-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The design and building of ENCHERE,a distributed
electronic marketing system

Jean-Pierre Banatre, Michel Banatre, Guy Lapalme, Florimond Ployette

» To cite this version:

Jean-Pierre Banatre, Michel Banatre, Guy Lapalme, Florimond Ployette. The design and building
of ENCHERE,a distributed electronic marketing system. [Research Report] RR-0343, Inria. 1984.
inria-00076214

HAL Id: inria-00076214
https://hal.inria.fr /inria-00076214
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50448634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00076214
https://hal.archives-ouvertes.fr

Rapports de Recherche :

N° 343

THE DESIGN AND BUILDING |

OF ENCHERE,

A DISTRIBUTED ELECTRONIC
MARKETING SYSTEM

Jean-Pierre BANATRE “
Michel BANATRE
Guy LAPALME
Florimond PLOYETTE u_.

RN

Octobre 1984

] RI S a INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu

Avenue du Géneral Leclarc | . "PUBLICATION INTERNE N° 237

35042 - RENNES CEDEX Septembre 1984
FRANCE - :
Tel. : (99) 36.20.00 ' o 38 pages

Telex : UNIRISA 95 0473 F

THE DESIGN AND BUILDING OF ENCHERE,
A DISTRIBUTED ELECTRONIC MARKETING SYSTEM.

-

Jean—Pierre BANATRE
IRISA-INSA and INRIA, Rennes, France

Michel BANATRE
IRISA~INRIA, Rennes, France.

Guy LAPALME
Département de IRO,
Université de Montréal, Montréal, Canada.

Florimond PLOYETTE
IRISA-INRIA, Rennes, France.

ABSTRACT:

This paper reports an experience in the design and
construction of a decentralized system supporting an electronic
marketing system. We relate the main steps involved in the
design of a computing system satisfying the constraints of the
application and 'the needs of the users. In particular, we
describe the properties of the application, its logical
structure, the chosen physical architecture and the
implementation of a prototype.

We 1insist on topics relevant to distributed operating
systems and put emphasis on research contributions of the
project: distributed synchronization, implementation of atomic
activities, commit protocols and recovery algorithms.

RESUME :

Cet article décrit une expérience dans la définition et 1la
réalisation d“un systéme de ventes aux enchéres décentralisé.
Nous y présentons la démarche employée pour aboutir 3 un systéme
informatique qui réponde aux contraintes de 1”application et aux
besoins des utilisateurs potentiels.

Les aspects relatifs 3 la construction de systémes
opératoires répartis sont mis en avance: nous détailloms les
algorithmes de synchronisation, la mise en oeuvre des activités

atomiques, les protocoles de reprise.

This work has been partially supported by ADI under contract n0:
82440. .

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE.HECHERCHE
- (L.A.227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNlVE_RSITE DE RENNES 1 I.N.S.A.DE RENNES (LABORATOIRE DE RENNES}

1. INTRODUCTION.

Recently, there has been a growing interest in electronic
marketing systems especially for agricultural products [10],
[16]. In [16], B. Lindeman Schlei points out that electronic

marketing systems provide:

a very efficient price discovery mechanism; it also
separates the diétinct functions of negotiating a trade and
physically transferring a product by centralizing
negotiations ana dedentralizing product transfer. [...] Its
success depends on: reliable technology, high trading
volume, reliable grades and. standards for descriptive

selling and reasonable charges."”

To achieve these objectives, an electronic marketing system
must be able to handle reliably a high volume of sales at a fast
pace through communication 1links between sellers and buyers

distributed over a large area.

In the following, we describe the history and the
development of ENCHERE (meaning "auction” in French) which
satisfies those criteria of speed, reliability and fairness

between buyers and sellers required by the market rules.

To satisfy those needs, ENCHERE implementation combines many

original features that were up to now mainly separate research

0

PAPIER RECUPERE EY RECYCLE

products: it is a distributed system consisting of a loose
network of autonomous microcomputer based workstations
communicating with each other via messages. Its reliability isv
guaranteed by the implementation of atomic actions supported by
both new hardware .and softwarg products: new stable mémory
boards were ' developed to. achieve the reliability needs of

transactions implemented by dynamic process creationms.

This paper describes the evolution of thig 5 year applied
project where "hard” decisions had to be made concerning the task
to be tackled: in 1979?1980 we studied the inner wo?kings of a
centralized auction bidding system, and extracted the fgndamental
principles‘ and rules of the operations. We then defined the
software and hardware structure (in that order) of the systenm,
leading to the soiution of original problems inherent to this
application but that later péoved to be‘interestiné for their own

sake.

