. |

If

I

{y| prz for some z€Pos(p) }C Input(p)

then the ADS is said to be normalized Since an ADS determines local

dependency relations on the positions of the production rules the concept of
well-formednas introduced for FAG’s can be also used for ADS’s.

Clearly, the local dependency relations on Pos(p) defined by a FAG can be
used to construct an ADS with the same production rules and attributes. In
this way one can characterize the sequencing restrictions which should be
 satisfied by any attribute evaluatlon order of the FAG without referring to the

semantlc definitions.

-12-
Basic Term Interpretations of pure FAG’s

We outline now a possibility of symbolic” attribute evaluation for pure and
well-formed FAG’s. The idea consists in representing attribute values by terms
constructed from the functors of the semantic definitions [6]. Thus the
evaluator would not make use of the interpretation associated with the FAG.

Let p be a production of a pure and well-formed FAG. The value of each
output position of p is determined by a term. The only variables of this term
" are the input positions of p on which the output position depends. If p occurs
in a derivation tree T each input position of this occurrence is either an output
position b of an instance of a production rule p’ or it is a minimal element of
the dependency relation of T. In the first case the value of b is determined by a
term whose only variables are some input positions of p’. This term can be
substituted for b in all terms representing the values of the output positions of
‘p. In this way b can be eliminated from these terms. This process can be
repeated for all input positions of all occurrences of the production rules in T.
Since the FAG is well-formed the value of each attribute position of T will be
finally represented by a term whose only variables are minimal positions of the
dependency relation of T. For example for the derivation tree in Fig. 3 the
value of the attribute final of its root is represented by the term
f d(f d(f d(f ,'(initial(0)))))

where initial(0) is the input attribute position of the root. This value can be
obtained by evaluation of the term gi\"en above under the interpretation of the
FAG. However, to find the term we don’t use the interpretation.

As a matter of fact the terms constructed as described above are attnbute
values in an interpretation & defined as follows:
It has only one domain consisting of the terms which can be constructed
from the functors occurring in the semantic definitions of the FAG and
from variables.
With each n-ary functor f it associates the n-ary operation which for given
terms t1"“’tn produces the term f{t ""’tn)'
With the only predicate letter = it associates the identity relation on
terms.

The interprgtation defined above for a given FAG will be called its basic term
snterpretation.

2.2. Definite Clause Programs

The idea of logic programming concerns computing relations specified by logic
formulae. This section outlines briefly this idea and stresses mainly the notions
which are used in the sequel for relating logic programs and attribute
grammars. For more details the reader is referred to the literature on logic

- 13-

programming (e.g. [2},[4],[15])

The syntax of Definite Clause Programs
We focus our attention on a special type of logic formulae called definste
clauses. According to [2] a definste clause is a pair conmsisting of an atomic
formula A and a finite set of atomic formulae {B ’""Bq}’ qg>0, wrltten as

A <- B Bq
‘The atomic, formulae are constructed as usual, from predicate letters and
(one-sorted) terms: A is an atomic formula iff it is of the form P(t aty)
where P is a n-ary predicate and t %, are terms.

A definite clause of the form described above can be represented in the
standard logic notation as the following formula
Vz,..Vz, (B/A..AB —»A)
where z .. T} are all va.rlables occurring in the clause
An atom (a term) is said to be ground if it has no variables.

Definstion § : Definite Clause Program (DCP)
ADCPisa triole C=< N, ¥, P > where
N is a finite set of predicate letters with aésigned arities,
Fis a set of functors with assigned arities,
Pis a finite set of definite clauses constructed with N and 7

The semantics of Definite Clause Programs

Usually a DCP is considered a specification of its least Herbrand model (see
“e.g. [2]). It was shown in [4] that one can deal instead with the set of all atoms
(not necessarily the ground ones) which are logical consequences of the clauses
of the DCP. Each element of this set can be obtained by constructing a proof
tree. For the purposes of this paper it is convenient to consider a DCP to be

the specification of the set of all proof trees.

We introduce now some auxiliary notions and the notion of proof tree.
A subststution is an operation on -.«pressions (terms, formulae), which replaces
all occurrences of a variable in an epression by a term. The result is called an

tnstance of the expression. A substitution 8 is called a unifier of expressions e 1

and e, iff 6(e,) = O(ey).

Definstson 5 : Proof tree .
A proof tree is an ordered labeled tres whose labels are atomic formulae
(possibly including variables) or are empty. The set of the proof trees of a
given DCP C'is defined as follows: ,
1.If A <- . is an instance of a clause of C then the tree consisting of two
vertices whose root is labeled A and whose only leaf has the empty label

-14 -

is a proof tree.

2. If ATI g ey Tq for some ¢>0 are proof trees with roots labeled B ',...,Bq
and if A <- .31 B , is an instance of a clause of C, then the tree
consisting of the root labeled with A and the subtrees Tl) e, Tq is a
proof tree.

3. Nothing else is a proof tree.

By a partial proof tree we mean any finite tree comstructed. by ”pasting
together” instances of clauses. Thus a proof tree is a partial proof tree whose
all leaves have empty labels,

If 6 is a substitution and T is a partial proof tree we denote by §(T) the proof
tree obtained from T by replacing each of its labels L by 8(L). It is called an
tnstance of T. An instance of T is ground if all its labels are ground.

Ezample 8
Consider the following DCP
add(0,z,z) <- .
add(s(z),y,3(z)) <- add(z,y,z).
A partial proof tree and a proof tree of that DCP are shown in Fig. 4 .
End of Ezample.S

Computations of a DCP

Logic programming systems make it possible to construct proof trees of a given
DCP. To start a computation of a DCP one has to submit a finite set of
atoms, called a goal. A goal may be considered a clause with the empty
left-hand side. T'o simplify our constructions we shall assume that the goal is
an additional clause whose left-hand side is a special nullary predicate goal,
which does not occur in the clauses of the program. A DCP with a goal clause
will be called an augmented DCP and denoted <C,g>, where

g :goal <- B ""’Bq'

is the additional clause. The task of the computation is to find a substitution
under which all atoms of the goal become logical consequences of the clauses of
C. This can be achieved by constructing a proof tree. Backtracking is used to
find different substitutions. |
In logic programming systems the proof trees are constructed in a descendant
manner, starting with the goal clause and using resolution [15] to construct
subsequent partial proof trees. The reader is assumed to be familiar with that
principle. The partial proof trees constructed during that process will be called

resolutton trees.

Ezample 4 _
Consider the DCP of example 3. The trees in Fig. 4 can be obtained from

- 15 -

resolution trees of the goal
goal <- add(s(0), z, z).
~ by removing the roots of the latter (which are labelled goal).
' End of Ezample 4

3. Relating Definite Clause Programs and Attribute Grammars

The proof trees of a DCP and the decorated trees of a RAG have a similar
structure: the predicate symbols of a DCP play the role of nonterminals while
terms are its "semantic values”. Indeed, every predicate symbol has a fixed
arity, hence a fixed number of positions, which within labels of a proof tree
may be instantiated to different terms. Thus there is a direct correspondence
between both formalisms. '

In this section we show that a DCP can always be considered as a RAG, and
that, if an additional information, called d-assignment, which is comparable to
the attribute splitting, is provided, one can sometimes transform it into a
semantically equivalent FAG. Thus for studying properties of DCP’s and for
constructing their proof trees one can make use of the methods developed for
attribute grammars. To make this statement more precise we describe some .
constructions which transform DCP’s into attribute grammars. We discuss also
the problem whether an attribute grammar can be transformed into an
equivalent DCP. '

3.1 Transforming DCP’s into RAG’s

In this section we describe a construction which transforms any DCP into an
equivalent RAG. We comment first on the logical language L used to express
the semantic rules of the resulting RAG. We construct L as a one-sorted
language. For each clause ¢ of the original DCP we introduce a separate n -ary
predicate symbol T where n, is the number of all argument positions of c.
Thus, if ¢ is of the form

(*) po(too,...,tomo) <- pI(tIO’""tImI) o pn(tnO’""tnmn)'

where Py 1Py, aTE predicate symbols and n>0, then n =motm +...+m .
The set of functors is defined to be empty. Thus, L consists of the formulas
constructed in the usual way from the predicate symbols and from variabies.