We think it is worthwhile reporting both the history and the
building of this project because this should give to a potential
distributed system designer some insight into the newly available

tools for building ‘such a system and their actual use.

Wevfirst describe the problem as we perceived it a few years
ago and the requirements the new system would have to satisfy; we
then report oﬁ the software and hardware structure aﬁd fheir
implementation in two steps: first a working prototype to be run

on a big "system” (MULTICS) td test the validity of the approach;

a second pre-industrial system was built from the first one, but
the main software ideas turned out to be general enough so that

they didn"t have to be modified.
2. THE ELECTRONIC MARKETING PROBLEM AND OUR "SOLUTION".

2.1 Thé'scenario of electronic sales.

In Europe, there 1is a long tradition of auction sales for
food products through a system called the “dutch clock” which can
be roughly described as féllows: all buyers are in one room
where lots of products are presented for bidding by a sales
manager representing the sellers; in front of this room there is
a big clock with numbers around it representing possible prices
for the lots (for example, they could be numbers going from $2.00
to $0.50 in decrement of $0.05); the sales manager positions the
arm of the clock at the starting price of the 1lot and the arm
starts to go down regularly until one of the buyers in the room
stops it by pushing a button in front of him; an electronic
system identifies who first pushed his button and reports this
'buyer to the sales manager who can nowbdecide if he accepts this
offer or not. This procedure allows a very fast pace: the sale
_of a lot takes about 10 seconds. This system is well accepted by
the sellers and buyers but it requires that all participants be

centralized in one place.

In Brittany (France) three such rooms are already linked so that

buyers in one room can bid on the 1o£s presented at each of the
three rooms. This helps minimize the rising transportation costs
and lessens variations between nearby sale rooms. This scheme
permits buyers to have a better choice and sellers to have a
greater number of prospective buyers to bid on their lots and, in
this way, to expand their markets. In such systems, the order of
presentation of the 1lots is veryvimportant because prices vary
considerably depending on the time elapsed from the start of the
sales: for a variety of reasons, prices usually start low, go up
in the middle of the sales and go down at the end. So to be
"fair", the system permutes each day the lots of each seller;
this causes no problem in the actual system because all sellers
are members of the same organization which 1s responsible for
setting up the auction and also compensating sellers whosé lots

are presented first.

But now there is a need to expand the market to allow more
than one seller organization. To achieve the same kind. of
"justice”, the lots of each seller should be interleaved, but
this will lengthen“total sale time. This period is already long
(three to four hours) and people participating are business
persons whose time {is precious and éostly. So the question is:
how to conciliate those two contradictory goals of speed and

market expansion?

Our solution relies on the following observation: although

each buyer might be interested in the lots of all sellers, he

usually tends to fill his needs with only few sellers (and often
only one). He wants to buy elsewhere only if he cannot find what
he needs "locally”. So, we propose to create logical sales rooms
by giving to each participant (buyer and seller) the necessary
tools to deal with only the people he wishes: each buyer will
use a "workstation"” consisting of a microcomputer linked to the
workstation of the sellers through a combination of local and
national networks; each station will implement algorithms to
achieve commuﬁications between the participants which want to
deal with one another. The global system, implemented by 1local
algorithms executed independently on each microcomputer, is so
structured that transactions involving disjoint groups of buyers

and sellers can proceed in parailel.

With this approach, a buyer or a seller uses a workstation
consisting of a microprocessor based control unit with a small
display, a "dutch clock” and keys to allow him to participate to
the sales. There is also an crdinary screen display showing the
results of all the transactions being processed in the system.
The hardware for each user is the same but the software and the
logical meaning of each key is different depending on whether he
is a seller or a buyer. Its physical description has been given
elsewhere [2], we will only give here its operational aspects,

first on the buyer’s side.

The buyer can choose the sellers he wants to deal with and

can change this choice at any time. The proposition from a seller

is displayéd on his control wunit and the clock showing the
starting price for this lot given by, the seller; the cloék starts
to go down regularly aﬁd when the buyer decides that this price
is good for him, he pushes a key to send his offer to the seller.
He then waits for.an answer from the seller telling him if he get
the lot or not. He can then receive a new offer, possibly for
another seller (which is chosen by the system from the set of

sellers this buyer is dealing with).

Of course, the seller sees things quite differen;ly:' he
* pushes a key to send his next proposition to interested buyers
and waits for their offer. When'all.vbuyers have answered, the
value of the best offer is displayed on his control unit; he
deﬁides either to accept or to reject this offef and transmits

this decision to the buyer. He may now send his next proposition.
2.2 Requirements of a distributed electronic sale systenm.

The requirements for such a system can be classified in two
ma jor categories: those of the ~application and .those of the

users.
2.2.1 Requirements of the application

The electronic marketing context ~imposes by 'its nature

severe constraints on its computer implementation.

1-Sales order: sales activated by a seller are carried out

. sequentially.

2~Fairness which can be loosely described as follows:

- buyers have an "equal chance” to buy lots proposed by the
.sellers,

- sellers have an "equal chance"” to have their proposition seen
at a given time by different sellers, no priority being‘defined

a priori between sellers.

This property 1is different from the fairness one usually
referred to in the distributed systems litterature because it
must take into account the competition between the sellers and
not only the absence of "starvation”. It is a crucial one in our
context of Fommercial marketing and must be enforced in all cases
(normal or defective funétionning). However, fhis has to be done
while keeping the efficiency of the real-time system which can be
measured in terms of availability and speed of processing. It is
the direct consequence of our competitive market context in which
all sellers have equal rights, i.e. their lots should be
equitably interlaced and must not be indefinitely delayed; also
important 1s the fact that the buyers must make their decisions

based on the same available information.

3-Reliability: at each session, ENCHERE must provide a complete
service throughout the session (several hours a day). Should a
failure occur, the buyers and sellers must be able to continue
their participation in the sales; of course transaction time

may then be lengthened.

4-Extensibility: the architecture of such a system should not be
frozen once and for all and should allow the easy insertion and
removal of buyers and sellers. This should be possible without

any change in the overall architecture.

5-Speed: present systems are known to be too slow because of lack

of computing power.

6-Distribution: an auction system may involve people spread ovef
a large geographical area (a regioh or even a country, possibly

more).
2.2.2 Requirements of the users.

An electronic marketing system 1is intended to be used .by
different people cooperating (competing in fact) to negotiate
fheir goods. Bu?ers and sellers have different goals in mind ﬁhen
they take part in such a sale, but at 1least they share the
following requirements which are to be respected by any

implementation.

1-Ease of wuse: the buyers and sellers are not computer
specialists and the commands necessary for operating the'system
should be kept as simple as possible and yet powerful enough to

conclude a deal in a short time span (10 seconds).

2—Confidentiality: the system 1is used in a commercial
environment and deals with confidential data relating to the

day to day operations of businesses; it must ensures that each

10

user (buyer and seller) is protected against tﬁe others. A
buyer must not know the bids of the other buyers except for the
price of highest one which 1is broadcasted to everybody; a
seller will receive only the bids relating to his sales and
cannot see the bids given by buyers dealing with other sellers.
The system must also insure that a user cannot block others or

take the place of another one.

3-Autonomy: Every user should feel independent from others: it
should be able to join or leave the service according to his

own needs.

4-Availability of personal computing power: The duration of
auctions is limited (2 or 3 hours per day). The computing power
available for the system should be usable for other purposes
during the other hours of the.day.
All these requirements are the direct conséquences of the
accepted market rules raised by thé competition between users of

a "real-world" electronic bidding system.
3. ARCHITECTURE DESIGN.

We now present an architecture for ENCHERE respecting the
autonomy and independence of each user while giving an acceptable
performance (i.e. execution speed, reliability,...). Two
possibilities have been studied:

i) a multiprocessor architecture on a central site which can be

accessed via specialized terminals

11) a distributed architecture where each user has a personal
computer.' ENCHERE 1is then defined as 'the set of those
computers commﬁnicating at one moment in order to deal with

the sales. -

We have to remember that one of the main requirements for
our application was the autonomy of the users and flexibility in
- 1ts use: a user can access or leave the system when he wants to,

each buyer can choose the sellers he wants to deal with.

This 1is very difficult to achieve in a centralized system
because in that case, all users are dependent on the site on
which the system is implemented. This situation creates unwanted
dependencies between ‘users (competitions) which may be
uﬁacceptable in business terms. For example, a seller might
depénd on a buyer or vice-versa even if one is not interested in
dealing with the other. This can lead to political problems
concerning the access to the system; To solve those problems, we
defined anl ENCHEREV session as a set of autonomous units [4]
linked by a communication network. The implementation is not on

one site but on as many sites as there are users at a time.

This choice helps to achieve the follbwing objectives:
~ the good or bad workiﬁg of a site only influences the users
depending on it for their transactions,
~ users can wofk separately: many sale sessions can go on in

parallel as long as their set of users are disjoint.

12
3.1 Logical structure of the application

The implementation of each sale 1is modelled around the
notion of “activity” [1] [5] composed of a set of cooperating
processes (one on each site). So the overall structure of ENCHERE

at any time is a "tree" of activities.