Now we define the construction.

Construction 1 C
Given a2 DCP C= <N ,7 ,P > we comstruct a RAG G, =
< N, P, Attr, R , & > defined as follows:
1.N=N -

- 16 -

2. For every clause ¢ of P of the form (*) we construct the production
rule
pc : po — p1...pn
The set P of the production rules of GC’ consists of all production rules
constructed in this way; we distinguish between different copies of a
production rule which might have been obtained from different clauses.
3. The set Attr is defined as follows:
For each predicate symbol ¢ (ie. for each nonterminal of GC) the
number of attributes n equals its arity. The attributes are names of
the positions of the predicate symbols. They are constructed from the
predicate symbols followed by natural numbers. Thus
Attr(q) = {qi | i = 1,..,n }
The attribute set is one-sorted. The tota] ordering on Attr(g) induced
by the numbers of the attributes will be denoted 4. We use it to define
a total order < on Pos(pc):
a(s) < a’(5) iff i<j or §=j and a<a’in Attr(q).
Attr is the union of the sets Attr(q) for g N.
4. For each production rule P, the following formula Rc is created:
r.(z yerZ,)
where ¢
r. is the predicate symbol of corresponding to the clause ¢
{z ,...,znc} = Pos(pc) and zijzj for s<;.

5. The interpretation & C is defined as follows:
Its domain is the language of all terms constructed from the functors of
Fand from variables.
The relation associated with each letter r. is defined as follows.

Let <t00,..., t0m0’ t10’""t1m1 yoees tnO’""tnm > be the n -tuple

consisting of the terms occurring in the clause ¢ taken id their textual
order. Then the relation r, is defined to be the set of the images of this
tuple under all possible assignments of its variables in the semantic
domain (thus, it is a relation on terms).

End of Construction 1

Ezample 5
We use Construction 1 for the DCP of Example 4 . The underlying
context-free production rules are

(pI) add - ¢

(92) add — gdd
where add is the only nonterminal. The language defined by these rules
consists of the empty string and the second rule makes the grammar
ambiguous. However, the grammar is not used for generating strings but rather

-17 -

for producing derivatiosi trees. The nontermma.l add has 3 attributes, denoted
in the sequel addl, add?2, and adds. _
The set of the semantic rules consists of the formulas
r; (add1(0) , add2(0) , adds(0))
Ry: ry (add1(0) , add2(0) , add3(0) , add1(1) , add2(1) , adds(1))
The relations associated with the symbols T and T by the interpretation are
characterized by the following tuples of terms
ry <0,z,z> ,
rg: < s(z),y,s(z), =z, ly,\z>
End of Ezample 5

We use Construction 1 to relate DCP’s and RAG’s:

Theorem 1
Let Cbe a DCP and let G c be the RAG obtained from C by Construction
1. The set of the proof trees of C is lsomorphlc with the set of the
decorated trees of G C-

-Proof ~

We show that there is one-one correspondence between the decorated trees of

GC and the proof trees of C.

We show first how to transform the decorated trees into the proof trees. Let T
be a complete derivation tree of the RAG with a valid valuation. Thus, each

node zof T is labeled by a predicate symbol P, and has m:np attribute
L
positions { a...,0 } to which some terms tysst . are assigned. Assume that

a<1a for :<], where 4 is the ordering on Attr(p z) defined in Construction 1.

Smce the attribute values satisfy the semantic constraints, then the tree T’
obtained by replacing the label of each node zof T by the atom p (t ot m) is
a proof tree of G, . ‘

To transform a proof tree T of C into a decorated tree T”’of G ¢ We proceed as
follows. Let z be a node of T. By the definition it is labeled by an atomic -
formula of the form p(tl""’tn)’ where p is an n-ary predicate letter and
t1,...,tn are terms. To obtain T” we replace the label of z by the letter p and
we associate with z the attribute positions p1(z),...,pn(z), where pi(z)<pi(z)
for $<j. To each attribute position pi(z), #=1,...,n we associate as its value the
term ¢ In this way we define the valuation of T”. Since by the definition T

consists of instances of clauses of C, then the valuation is valid.
End of Proof

- 18 -

3.2 Modelling data dependencies of a DCP by Attribute Dependency
Schemata '

The notion of dependency relation for FAG’s makes it possible to prove
properties of FAG’s and to organize better attribute evaluation [11]. To define
this relation one chooses an attribute splitting. This does not influence the
declarative semantics of the FAG.

In this section we follow the example of FAG’s to introduce a notion of
dependency relation for DCP’s. Its usefulness js demonstrated in Section 4 by a
number of applications. Essentially, the relation is defined on the argument
positions of the labels of a proof tree of a DCP. Formally, to define it we
transform a given DCP into an Attribute Dependency Scheme. For this we
have to define a notion of dependency between positions of a clause.
Intuitively, positions depend on each other only if they share a variable.
However, this relation is symmetric. To make it into an ordering relation we
split positions of the predicate symbols of the DCP into "synthesised” and
”inherited” ones.

Definstion 6 : d-assignment
Given a DCP C = < W, F, P >, a direction assignment or briefly
d-assignment is a mapping of the arguments of each predicate symbol of N
into the set { |,1 }. '

5

By analogy with functional attribute grammars, we will call an argument
assigned to |

(resp. 1) "inherited” (resp. "synthesized®).

In the examples, d-assignments will be defined by associating with each
predicate symbol the list of the assignments to its arguments in the same
order. The semantics of a RAG is not affected by introducing a splitting on the
attributes, hence by Theorem 1 the semantics of DCP’s is not affected by
introducing a d-assignment.

Construction 2
Given a DCP C = < ¥ y 7, P> with a d-assignment d we construct an
attribute dependency scheme < N » P, Attr , D > defined as follows :
1. N, P and Attr are defined as in construction 1.
2.D={D(p)} p and
a D(p) b iff
(i) a € Input(p) and b e Output(p)
(ii) the terms corresponding to these Positions have a common variable.
End of Construction 2

o -19-

Ezample 6
For the DCP of Example 3 and for the d-assignment d defined by d(add) =
111 the relations Dp of the corresponding ADS are shown in Fig. 5.

End of Ezample 6

.3.3 From DCP’s to FAG’s

Since FAG’s have been extensively studied in the literature and have many
applications it is'interesting to know whether a given DCP can be transformed
into an equivalent FAG. This will open for employing in compilation of DCP’s
some optimization methods developed for attribute evaluators.

To answer this question we assume that a DCP is given with a d-assignment.
In this way the positions of each clause are split into input positions and
output positions, as discussed above. To solve our problem we have to express
the value of each output position of a clause in terms of the values of the input
positions. For example, consider the clause

add(s(z),y,s(z)} <- add(z,y,z).
with the d-assignment d
| d(add) = [11. |
The output position add1(1) depends on the input position add1(0) since they
share the variable z. In every instance of the clause the values of the positions
are terms. The value of add1(1) can be determined from the value of add1(0)
by selecting the appropriate subterm of the latter. To be more precise we
introduce for each n-ary functor f of the DCP n selector operators denoted |
ai-j,...,sn-f. These are partial operations on terms. For a given term ¢ the value
si-f(t) is defined to be t.if tis of the form flt s-sty)y and it is undefined
otherwise. The identity function on terms is also considered to be a selector.
Using this notation we can write a semantic definition for our example:

add1(1) = s1-s(add1(0))

where ”"=" denotes the equality on terms. To select a subterm of a given term
it may be necessary to use a composition of selectors called a composed

selector.

The value of an output position a of a clause is determined by the values of the
input positions iff each variable of & occurs in some input positions. A
d-assignment, which determines the splitting of the positions of the clauses will
be called safe iff this condition is satisfied. A DCP for which there exists a safe
d-assignment will be called a simple DCP. ,

Ezample 7 . :
Consider the classical append program (written in the notation of DEC10

Prolog).