There is . an initiai activity that involves an initial
process on each user site. That process is created only when a
user wants to participate in the sales. If is responsible for
making that user known to the others, for establishing
communication links and for creating other ﬁrocesses that will
deal explicitly with the sale. These user site‘processes can join
or leave this activity dynamically (i.e. when a user decides that
he 1s not interested 1in the sales, he can leave; the others
continue without him). This activity dies when all users have
left. For each lot to be sold, dependent activities are created
which involve an instance of a seller process and instances of

each buyer processes interested in the sale.

Example:
Consider the following configuration:
-3 sellers sites, SS1, SS2, SS3.

-6 buyers sites, BS1l to BS6.

Dependencies between buyers and sellers are defined by the
sets SB(...) of buyers interested in a given seller. Assume that

we have:

.13

SB(SS1)={BS1,BS2,BS3},
SB(SS2)={BS4,BS5}, .

SB(SS3)={BS1,BS5,BS6}

So, for instance, buyers interested in making transactions

with SS2 are BS4 and BSS5.

Imagine, now, that all three sellers have started a sale,

then we have the following activity structure.

Activity 1 Activity 2 Activity 3

Figure 3.1.

Where:

PBij is the ith instance of a ‘process representing the
behavior of buyer BSj. This process beiong to the ith activity.

PSij is the ith instance of a process 'representing the
behavior.of seller SSj.

So, on each buyer site, there is one buyér process involved
in one éctivity for the sale of a 1lot from ss1 ‘while another

deals with SS3. This activity scheme is very interesting because

14

all the dynamic properties of the application (i.e. independence,
asynchronism, competition for CPU time Qr memory management of
the processes) are being taken care of by the operating system
and are of no concern of the application programmer. Once this
tool 1is available, the sale scenario is very simple as can be
seen in the following program written in ADA.

procedure MARKET is

package THE LOTS is
type PRICE is delta 0.0l range 0..100.00;
MAX LOTS : constant INTEGER := 100;
type LOT is
record
~— suitable fields for lot description
end record;
end THE LOTS;

use THE_LOTS;

type BUYER;
type NAME OF BUYER is access BUYER;
task type BUYER is
entry PROPOSITION(L:LOT);
entry DECISION(ACCEPTED OFFER:BOOLEAN);
end BUYER; -

task SELLER is
entry OFFER (NAME:NAME OF BUYER; O:PRICE);
end SELLER;

task body BUYER is

ME :NAME OF BUYER; --self pointer
L :LOT;
NUMBER OF LOTS:0..MAX LOTS := O;
MY LOTS tarray (1..MAX LOTS) of LOT;
MY_QFFER :PRICE;

begin

accept PROPOSITION(L:LOT) do
MY LOTS(NUMBER OF LOTS+1):=L;
== dis»lay the lot description
-— ask che price the user wants to pay for it
MY OFFER := ... ; ——value given by the user
end PROPOSITION;
SELLER. OFFER(MY OFFER);
accept DECISION(ACCEPTED OFFER:BOOLEAN) do
if ACCEPTED OFFER then

15

NUMBER OF LOTS:=NUMBER OF LOTS+l;
end if;
end DECISION;
end BUYER;

task body SELLER is
NUMBER OF CLIENTS:O..MAX BUYERS;

MY CLIENTS :array(1..MAX BUYERS) of NAME OF BUYER;
MY LOT :LOT; .
BUYER OFFER;
BEST OFFER :PRICE; '
TAKER :NAME_OF BUYER;
begin
for I in 1..NUMBER OF CLIENTS
loop
MY CLIENTS(I).PROPOSITION(MY LOT);
end loop;

BEST OFFER:=0;
TAKER := null;
for I in 1..NUMBER_9F_§LIENTS
loop .
accept OFFER(NAME:NAME OF BUYER; BUYER OFFER:PRICE) do
if BUYER OFFER>BEST OFFER then
if TAKER /= null then
TAKER . DECISION(FALSE);
end if;
BEST OFFER:=BUYER OFFER;
TAKER : =NAME ; -
else
NAME .DECISION(FALSE);
end 1if;
end OFFER;
end loop;
TAKER.DECISION(TRUE);
end SELLER;

end MARKET;

Those processes die as soon as one sale has been completed.
Noﬁe that a buyer can be notified of the rejection of his offer
as soon as better one is received by the séller. He can then
participate in another sale because he is sure that he will not
acquire ‘the lot. The synchronisation mechanism for that

"optimization"” 1s taken care by the activity mechanism and does

16
not have to be dealt within the application.

Another important aspect is the indivisibility assoclated
with the execution of an activity. Two activities (father and
son) only communicate by parameters on creation or by result on
completion. [2] describe 1in detail the characteristics and
consequences of this indivisibility and atomicity akin to thé

transaction concept found in database systems [73.

3.2 Physical architecture of the application.

Ideally, every user should be provided with his own
workstation. ENCHERE is then implemented by a set of
workstations interconnected through a communication system, thus

giving the following organization

Figure 3.2.

where : SW means seller workstationm,
BW means buyer workstation,

CS means communication system.

In the present configuration, every user is provided with a

personal terminal made out of two devices: (i) an application

17

processor (AP) which manages the auctions, and (ii) a workstation
(WS) which is the ENCHERE terminal. WS is used for accessing the
ENCHERE service. 'Every"ws is connected to an AP. We now give
some details about application processors, workstations and

communication system.

3.2.1. Application processors.

AP°s are built from two micro-processors (18086 and 18085)
connected via Intel Multibus and use disk storage. A stable
storage (see section 6) is also connected to the 18086 through

Multibus.

~The 18086 proceséor is responsible for the management of
auctions and for the management of local peripherals. The 18085
acts as a front processor for the 18086. It manages communication

from and to the workstations and the communication system.

¥

towards
)6~ the

communication
system

1-8486 Commpon Stable 1-8045

Memagry Storgge

towards
work
station

disp%y terminal multibus

Figure 3.3.

All the hardware choices have been made according to the
available hardware at the time of the design. Two storagé

facilities are used: a common memory and a stable storage vﬁhich

is describedlin section 6.

18

3.2.2 The workstation.

The workstation 1s made of a usual display terminal and of
specialized command terminals. A micro-processor manages these
devices. The overall organization of the workstation can be

visualized as follows:

Towards ppplication Processor
micro-
processor

display terminal

Vo
command terminals

Figure 3.4.

The command terminal provides the user with the . necessary
commands for participating to sales (new sale, offer, refusal,
etc.). Every such command is materialized by a special button

that the user pushes in order to signify its desire.

Buyer command terminals are also equiped with a special
display which shows instantaneously all information concerning:

the sale currently processed.

3.2.3. The communication system.

We have chosen not';o tie the application to a particular
communication system, this because we want to be able to install
ENCHERE on any "machine” possessing appropriate features defined
by what -we call "the minimum interface properties”. Among these

properties, the comnunication system should allow message

19

exchanges with acknowledgment, communication error detection and

" notification.

4. ABOUT THE CONSTRUCTION OF A PROTOTYPE.

As the proposed system was very new compared with e#isting
ones, it was difficult to foresee the reac;ions of potential
users. However, for various reasons_such aé credibility, funding
of the project, it was necessary to “show” the external
characteristics of the new system in order to capture the

reactions.

With these considerations in mind, it was decided to build a

prototype in two steps:

(1) Construction of a first prototype on a big system (MULTICS in
our case)Ain order to exhibit the ekternal features of ENCHERE.
vAn eventual user, non-specialist in computing, would then be able
to "see" how the future system will work. As far as computing
was concerned, the system would be centrélized.

(2) Depending on the "acceptation” of this first protdtype by
potential' users, a second prototype —a pre—industrial system-

~could be built.

As the budget for developing these prototyﬁes was strong;y
limited, some design decisions had to be taken very early in

order to make the major part of the software produced -for the

20

first prototype reusable when building the second one. The
following decisions were taken:

~the final structure of the system should be "frozen"” when
building the first prototype. The second prototype should only
provide an altérnative implementation of the same abstract
structure. -

- software tools used in the development of both prototypes

should be.the same. This in order to limit code rewriting.

The tws decisions were quite easily implemented. In
particular the second ﬁne was facilitated by the availability of
a local language for micro-processor applications. The compiler
of this language produces intermediate code for a virtual machine
and depending of the actual target machine appropriate code is

generated.

As a consequence of these decisions, the first prototype

had to be an emulation of the second prototype.
5. THE IMPLEMENTATION OF THE FIRST PROTOTYPE.

We now report on the emulation of the activity structure on
the MULTICS system. After a quick sketch of MULTICS
inter—-process communication facilities, we describe the main

characteristics of the implementation of the first prototype.