-20-

append(] |,L,L) <- .
append([E1L1],L2,|FILS]) <- append(L1,L2,L3).

The d-assignment
d(append) = | | 1
is safe. For the first clause it gives
append3(0) = append2(0).
However, this definition does not express the fact that in each instance of the
clause the input position append1(0) is the empty list. '
' End of Example 7

Thus, in general case a condition concerning the form of the input positions of
a clause may be necessary. To express such conditions we introduce the
predicate instance, representing the following.binary relation on terms:

instance(tl,tz) holds iff t1 is an image of tz under some substitution.

Now the semantic rule for the clause of Example 7 can be expressed as follows:
instance(append1(0),[]) A instance(append2(0),L) A append$(0) = append2(0).
. Clearly, the second component of this rule can be omitted since any term is an
instance of a variable.

The examples discussed above can be generalized as follows.

Construction 8 ,
Given a DCP C < N, ¥, P> with a safe d-assignment d we construct a
FAG GC‘= < N, P, Attr, R , & > defined as follows:
1. N, P and Attr are defined as in Construction 1.
2. For each clause ¢ the semantic rule Rc is constructed as follows:
(i) for each output position a of ¢ we construct the following semantic

definition.
Let ta be the term at the position a of ¢. For a variable z in ta let &
be an input position including z. Denote by Szb the set of all
composed selectors s such that s tb)zz. (Each of them corresponds to
an occurrence of z in tb)' The semantic definition for a is of the form
a=ou(t)
where o is a substitution assigning to each variable z in t, the term
8(b) for some s in S.p-
(ii) For each pair of different occurrences of a variable z at (not

necess .rily different) input positions bI and be of the clause ¢ we
constr «ct the condition

81(b1) = 82[62)

where s, and s, are the selectors correspondin z to the considered

&

-21-

occurrences of z in the terms at the positions b and b (Notice that
the position names play the role of variables of the condltxon)
(iii) For each input position b if the term tb 18 not a variable we

~

construct the condition
snstance(b, tb)
R is the conjunction of all formulas constructed by (i), (ii) and (iii).

3% is defined as follows:
The semantic domain consists of all terms constructed with the functors
of Fand frqni variables (positions of the derivation trees).
The functors of ¥ are associated with the term constructing operations,
as in the basic term interpretation;
The selectors are associated with the selecting operations, as deﬁned'
above; A
The predicate letters = , and instance, represent respectively, the

identity, and the relation defined above.
End of Construction 8

Notice that because of the free choice of the selector s in 2(i) the construction
is deterministic only if in every clause each variable occurring at an output

position occurs only once at one input position.

Ezample 8
Construction 3 applied to the DCP and to the d-assignment of Example 7
results in the FAG with the production‘ rules:

(po) append — € v

(p1) append — append

and with the corresponding semantic rules

(rl) instance(append1(0),[]) A append$(0) = append2(0).

(rg instance (append1(0),[E | L1]) A
append3(0))=|head (append1(0) | append$(1)] A
appendl(1)=tail(append1(0)) A append?2(1)=append2(0)

where head and tail are the selectors of the components of a list.
End of Ezample 8

The main result of this section follows directly from Construction 3.

Proposition 1 .
For every simple DCP there exists a FAG whose set of decorated trees is

isomorphic with the set of proof trees of the DCP.

-22-

To obtain such a FAG for a given DCP one has to find a safe d-assignment
and to apply Construction 3. As noticed in [9] the class of simple DCP’s is
rather large. Furthérmore, Construction 3 can be extended for a generalization
of this class obtained by considering "multiple d-assignments” [9]. These
describe the situation when different calls of the same procedure in one logic
program have to be characterized by different d-assignments.

It is worth noticing that in some cases the FAG obtained by Construction 3 is
pure. This happens for example if in each clause all input positions are
different variables.

3.4. Transforming pure FAG into DCP’

The question arises whether it is possible to transform a RAG into a
semantically equivalent DCP. For this the semantic values of the RAG should
be represented by the elements of the semantic domain of the DCP to be
constructed. Generally it is not possible since the semantic domain of any DCP
is countable and the definition of RAG puts no restriction on the nature of the

semantic domains.

From practical point of view, this question may be more interesting if
restricted to a subclass of RAG’s used in computational applications, e.g. to
pure FAG’s. In the latter case the attribute values can be represented by

terms, as discussed in- Section 2, and the problem can be solved by the
following construction.

Construction 4
Given a pure FAG G = < N, P, Attr, R , S > where & is the basic
term interpretation we construct a DCP CG= < N, 7, P> defined as
follows:
1. ¥ is the set of functors occurring in the semantic definitions of G.
2. Nis the set of nonterminals of G: each nonterminal X is considered to
be a n x-ary predicate letter.
3. To define P we construct for each production rule p of G
a corresponding clause ¢
Let p be of the form
X 0 X 1"'Xm
for some m>0 and let
Pos(p)={a seees@p}
= -4
Clearly, & nXO, ...+nXm
Assume a'-jaj for §<j. For i=1,...,k denote by d’- the variable a; if a;
is an input position, and the term on the right-hand side of the
corresponding semantic definition if ¢ 18 an output position.

-23-

Now A is defined to be the clause

Xo{tm;...,tono) <- XI(tII’""tln,l)'-"Xm(tml""’tmﬁm) _

where
tOj = dj for j = 1,...,n0, and

' tzj' = d(n0+...4-n‘._1+j) for §=1,...,m and]=l',...,n'-,

Finally Pis defined to be the set of all clauses ¢ for peP.
End of Construction 4

Ezample 9 :
Construction 4 applied to the pure FAG of Example 2 gives the following
DCP: - ' |

X(initial(0),instial(0)) <-.

X(initial(0) final(2)) <- I(), X{fi(initial(O)),fina.l(2)}
X(initial(0),final(2)) <- D(), X(fd(initial{o}),final(2}) ‘
” End of Ezample 9

The main result of this section follows directly from Constructiqn 4.

Proposition 2 -
For any pure FAG with the basic term interpretation there exists a DCP
whose set of proof trees is isomorphic with the set of decorated trees of the

FAG.

To find such a DCP it suffices to apply Construction 4 to a given pure FAG.
Notice that the DCP’s obtained by Construction 4 are simple and that
Construction 4 is reversible under Construction 3. '

4. Examples of applications of the dependency relation

Our attempt to relate DCP’s and attribute grammars resulted in the notion of
DCP with a d-assignment, called in the sequel annotated DCP. The directions
assigned to the predicates of a DCP make it possible to apply the proof
techniques deveIOped for attribute gran;mafs [5] to proving properties of logic’
programs. This section illustrates that statement by three examples. First we
deal with the occur check problem, i.e. with the problem whether an infinite
term can be produced during a computation of an augmented DCP. We show
that this problem is in general undecidable, and we give a sufficient condition
under which this cannot happen. Then we introduce a notion of data-driven
DCP and we prove a sufficient condition for a DCP to be data-driven. Finally
we consider the problem whether a DCP can be run without employing
unification in its general form. Though the results of this section may be of
some practical importance our primary objective is to illustrate the
methodological usefulness of the dependency relation rather than its practical

“applications.

- 924 -
4.1. Sufficient conditions to make occur check unnecessary

Existing interpreters of logic programs are based on the resolution principle
and employ unification. The unification process should comstruct a most
genéral unifier of given arguments, or it should show that no unifier exists. In
the sequel we will assume without loss of generality that the unifier s
constructed as described in [22]. Unification is eventually reduced to
elementary steps, where an attempt is made to unify a term ¢ which is not a
variable and a variable X. A unifier of X and ¢ exists iff X does not occur in t.
(Alternatively it may be considered that if X occurs in ¢ then the unifier js an
infinite term). Thus the unification algorithm should jn principle check at
every step of unification, whether a variable occurs in a term, or not. This is
called occur check . Many existing interpreters do not perform occur check
since it is rather time expensive, and for most programs it never happens that
the term argument of a unification step includes its variable argument.
However, unification without occur check destroys completeness of the SLD
resolution, since in this case the results of a computation may be incompatible
with the declarative semantics of a logic program (see e.g. [21]). In this section
we will first show the general occur check problem to be undecidable and then
use concepts related to attribute grammars to develop a sufficient condition for
a DCP under which the occur check can be safely omitted. ‘

To be more precise we give a formal definition of the occur check problem.