MULTICS [14] is a process oriented operating system; when a

user logs in, a process is created and associated with his

21
terminal; this ‘process can create other- non-interactive processes
called "absentees” which in turn can also create other processes
and so on. Those processes communicate via a system module called
“IpCc” (InterProcess Communication) which permits the sending of
shért control signals by means of unidirectional channels. Using
these tools and a mutual exclusién mechanism, we built a
communication system between 1instances of processes giving the
structure illustrated in figure 5.1. We also developed a probe
system which allowed us to keep track of all the messages going
on at one time. This probe enabled us to simulate break downs
and time-outs and evaluate the effects of software or hardware

failures on the system.

- —— —— o — —— —— — —— — — —— —

" MULTICS
)
| buyer 1
seller 1 ' ' . :
r
: buyer 2
i
seller 2 :
l - L
1. _ buyer 3
I
|

Figure 5.1.

Users are linked via MULTICS. Each logical entity
associated with a user incorporatés many modules, a few of which
are implemented on the microcomputer of the workstation and the

others are created under MULTICS. Each of the boxes of Figure

22

5.1 can be subdivided as shown in Figure 5.2.

display

terminal concen—
trator process
process

command

terminal

Buyer

Figure 5.2.

We indicated earlier that the software structure of the
system was based on the notion of activity. We now éketch the
implementation of this notion under MULTICS. For example,
consider the sale of a lot from a seller "S" to two buyers "Bl"
and "B2". Each site is represented by a “site process” which
interprets commands issued by the user. Thus we have three site
processes: SS for site S, SBl and SB2 for sites Bl and B2. When a
command "new-sale” is issued on site S, the process SS signifies
that a mnew activity involving himself and SBl and SB2 has to be
created. This is achieved by creating an instance of seller
process (PS) on site S and two instances (PBl and PB2) of buyer

process on sites Bl and B2. These processes are linked in order

23

to form a ﬁew activity as summarized on figure 5.3.

SS SB1 SB2

Figure 5.3.

A buyer site may create many instances of processes PBi, one
for each sale which can go on in parallel (ie: activated by
distinct sellers). This approach is costly,'but it is simple and

reflects very well the software structure we had decided upon.

fhis first prototype was very important in the project for
two main.reasons:
- we were able to quickly have a working model of the system
and‘so we have users” feedback on the sysﬁem
- we could glso validate our structuring methods; this cén be
. explained by the power of: the concepts implemented by

MULTICS and their good adequacy with our choices.

Unfortunately, this prototype did not permit a fully satisfying

quantitative evaluation of the service because of the time

|

24

sharing nature of the system in which external users to ENCHERE

can greatly influence the response time to the commands.

_ The main lessons learned from this first experiment were:

- the original idea of having the identical workstation keyboards
for both sellers and buyers was not a good one from the ease of
use point of view. We had to give too many functions to each
participant. So we designed two different keyboards 1in the
second experiment.

~ we should always strive for simplicity. Our original goals were

* too high for the first prototype, we should have been satisfied
with only a small demonstration unit giving én external view of
the system and not try to put in place all the activity
strucﬁure which proved to be too expensive to use in real-time.
But the test of 1ts logical feasibility was important enough to
warrant an experimental implementation but one that should have

been independent of the demonstration unit.

This part was well accepted and prompted us (and others who
put money into the project) to continue in the same vein to
develop the system. It was now feasible to implement both site
and sale dealing processes on a network of microcomputer linked
together first via MULTICS which then will be confined to a
“"safe" network role and then via a combination of local and

national ne.works.

6. THE IMPLEMENTATION OF THE SECOND PROTOTYPE.

25

The second prototype consists of - three application
processors and five workstations connected, in a first stage,
through a concentrator (Intel 8086). As said earlier, ENCHERE 1is
so designed that no problem should arise when transported onto a

network.

In this section, we do not dgtail the éonstruction of the
system. | Instead, .we concentrate on two original contributions
which arose while building the system, namely:

1) Implementation of fairness,

ii) Implementation of atomic transactions.
6.1. Implementation of fairness.

-Fairness as described in section 2 can be expressed the two
following properties:

Property 1l: The system must present the propositions to various
buyers in the same order for each seller.

This ensures that buyers may elaborate their strategy
according to the same ‘informations. On a technical viewpoint,
this property 1s crucial in the avoidance of deadlocks as a buyer
must terminate a sale before participating to a new one. Imagine
the situation ﬁhere two lots L1 and L2 are to be sold, L1
proposed by a seller S1 and L2 by S2. Two buyers Bl and B2
compete for these lots. If Bl bids on L1 first (transaction TI1)
and B2 bids on L2 first (transaction T2), then neither Tl nor T2
will ever be completed because in order to be . completed Tl needs

a bid form B2 which cannot provide it before completion of T2

26
(usual deadlock situation).

Property 2: No priority is given by a buyer to the propositions
of a particular seller for a given buyer. This ensures " justice”

among participants.