A pair (t, tg) of terms, or atomic formulas, is said to be subject to occur check
iff occur check is the only reason of non-existence of a most general unifier of
t, and ty For example, the terms f(z,9(z)) and f(v,y) are subject to occur
check, but the terms k(z,9(z),9(z)) and h(y,9,f(y)) are not since the subterms
9(z) and f(y) are not unifiable. ’

Let T be a resolution tree of an augmented DCP <C,¢>. We assume without
loss of generality that the variables in the labels of T are different from those
in the clauses of C. T is said to be subject to occur check iff there exists a pair
(rI ,T9) of atomic formulas such that:

-1 is the label of a leaf of T

iy is the head of a clause in C;

- the pair (r ,rg) is subject to occur check.

Definition 8: The occur check problem
Given an augmented DCP < C, ¢ >, decide whether there exists a
resolution tree which is subject to occur check.

Theorem 2
The occur check problem is undecidable.

- 25

Proof

We describe a construction which for an arbitrary Turing machine M gives a
DCP C that ”simulates” the computations of M by resolution trees of C. In
this way we relate the halting problem for Turing machines with the occur
check problem for a class of DCP’s. ' '

The construction goes as follows.

Any instantaneous description of M is modelled by a ground term of the form
td(l,r,q), where [is a list describing the tape of M to the left of the head in
reverse order, r is a list describing the tape of M to the right of the head,
including the scanned symbol, and ¢ is thev' actual state of M. Thus, the
instantaneous description abgcd, where a,b,c,d are tape symbols and ¢ is a state
will be represented by the term id([bla],[c|d],q). (We use here the list notation
of the DEC10 Proiog). A move of M in the state ¢ for a scanned symbol z is
~determined by the transition function; ¢ is replaced by some ¢’, z by some
symbol z’, and the head may be moved, for example to the left. Thus, each
move can be represented by a pair of terms. For example, the move described
above can be represented by the pair: | »

(id(121Y), 21X, 0),id(¥,Z,21X],¢").

Clearly, all moves of M can be represented by a finite set of pairs of terms.

The machine M when started in some initial instantaneous description ¢
continues until it reaches a final state qf (it may also interrupt’ the
computation if the next move is undefined). The result of a successful
computation is the final ixistantaneous description. To simulate operation of M
we introduce a ternary predicate machsne. Its intended interpretation is the
relation on ingtantaneous Ziescriptions defined as follows: machine(il,ie,is)
hqlds iff the machine M when started in :'i reaches ig in one move and the
computation terminatés in :'3. The computations are to be simulated by.
resolution trees: if the final state ¢, is reached by M the resolution tree.
corresponding to the computation should be completed. Therefore we introduce -
the clause 4

(i) machine(t'd(Y,Z,qf},id(Y,Z,qf),:'d(Y,Z,qf}) <-. .
where Y and Z are variables. For each move of M characterized by a pair (a,b)
of terms, as described above we introduce the clause o
(i) machine(a,b,F) <- machine(b,N,F).

where N and F are variables not occurring in the terms ¢ and .

The DCP C consists only of the clauses of type (i) and (ii).

To simulate M we call C with the goal:

goal <- machsne(s,N,F)
- where 1 is the ground ferm representing the initial instantaneous description of _-
- the computation while N and F are variables. 1

-26-

It is easy to see that any resolution tree of such a goal is not subject to occur
check and has the following properties:
- each of its nodes has at most one son;

- the first arguments of the labels of the consecutive nodes are ground terms
representing consecutive instantaneous descriptions of a computation of M.
Observe also that every terminating computation of M is represented by a

unique complete resolution tree of C.

Consider now the DCP C’ obtained from C by replacing the clause (i) by the
following clauses: .

(iii) machine(id(l’,Z,qf),id(Y,Z,qf),id(Y,Z,qf)) <- equal(Y,q(Y)).

(iv) equal(Y,Y) <-. '

Let C’be called with the same goal clause
goal <- machine(i,N,F).
Let T be an incomplete resolution tree of this goal. Two cases are possible:

Case 1.
The only leaf of T is of the form machine(r,s,t). In this case T represents a
sequence of consecutive moves of M, as discussed above, and T is not subject

to occur check.

Case 2.

The only leaf of T is of the form equal(t,g(t)) and T is subject to occur check.
In this case the consecutive labels of T with except of the label of the leaf
represent consecutive moves of a complete terminating computation of M,
Observe that any terminating computation of M gives rise to such a tree.

Thus, a resolution tree which is subject to occur check exists iff the machine M
halts on the input determined by the goal clause. If the occur check problem
were decidable we could decide whether a given Turing machine halts on a
given input what is known to be undecidable. Hence the occur check problem

is undecidable.
End of proof

Looking for sufficient conditions

It is well known that if in a DCP all heads of the clauses are linear (i.e. in each
of them every variable occurs at most once) the occur check is not necessary.
We present here a more general condition, whose principle is to relate the
occur check problem with well-formedness of the attribute dependency scheme
associated with a given DCP.

When running a DCP the unification procedure is invoked to unify a
distinguished leaf ! of a partial proof tree T and the left-hand side of a clause ¢

-27-

of the program. If the arguments are unifiable a most general unifier ¢ is
constructed, and a new partial proof tree is zreated: in the tree §(T) the leaf
(1) is replaced by the subtree (c). It is assumed that T and ¢ have no
common variable, otherwise the variables of ¢ are remamed. before the

unification process begins.

The proof trees which' can be constructed in that way are the resolution trees
(cf. Section 2.2).

The leaf [and the left-hand side of ¢ are atomic formulas of the form
| p(tl’""tn) and p(t’y,...,t",), where p is an nary predicate and t; ,...,t, t’
-,t’, are terms. A most general unifier of the lists of terms (¢, ,...,t,) and
(t 1) can be constructed by the composition of a most general unifier
"y of t a.nd t’ 17 and of a most general unifier of the lists of terms ,
(7y (t) sy (G,) and (ng (g) smy (¥,) In that way the
unifica.tion of a pair of atoms can be reduced ton umﬁcatxon steps for the
consecutive positions of the atoms. These steps can be described as follows:
denote by 7, a most general unifier of the terms 0. , (t‘-) and b; 4 (t”.),
where =1 ,...,n, 00 is the identity substitution, and 0‘- is the composition of
0 4 and n,. Then a most general unifier of / and of the left-hand side of ¢ is 6,
To deal with the occur-check problem we introduce a notion of partially unified
resolution tree. It is a graph obtained from a resolution tree T and from a
clause ¢ (with renamed variables) by unifying a number k>0 of positions of the
distinguished leaf of T with the corresponding positions of the left-hand side of
¢ (Fig. 6). This graph is an ordered labeled tree T’ with a distinguished node,
where unification takes place, called the active node of T”. The subtree of T
whose root is the active node can be considered an instance of ¢, while the
remaining part of T” including the active node can be considered an instance
of T. The label of the active node has to be described more precisely. It has, as
usual n positions, where n is the arity of its predicate. However, only first k of
them are terms, while the others are pairs of terms. The active node of T”is
created by pasting together a distinguished leaf I of T and the root of c. Let
the label of { be p(t1 sty) and let the label of the root of ¢ be p(t’ ,...,t’n)-
Then for § = 1,..,k the +-th position of the label of the active node of T”is § lc(ti
)= Ok(t’), while for j=k+1 ,...,n the j-th position of the label is the pair of
terms 6, (t.7) and 6, (t;). The other labels of T’ are the instances of the
corresponding labels of T, or ¢, under the substitution 6, . Observe, that the
active node has as a matter of fact k + 2(n-k) positions; for each k<j<n there’
- are two positions of the active node: one originating from the tree T, and the

other originating from c.