6.1.1. Implementation of property 1.

A timestamp giving the (local real) time of emission and the
name‘of the sender is appended to the message corresponding to
the proposition of a seller. To choose the next proposition to
deal with, the system can always take the one having the smallest
timestamp (and in the case of equality, an order can be given on
the name of the sellers; Lamport [8] shows a way to achieve this

in a "fair" way without necessarily defining a priori a total

order on the names).

The requirement saying that a seller must have finished with
a sale before starting another one, imposes that these local
choices, made by the computers on each buyer site, be coherent.
In particular, it is necessary to determine if this buyer has
already received the “oldest” proposition before making the
choice.

To fulfill these requirements, we have shown in [2] that it
is sufficient that each buyer-site B selects at his local time
H(B), the proposition which posesses the smallest timestamp
lesser than H(B)-DT. (DT is the maximum transmision delay between

two sites).

27

6.1.2. Implementation of property 2.

The solution proposed above 1is not powerful enough to

implement property 2; this can be easily shown with an example:

S1, S2, S3: seller sites

Bi : buyer site linked to S1, S2 ans S3.

S1 starts a sale (s11) with his local time h1=10
S2 starts a sale (s12) with his local time h2=15

'S3 starts a sale (sl3) with his local time h3=20.

The technique of the preceding section tells Bi to choose
sll. Suppoée that the length of the sale is 3 units of time and
DT is 1 unit of time; when sll1 finishes, sl initiates another
transaction sl1” which 1is stamped (hl17=15) and Bi chooses s12,
When s12 is finished, Bi must choose between sl1” and sl3. The
method given earlier forces to take .s11° thereby violating

propérty 2.

To fulfill the requirements of property 2, Bi dealing with
sales of many sellers must be able to "compare” the times given
.by the local clocks of these seller sites: i.e. if at a given
time H(Bi), two sales” timestamps of sellers Sj and Sk are H(SJ)
and H(Sk) such that for Bi (H(S3j)<H(Sk)) the next sale started by
Sj will be stamped by H(Sj)’>H(Skj. In our example, sll1” should

be dated by a time greater than 20.

To solve this problem, we introduce a notion of "fuzzy" time

28

which 1is defined as follows: the 1local clock of user sites
Ul,...,Un show the same fuzzy time than the 1ocal‘c10ck of a site
Ui if and only if |H(Uj)-H(Ui)|<dt. (dt 1is the maximal drift
between the clocks of user sites Uj and the one of Ui). |

If we take for granted that the length of a transaction is
greater than 2*dt and that all seller sites for a given buyer
have the same fuzzy time, then we prove that property 2 is

guaranteed [2].

The situation where these conditions are not fulfilled has
been studied with great care. 1In particular algorithms which
allow clock resynchronization following misfunctionning of a site

have been proposed.

6.2. Implementation of atomic transactions.

The system is intended to resist to the following types of
faults:

-software faults which may lead to undesirable actions

resulting for example in uncontrolled mMemory accesses.

-various hardware faults such as power failure which may

also result in uncontrolled memery accesses.

The crucial aspect of uncontrolled memory access has been
recognized after the construction of a first prototype of
ENCHERE. These observations revealed that many failures led to
bad memory accesses and that an effort should be made in order to

avoid memory degradationm.

29

This section describes three aspects of the &ork that has
been performed in order to achieve high reliability:

=Design and implementation of stable storage,

-Implemention of commit protocols,

-Recovery algorithm,
6.2.1. Design and Implementation of stable storage.

Stablé storage [9] 1s generally viewed as a memory device
with the following properties:

i)-The physical storage is stable (i.e. information does not

decay over time),

ii1)-The write operation 1s atomic.

Usually, stable storage is built from disks. Although disks
do not provide directly stable storage, they possess properties
from which stable storage can be implemented.

In ENCHERE, eaqh application processor is equipped with a
stable étorage which may contain two types of objects:

1)-0bjects which may be accessed directly by pro;esses. Such

objects are generally of a small size, they are.for example

variables. Their lifetime is that of the activity which
created them.

ii)-OEjects. which are stored for'a long period for example

files.

It is cleafly unrealistic to store objects of type (1) on

devices such as disks, because the time necessary to access them

30

would be too long. In order to cope with thig problem our stable
storage is made out of two devices:
i)-A stable RAM unit (SR) which is a part of the machine
address sPacé.
i1)-A disk unit (DM) which 1is used to store long-term

information (files).