We assume now that a d-assignment d is defined for a given DCP. Thus we

- 928 -

consider the attribute dependency scheme obtained in the construction 2
(section 3.2). For any resolution tree T of the program as well as for any clause
¢ the ADS determines a dependency relation on the positions of its labels as
described in section 2.1 . The dependency relation is also defined for a partially
unified resolution tree T’ obtained by unification of some positions of the root
of ¢ with the corresponding positions of a leaf of T. The dependency relation
on the positions of T’ is determined by the dependency relations of T and ¢ :
its graph is constructed from the graphs of both relations by identification of
the unified positions, belonging originally to disjoint domains.

To formulate our sufficient condition we extend the notion of input position
and the notion of output position for the case of a partially unified resolution

tree T’ constructed from a resolution tree T and a clause c.

A position of a partially unified resolution tree is said to be an tnput posstion
with respect to a given d-assignment iff it is

(1) a synthesized position of a leaf, or

(2) an inherited non-unified position of the active node originating from ¢, or
(3) a synthesized non-unified position of the active node originating from T.

A position of a partially unified resolution tree is said to be an outlput
position with respect to a given d-assignment iff it is

(1) an inherited position of a leaf, or

(2) an inherited non-unified position of the active node originating from T, or
(3) a synthesized non-unified position of the active node, originating from c.

We will also need the following property of unification which is left without
proof. '

Proposition 8
Let t’ be a term, let t’’ be a linear term with no variable in common with
t’, then
(i) the pair (t’,t”’) is not subject to occur check, and
- (ii) if there exists a most general unifier § of ¢’ and ¢t’’ then
(1) If X is a variable of the domain of 8 occurring in t’then 6(X) is
a linear term and all its variables occur in ¢
(2) If X,Y are different variables of the domain of 6 occurring in t’
then 8(X) and 6(Y) have no common variable.

Definstion 9 : proper d-assignment ,
Let C be a DCP and let g be a goal clause. An d-assignment d is said to be
a proper d-assignment for the augmented DCP consisting of C and g iff
(1) the associated ADS of the augmented DCP is well formed, and
(2) in each clause of the augmented DCP all input positions are linear and

- - 29 -
have no common variables.

Lemma 1 :
Let <C,g> be an augmented DCP where C is a DCP and g is a goal
clause. If d is a proper d-assignment then in any partially unified resolution
tree T of <C,g> .
(i) 21l input positions are linear and have no common va.nables, and -
(ii) if an input posxtxon p has a common variable thh an output posxtxon q

thenp—+ T

Proof
We prove the lemma by induction on the size of the partially unified resolution

tree.

For the tree consisting of the goal g the lemma holds by the assumption

concerning ¢ and the definition of —-»+T .

Assume now that it holds for any completely unified resolution tree T,
constructed from at most n instances of clauses. We will show that it holds
also for any partially unified resolution tree that can be constructed from T
and an arbitrary clause c¢. This will be proved by induction on the number of

already unified positions of the active node of the tree.

If the number of the unified positions of the active node is zero, then (i) holds
by the induction hypothesis concerning T, by the hypothesis of the lemma, and
by the assumption that T and ¢ have no common variables (renaming). The
condition (ii) holds trivially since the positions of T and of the instance of ¢ are
‘disjoint, and the dependency relation of the partially unified resolution tree is

the union of the dependency relations of T and c.

Assume now that the lemma holds for the partially unified resolution tree T
constructed by unifying k>0 positions of a leaf ! of T and of the left-hand side
of ¢. We prove that it holds also for the tree T’ obtained from T’ by

" unification of the terms at the k+1 position of the active node.

For the treé T’ we prove separately (i) and (ii).

" By the induction hypothesis (i) holds for T". The number of the input positions
of T” is that of T, decreased by 1 since one of the input positions of T’ is
being unified and disappears in T”’. Any input position of T’ corresponds to
an input position of 7. We show first that every input position of 7"’ is linear.
Assume that an input position p”’ of T’ differs from the corresponding input
position p’ of T". This means that a variable X occurring at p’ occurs also at
one of the unified positions. By the induction hypothesis (i) X may occur only
at the output unified position. Since the input unified position is linear, by
Proposition 3, the term replacing X after unification must be also linear.

-'-ﬂMoreover, by the induction hypothesis, the variables occurring in this term do -

- 30 -

not occur at any input positici: of T’ with except of the input unified position.
We show now that different input positions of T’’ have no common variables.
Notice that any variable occurring at an input position of T’’occurs also at an
input position of T”. If a vriable X appears at an input position p”’of T and
does not appear at the corresponding input position p’of T' so it appears at
the input unified position in T’. Hence by the induction hypothesis and by
Proposition 3 this variable cannot appear at any input position of T’ different
from p’’. Note that Proposition 3 can be used since the ADS is well-formed and
thus, by the induction hypothesis, both unified positions have no common

variable.

We prove now (ii). Let p’’ be an input position of T”, let ¢”’ be an output
position of T”’ and let X be a variable occurring both at p”’ and at ¢’ Denote
by p’ and respectively by ¢’ the positions of T’ corresponding to p’’ and ¢
We show (ii) by considering separately the following cases:

Case 1.

X occurs at p’and at ¢’ Thus p’—v"'T,q’, hence p”-—-»+

T 9"

Case 2.

X occurs at p’but not at ¢” Since X is passed to ¢’’ during unification, it must
occur also at a unified position of T”. By (i) it must be the output unified
position u. Moreover, there must be a variable Y occurring both at ¢”and at a
" unified position of T”. By Proposition 3 Y cannot occur at the input unified
position u, so it must occur at the output unified position w. Hence, by the
induction hypothesis concerning (ii): p’ —-»+T, u and w —++T,, q”’. Thus, after

unification, p’’ — +T” q”.

Case 3.
X occurs at ¢’but not at p’. By the reasoning similar to that of Case 2 one can
prove that there is a variable Y occurring at p’ and at u, hence X occurs at w.

Thus p’—»+T, u, w —»+T, ¢’, and consequently, p”—++T,, q”.

Case 4.

X occurs neither at p’ nor at ¢’ Since X is passed to p”’ during unification
there is a variable Y occurring both at p’ and at u, which is substituted by a
term with X. On the other hand, there is a variable Z different from Y
occurring at ¢’, which is also substituted by a term with X. Thus Z must
appear at one of the unified positions. Since w is linear, by the assumption that
Y unifies with a subterm of w including X we get from Proposition 3 that Z

cannot occur at u. Thus Z appears at w, hence (ii) holds also in this case.
. End of proof

Now we formulate the main result of this section.

-31-.

Theorem 8
Given an augmented DCP <C,g> if there exists a proper d-assignment for
C and ¢ then none of the resolution trees of the DCP is subject to occur

check.

Proof

It follows by Lemma 1 that the unified positions of the active node of a
partially unified resolution tree have no common variables. (Otherwise the
ADS associated with - the DCP is not well-formed what contradicts the
assumption that the d-assignment is proper). Thus, by Lemma 1 Proposition 3
applies to any pair of terms to be unified in any partially unified resolution

tree. Hence none of the resolution trees of the DCP is subject to occur check.
-End of Proof

The theorem gives a sufficient condition under which no infinite term can be
created during resolution of the goal ¢ with the program C. It requires
existence of a proper d-assignment for C and g. The latter problem is generally
intractable, since it is known that the complexity of the well-formedness of an
attribute grammar is intrinsically exponential [13]. However, some sufficient
conditions of well-formedness known from the literature, which can be checked
in polynomial time could be used to implement tractable tests for the occur

check problem.

Ezample 10
Consider the augmented DCP <C,g>, where C is the DCP of Example 4 and ¢
is a goal clause of the form
goal <- add(tl,te,z)
where z is a variable, t1 is a term, and t2 a term without z.

The d-assignment of Example 6 :
dodd) =] |1
is proper for this DCP. Every term occurring in its clauses is linear and

well-formedness of the attribute scheme can be proved by some known criteria.

‘Thus no resolution tree is subject to occur check, which may be safely omitted.

End of Ezample 10

Though the syntactic conditions of Theorem 3 are conceptually simple they
apply to a mnon-trivial class of DCP’s. However, Lemma 1 and Theorem 3
should be seen rather as examples of application of the dependency relation
than as a practical solution of the occur check problem. A more complete
treatment of this problem is given in [21]. In contrast to our approach it is
based on "simulation” of computations of a DCP. The main problem in this -

case is how to approximate in a finite way the potentially infinite set of labels

-32-

of resolution trees. The solution presented in [21] employs the notion of binary

term schema and leads to rather complicated algorithms.

The proofs of Lemma 1 and Theorem 3 show that the notion of dependency
relation makes it possible to study run-time properties of logic programs such

like occur-check.

Our approach to the occur check problem makes it possible to relate formally
the well-formedness problem for FAG’s with the occur-check problem for a
class of DCP’s. We introduce first some auxiliary notions.

By a resolution tree of a non-augmented DCP C we mean any resolution tree

of a clause in C.

By an ertending FAG we mean a pure FAG such that the right-hand side of
each semantic definition is a term different from a variable. Clearly, each pure
FAG can be transformed into a semantically equivalent extending FAG. For
this it suffices to introduce a new functor [interpreted as identity, and to
replace each variable z which is the right-hand side of a semantic definition by
the term I(z).

Theorem 4
An extending FAG G is well-formed iff none of the resolution trees of the
DCP C’G obtained from G by Construction 4 is subject to occur check.

Proof

Assume that G is well-formed. Observe that under the d-assignment of CG
corresponding to the attribute splitting of G, all input positions of each clause
of CG are different variables. Thus, the d-assignment is proper for CG and by

Theorem 2 none of the resolution trees is subject to occur-check.

Assume now that none of the resolution trees of CG’ is subject to occur check.

We prove that in this case G must be well-formed.

. By Construction 4 there is a one-one correspondence between the production

rules of G and the clauses of CG . To show that G is well-formed it suffices to
prove that for each resolution tree of C’G the graph of the dependency relation

. induced by the attribute splitting of G is acyclic.

Let T be a resolution tree of CG . Observe first that each input position of T is
a variable and each output position of T is a term. Moreover, an output
position depends on an input one iff the variable of the latter occurs in the
term at the output position. This can be shown by induction on the size of the

_resolution tree. This property holds also for partially unified resolution trees.

The local dependency relations in clauses have no cycles. Thus a cycle may be
introduced only by unification of an output position of a partially unified

- 33 -

resolution tree with an input position on which the output position depends.
But in this case the input position is a ariable and this variable occurs in the
term at the output position. This means that the terms are subject to occur

check what contradicts the assumption about C G- Hence G is well-formed.
End of Proof
The proof of Theorem 4 shows that the notion of occur check is closely related
to the notion of well-formedness of an attribute grammar. This was informally
pointed out also in [1], where the formalism of Definite Clause Translation .
Grammars was introduced, which may be thought of as a logical
‘implementation of functional attribute grammars. It was claimed that using
DCTG’s one can avoid well-formednes_s tests since the occur check will detect
possible circularities. However, unification with occur check is rather expensive,
and if occur check is not performed during the unification a safe method of
dealing with infinite terms may be necessary, or otherwise some static tests for
checking that infinite terms cannot be created. We have shown that such tests -

are generally at least as expensive as well-formedness tests.

4.2 Data Driven Programs

The depth-first left-to-right strategy used commonly by Prolog interpreters,
called in the sequel the standard strategy, may sometimes have some

disadvantages. For example, consider the following simple‘program

grandfather(X,Y) <- father(X,Z), father(Z,Y).
father(Mary,George) <-.. '
father(Paul,George) <-.

father(Peter,Paul) <-.

If we consider the goal grandfather(Peter,Y) the best way to solve it is to use
the standard strategy. On the other hand, if we consider the goal
grandfather(X,George) it would be better to deal first with the second atom of
the right-hand side of the corresponding clause, since both variables of the first
atom are uninstantiated and that will cause backtracking. Alternatively, to
avoid backtracking, one can rearrange the atoms in the right-hand side of the

first clause.

In this example, to choose a good strategy (or to perform a proper
rearrangement) one needs additional information, namely which positions of
the goal are expected to be ground terms. Similar information may be-
" optionally given to a Prolog compiler as mode declarations [16]. In [3] an

-34-

obligatory use of this type of control information is suggested for all predicates
of the program. A more complicated control information of similar type is
discussed in [24]. A method for generating control information for a given
program is described in [18]. -

In this section we study the propagation of ground terms in resolution trees
during computations of augmented DCP’s. Thus, our objective is different from
those of the papers mentioned above. We suggest to provide control
information by a d-assignment and we define a class of augmented DCP’s for
which data flow during the execution can be properly modelled by the
dependency relation induced by a given d-assignment. To be more precise we
introduce the following definition.

Definitson 10
A DCP C, is said to be data-driven under a direction assignment d iff at
any step of a computation using the standard strategy the actual subgoal
has all its inherited positions instantiated to ground terms, provided that
the initial goal has this property.)

Clearly, the example program is data-driven under the d-assignment d such
that:

d(grandfather) = | 1 , d(ﬂ;ther) =11

but it is not data-driven under the d-assignment d’:

d’(grandfather) =1 | , d’(father) =1 | '

A DCP C’ is said to be a version of C if it is obtained from C by

rearrangement of atoms in the right-hand sides of some clauses of C.

A version of the example program can be obtained by replacing its first clause

by the clause
grandfather(X,Y) <- father(Z,Y), father(X,Z).
This version is data-driven under the direction assignment d’.

In this section we use a proof technique introduced for RAG’s [5,7].to give a
sufficient condition for an annotated DCP to be data-driven, or to be
rearranged so as to become data-driven under the same d-assignment. We
show that the restricted class of data-driven DCP’s satisfying this condition is
powerful enough to model any Turing machine.

-35-

Generally speaking, as noticed in [24], problems like whether a given DCP is
data-driven under a given d-assignment are undecidable. The proof technique
is similar to that used in the proof of Theorem 2. This section gives a
conceptually simple and algorithmically tractable sufficient condition for a
DCP to be data-driven under a given d-assignment. The class of DCP’s for
which there exist d-assignments satisfying the condition is ‘restricted but
non-trivial. '

We formulate first a sufficient condition for an annotated DCP which makes it
sure that in any proof tree whose inherited positions of the root are ground
also the synthesized positions of the root are ground. (A version of the theorem

which follows can be also found in [9}).

Theorem 5

Let C be an annotated DCP with a safe direction assignment d and such
that the ADS obtained from C by Construction 2 is well formed. For every
proof tree of C if all inherited positions of its root are ground then also all

synthesized positions of its root are ground.

Proof _
The theorem is proved by induction following the method introduced in [7] for

Logical Attribute Grammars (here we deal with a particular case of the
method).

We show that in any proof tree whose inherited positions of the root are
ground all positions must be ground. Since the attribute scheme is well formed
the dependency relation on the positions of any proof tree determines a partial
order on the\positions. The induction will follow the directed acyclic graph

spanned on the positions of the tree and corresponding to this partial order.

Since d is safe then the only minimal elements in the ordering relation are the

inherited positions of the root. These are assumed to be ground.

Assume now that for some non-minimal position z of a given proof tree all
positions less than z in the partial order are ground. Since zis not minimal it is
an output position of an instance of a clause c. Since d is safe all variables
occurring in ¢ on the output position corresponding to z occur also in some

_input positions on which the output position depends. By the induction

bypothesis in the considered instance of ¢ the corresponding input positions
must be ground, since they precede z in the partial ordering. Therefore z is also

ground. Hence all positions of the tree are ground. ‘
End of Proof

- 36 -

Following [12] we now introduce a notion of one-sweep attribute dependency
scheme, which will be used in the sequel to formulate the main result of this
section.)
For any nonterminal X of an attribute scheme denote by - x the relation on
the positions of X defined as follows:

1 x 19 iff p is inherited and ¢ is synthesized

With each production rule
r:X,— X,..X_
of an attribute scheme we associate a relation => . on its positions defined as
follows:
=> = -{XIU...-anU—»r
where — , denotes the local dependency relation as defined in Section 2.

Intuitively, the relation =>. gives a rough approximation of the dependencies
between the positions of instances of r in any decorated tree of the attribute
scheme. More precisely: If r’is an instance of r in a decorated tree T, and p’
—++T ¢’ then the corresponding positions p and ¢ are in the relation =>. (but
not vice versa). Fig. 7 shows the diagram of the relation => r for the first rule
of the attribute scheme associated with the example DCP of this section under

the d-assignment d’.

Definstion 11 .
An attributed scheme is called one-sweep iff for each of its productions r
the graph of the relation =>_ is acyclic.

(This definition is equivalent to that given in [12], as shown in [5, p.18]). It is
known [12] that any one-sweep attribute scheme is well formed.

We use the relation =>+r to introduce an ordering on the nonterminals of the
production rule r. Let

‘ r: XO — XI“‘Xn
be a production rule of a one-sweep attribute scheme. Denote by <, the

relation on
{X 10Xy } defined as follows: X <_ Xj iff there exists a position p of X

and a position g of X.such that p =>.4 For the example rule r of Fig. 7, n =
2, Xo = grandfather, X1 = X2 = father, and Xe <, XI . It follows from the
definition that .

Proposstion 4
<, is a partial ordering.

-37-
As a consequence we get

Theorem 6
. . Given an annotated DCP C with a safe direction assignment d, if the
associated ADS is one-sweep then there exists a version of C which is data

v

driven under the direction assignment d.

Proof . | \ .
Consider the DCP C’ obtained from C by rearranging the right-hand side of

each clause ¢ according to the relation <, > where T is the production rule of
c
the associated ADS. Consider now the resolution process using the standard

strategy, and starting with a goal whose inherited positions are ground. Using
Theorem 5 one can show by induction on the number of resolution steps that
at each step of the process the inherited positions of the actual subgoal are

ground. v
End of Proof

The class of logic programs which have a corresponding one-sweep scheme
seems to be rather restricted. Nevertheless, many of the examples published in
the literature fall in this class. Moreover, one can model an arbitrary Turing
machine by an annotated logic program, whose associated attribute scheme is
one-sweep. The DCP obtained for a given Turing machine by the construction
described in the proof of Theorem 4 has this property for the d-assignment

d(machine) = | 1 1.

4.3. Running clause programs without unification.

In this section we give a sufficient condition which makes it possible to run a
DCP with a very restricted form of unification. For the case of a term t1
being unified with its instance ty the resulting unifier assigns to each variable
occurring in t,a subterm of ¢, , while the variables ogcurring in t, remain
unbound. An occurrence of a variable in t1 can be localized by a number of
selection operations. For instance, for ¢, = f(a(X,Z),W), W is the second
subterm of ¢, , while X is the first subterm of its first subterm:. Thus,
whichever instance of t1 is the term t‘9 the unifier assigns to X the first
subterm of its first subterm. Similar properties of logic programs are used in
some compilers to compile out unification (see e.g. [19]).

We now define a sufficient condition under which any unification during a
computation of an augmented DCP reduces to a finite number of unification
steps of the type described above. We introduce first some auxiliary notions.

An augmented DCP <C,g> is said to be d-ordered for a given direction
assignment d iff the associated ADS is one-sweep and for each clause ¢ of the

-38-

program (including the goal clause) the partial ordering <, of the
nonterminals of the production rule T, of the ADS is consistent with the
textua: ordering of tkz corresponding atoms in ¢. Clearly, if <C,g> is
d-ordered DCP then C is data-driven under d (Theorem 6).

Definstion 12
Let z = p(t, ,..,t,) and 2’ = p(t’; ,.,t°) be atoms and let d be a
direction assignment on a set of predicates including p. We say that z
d-subsumes z’ iff the following conditions are satisfied:
1. z and z’ have no common variables;
2. the terms at the inherited positions of z’ are linear and have no
common variables; '
3. the terms at the synthesized positions of z are linear and have no
common variables;
4. for every inherited position s of the predicate p, t, is an instance of t"- ;
5. for every synthesized position s of the predicate p, t". is an instance
of t‘- .

Clearly, a most general unifier of such atoms always exists and it can be
constructed as discussed above, without employing a general unification
algorithm. For example, the atom

add(s(s(X)), s(X), s(Z))
d-subsumes the atom

add(s(W), s(V), s(s(W)))
under the d-assignment dfadd) = | | T . A most general unifier 6 of the
atoms can be constructed by unifying separately their corresponding
components, as described above. This gives:

0(W) =s(X); 0(V)=X; 0(Z)=s(W).

We give now a sufficient condition concerning a DCP and its goal, under which
any unification during the run of the program can be performed as described
above. Moreover, for any possible unification step one of the term arguments is
known before the .computation starts, while the other one is created in run

time.

Theorem 7
Let <C,g> be a d-ordered augmented DCP such that:
(1) each variable occurring in a clause (including the goal clause) occurs
on exactly one input position of this clause.
(2) if z is an atom occurring in a right-hand side of a clause, and y is a
left-hand side of a clause such that z and y unify, then every synthesized
position of y is an instance of the corresponding position of z,

z.

-39 -

then during the computation of C with g , using the standard rule, if the
actual subgoal unifies with the left-hand side of a clause, it also d-subsumes

Y
AV

" Proof

Since the goal clause satisfies (1) and the DCP is d-ordered the inherited -
positions of the first atom of the right- hand side of the goal clause must be
ground. Observe also that Lemma 1 (Section 4.1) applies to the DCP <C,g>.
(Any one-sweep ADS is also well formed).

For an arbitrary step of the resolution process we show that if the actual
subgoal z unifies with the left-hand side z’ of some clause it also d-subsumes it.

We check the conditions of Definition 12:

1. Because of renaming z and z’ have no common variables.

2. Since z’ is the left-hand side of a clause, by (1) all terms at the inherited
positions of z’are linear and have no common variables.

3. By the proof of lemma 1 all terms at the synthesized positions of z are linear
and have no common variables.

4. Since <C,g> is d-ordered, all terms at the inherited positions of z are
ground. Thus, they are instances of the terms at the corr&spondmg positions of
’

5. To verify this last condition we have to show that by using the standard
computation rule, no input position of the partial proof tree is changed before
its unification. To be changed, we know by lemma 1 that it is necessary to
have a path from that input position to some previously unified output
position. It is easy to show, using the d-ordered condition and the one-sweep
property that this is not possible. Thus all output positions of the partial proof
tree are copies (with possibly renmamed variables only) of terms of the
corresponding synthesized positions associated to predicates of the body of a

" clause. Hence by (2) all terms at the synthesized positions of z’ are instances of

the terms at the corresponding synthesized positions of z.

Thus by 1-5 z d-subsumes z’.
' End of Proof

For the examples published in the literature it is often possxble to find a
d-assignment satisfying the condltxons of Theorem 7. For the append program

> append(]],L,L)<-.
append(|E\L1},L2,|E\LS)) <- append(L1,L2 L3}

assigning the directions | | T or T T | to the predlcate append we obtain by |

Construction 2 a one-sweep ADS. Also the conditions (1) and (2) of Theorem 7
are satisfied under this direction assignment. Provided, that the goal is of the
form append(l1,12,R), where l1 and I2 are ground terms and R is a variable

- 40 -

the program can be run without unification in its general form. This
information could be used to compile it into an efficient code.

Also the DCP obtained for a givern Turing machine by the construction
described in the proof of Theorem 4 fulfills the conditions of Theorem 7 under

the direction assignment d(machine) = | 1 1.

5. Conclusions

The paper explains formally the nature of the relationship between logic
programs and attribute grammars. Both formalisms specify relations, which
may be defined by referring to the similar notions of decorated tree and proof

tree.

The similarity of the formalisms makes possible transfer of the expertise. For
example, the results of Section 4 concerning logic programs were obtained by
using a proof technique introduced for attribute grammars. Section 4 shows
also that the notion of dependency relation originating from attribute
grammars may be used as a formal framework for studying run-time properties
of logic programs. This framework results in clear and simple concepts which
may be used in logic programming.

Most of the literature on attribute grammars is devoted to FAG’s. This means
that to transfer the expertise it may be desirable to restrict the use of DCP’s
to the simple DCP’s, which by Construction 3 can be transformed into FAG’s.
We have shown that simple DCP’s are a non-trivial class of programs.
Nevertheless the question arises whether this restriction kills the spirit of logic
programming. We leave it open for statistical investigation of published logic
programs. It is easy to see that "reversible” use of a predicate in a DCP
violates the restriction. For example, the append procedure may be. called
within one program to concatenate a pair of lists and to also to split a given
list into sublists. If such different calls appear in a DCP, formally it is not a
simple DCP. However, quite often it can be transformed into an equivalent
simple DCP by creating different copies of the subprogram corresponding to
the different types of calls. If such a transformation is done at compile time it
does not influence the external form of the program, and in the same time it
may result in producing different versions of the compiled code for different
uses of the predicate, to improve the efficiency of computations (see [9] for

more details).

It was shown in Section 3.4 that a pure FAG with basic term interpretation
can be seen as a DCP. This opens for applying new evaluation methods for
FAG’s, based on the procedural semantics of DCP’s. This shows that the
expertise in logic programming can be also transferred to the field of attribute
grammars. However, this issue was not discussed in this paper and requires’

- 41 -
further investigation.

There are several differences between DCP’s and RAG’s. Some of them may
deserve furiler investigation. In particular, it may be interesting to examine
whether the following concepts of functional attribute grammars may find

some applications in logic programming:

Controlling computations by the dependency relation -

Attribute evaluation is controlled by the dependency relation. The partial
ordering induced by the dependency relation reflects restrictions on the
sequencing of computational operations. The concept of attribute splitting
provides a useful tool for characterizing data flow during the computation and

facilitates construétion of attribute grammars.

Unspecified iﬁterprctations.

The formalism of attribute grammars provides no means for defining
interpretations. On the other hand, it gives a formal framework for combining
semantic rules in one well structured system regardless of the interpretation to

be used for performing actual computations.

Many-sorted semantic domains..

Usually it is assumed that different attributes of an attribute grammar may
have different domains. This means that many-sorted algebraic structures are
considered, what results in a type mechanism, in contrast to the iypeless

principles of logic programming.

Separate parsing.

The attribute evaluation process begins with a context-free derivation tree
which is assumed to be given. Usually it is constructed by a parser from a
given terminal string. A similar method can be applied for implementation of
the Definite Clause Grammars [20]: the context-free production rules obtained
by a modified Construction 3 can be used to separate the parsing process from

the rest of the computations.

It is worth noticing that similar concepts appear in logic programming as
pragmatic facilities of existing implementations, e.g. integer arithmetic of
Prolog, type system in [17], or read-only variables of Concurrent Prolog [23].
By referring to attribute grammars we get a formal framework for systematic

treatment of these facilities.

Acknowledgmént

The authors are very grateful to Jan Komorowski for stimulating discussions,
and to Wlodek Drabent and Bryan Lyles for their comments on the revised
version of the paper. We also acknowledge gratefully the criticism of the

reviewer, which contributed in many aspects to the revision of the original

- 42 -

version of this paper.

REFERENCES

(1] Abramson, H,. Definite Clause Translation Grammars, in: Proc. of the 1984
Int. Symposium on Logic Programming, Atlantic City, 233-241.

[2] Apt, K.R. and van Emden, M.H., Contributions to the Theory of Logic
Programming, J.ACM. 29:841-862 (1982).

[3] Bruynooghe, M., Adding redundancy to obtain more reliable and readable
Prolog programs, in: Proc. 1st Internattonal Logic Programming Conf.,
van Caneghen,M. {(ed.), Marseille 1982, 129-133.

[4) Clark, K.L., Predicate Logic as a computational Formalism,

Research Monograph 79/59 TOC, Dept. of Computing, Imperial College
London (1979).

[5]' Courcelle,B. and Deransart,P., Partial Correctness of Attribute Grammars.
INRIA, Rapports de Recherche, No.322 (1984).

[6] Courcelle,B. and Franchi-Zannettacci, P., Attribute Grammars and
Recursive Program Schemes, TCS, 17: 163-191 and 235-257 (1982).

[7] Deransart, P.: Logical Attribute Grammars, in: Proc. of the IFIP
Congress 1983, Mason R.E.A. (ed.), Elsevier Science Publishers B.V.
(North-Holland), 463-469.

[8] Deransart,P., Jourdain,M. and Lorho,B., Speeding up Circularity Tests for
Attribute Grammars, INRIA, Rapports de Recherche, No. 211 (1983) and
Acta Informatica 21:375-391 (1984)

[9] Deransart,P. and Maluszynski,J., Modelling Data Dependencies in Logic
‘Programs by Attribute Schemata, INRIA, Rapports de Recherche, No.323
(1984).

[10] Deransart,P. and Maluszynski,J., Relating Logic Programs and Attribute
Grammars, Linkdping University, IDA Research Report 84-07 (1984).

[11] Engelfriet J., Attribute Grammars: Attribute Evaluation Methods,

In: Methods and Tools for Compiler Construction (B. Lorho ed.)
Cambridge University Press, 103-138 (1984).

[12] Engelfriet,J. and File,G., Passes, Sweeps and Visits, Twente University of
Technology, Enschede, Memorandum INF 82-6 (1980).

[13] Jazayeri,M., A Simpler Construction for Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute
Grammars, J.ACM 28:715-720 (1981). '

[14] Knuth,D.E., Semantics of Context-Free Languages, Math. Systems Theory,
2:127-145 (1968) and 5:95-96 (1971).

[15] Kowalski, R.A., Predicate Logic as a Programming Language, in:
Information Processing 74, Rosenfeld,J.(ed.), North-Holland 1974,
556-574.

- 43 -

[16] Mellish, C.S., Automatic Generation of Mode Declarations for Prolog
Programs, DAL, Edinburgh, Draft, 1981 '
[17] Mycroft, A. and O’Keefe, R.A., A Polymorphic Type System for Prolog,
Artificial Intelligence 23:295-307 (1984).
| (18] Naish, L., Automatic Generation of Control for Logic Programs,
University of Melbourne, TR 83/6 DCS (1983).
[19] Nilsson, J.F. and Nonfjall, H., A Prolog Compiler. Department of .
'~ Computer Sc., Technical University of Denmark, Technical Report 1123.
1984 |
[20] Pereira, F.C.N. and Warren, D.H.D., Definite Clause Grammars for
Language Analysis - A Survey of the Formalism and a Comparison with
Augmented Transition Networks, Artificial Intelligence, 13:231-278 (1980). |
[21] Plaisted, D.A., The Occur-Check Problem in Prolog, in: Proc. of the 1984
Int. Symposium on Logic Programming, Atlantic City, 272-280.
[22] Robinson, J.A., A Machine-Oriented Logic based on the Resolution
' Principle, J.ACM 12:23-41 (1965).
(23] Shapiro, E.Y., A Subset of Concurrent Prolog and its Interpreter,
ICOT-TR-003 (1983).
.[24] Smolka, G., Making Control and Data Flow in Logic Programs Explicit,
in: ACM Symposium on Lisp and Functional Programmsing, Austin 1984,

311-322.

| Y/,O’ b(n+1) X>°\ a(n+2) tg

e | ‘
Yy & b(n+3) 'x 0 a(n+4)

i / . N
/ | N\

Fig. 1

NN

initial

10

11

10

Fig. 2

final

final

nitial

Fig.3

O———0©

add(s(0), z, s(v)) :

add(0, z, v)

add(s(0), , s(z))

add(0, z, z)

Fig. 4

-

. add(0, z, 1)

o add(s(z)l,.y, s(z))
T

- ladd(z, ¥ 2)

- Fig. 5

o) Ok (kg)y (2
POk (t1)0k (t;), 9: ;tl’ckilz),...,ekk (f,n))

grandfather

father

Fig. 7

Imprimé en France
par
VInstitut National de Recherche en Informatique et en Automatique
q q