"As the SR memory 1is built from an ordinary RAM which is a
part of the machine address space, 1t is vulnerable to any
erroneous program. We describe the hardware and software
mechanisms that have been designed in order to make our SR memory
prototype unlikely to be damaged even in presence of uncontrolled
accesses. In that, we follow the same idea as that put forwards

in [13].
6.2.1.1. Structure of the SR memory prototype.

The SR memory is represented on figure 6.1., wbere:

-bi (i€[1,8]) are memory banks. Every bi contains 8K byteé.
-ri (rie[l,é]) are two-bit registers associated with bi‘s.
They contain the current access rights to the concerned
memory bank.

-AT is an access table made out of 32 bytes. The j th. bit
of the i th. byte of AT is set to 1 if the j memory bank may

be addressed, (as explained in the next section).

AT 31

R1 Ri R8
C——J---- C—---- 3
B1 Bi B8

Figure 6.1.

6.2.1.2. Using SR memory .

A ﬁrocess p wanting to wuse SR should first request the
allocation of a memory bank. It executes the primitive éllocate
.which: |

—allocates a free bank bi (0<1<9),

—searches for a free entry k in AT and sets the i th. bit of

AT[k] to 1, the other bits of AT[k] are set to O,

~returns the physical address (adr) of bi and the value k, k

will be used later as a key for accessing the ﬁemory bank

bi.

Imagine now that p wants to write an object at the address
adr0 into a aliocated memory bank at the address (adr,x) with -
key k. First, it executes the primitive open(k,w) where w is the
Qrite access right. The effect is the following: the register‘ri
corresponding to the meﬁory bank bi referred to in AT[k] 1is set
to the write access right. Then, p. executes the primitive
Qrite(adro,(adr,x)). This primitive checks that the memory bank

of address adr is opened, if so, the write operation is executed.

32

After execution of. the write primitive, the access rights
corresponding to the considered memory bank are set up to "no
right”. Actually, the execution of the couple of instructions
(open; write) is indivisible. We have taken the example of a

write operation, the same applies to a read operation.

This very simple hardware mechanism ensures that

i)-no direct access to stable memory can be berformed,
ii)-any access is strongly controlled by means of key
mechanism: wusing an erréneous key 1leads to a memory access

failure.

This mechanism works satisfactorily if every bank may be
accessed by a wunique process, however in our system several
processes may share the same memory bénk. The abdve mechanisms
have to be enforced in order to avoid that a process may damage

informations belonging to another process sharing the same memory

bank.
6.2.1.3. The problem of information sharing.

Consider n processes pi, (1é[l,n]) sharing the same memory
bank. We would 1like to implement a mechanism such that if pi
wants to access pj’“s (j#l) stable objects, a memory access
failure occurs. The solution we propose may be described as
follows:

Every p; possesses a table which gives access to 1its own

stable memory. The protection of this table is ensured by using a

33

seal mechanism enforced by cryptogfaphy [6]. Entries in this
table are encrypted (at the creation of the process pi) with a
key ki. Only entries decrypted with the appropriate key deliver
significant addresses, all attempts to decrypt ‘with a bad key
lead ;o memory access failure.

The above table (with encrypted entries) is stored in the
working space of the process pi. A non-encrypted version of this
table is kept in the stable storage and may be used (after
encryption) in case of rollback subsequent to a failure.

Actuaily our system does not prevent a process from
forgering a encryption key. Our sole concern is about secure

table data access.
6.2.1.4. Stable storage management.

SR memory banks are coupled in such a way that every object
in the SR memory is represented by two copies.

Consider two coupled memory banks bl and b2. At any time
only one bank (bl ‘or b2) may be granted write access. The
situation where bl and b2 be granted simultaneously write access
is forbidden by the system which ensures also that the transition
(write access for bl, read access for b2)-->(read access for bl,
write access for b2) appears és indivisible.

Let us now examine the problem of writing atomically an
object O from volatile memory to SR. Figure 6.2. may represent

the situation:

34

Figure 6.2.

A copy of O has to be made atomically on both banks. we
proceed as follows:

0 is first copied onto bl (giving Obl) and Obl 1is copied
onto b2 (0b2). This ensures that, in correct situation Obl and
0b2 are the same. Copying O onto bl, then onto b2 could have
given unexpected results as O is on volatile memory and could be
damaged between the writing on bl and that on b2.

Imagine now that a crash occurs in the following situations:

i1)-bl is in read access right, b2 1in write access right.

This means that OBl is not writtem on b2. Error recovery

mechanisms implemented by the system ensure later that O0bl

be copied onto b2. The write is considered as "done”.
ii)-gl is 1in .wfite access right, b2 in read access right.

The copy Obl cannot be done, and the write operatioh is

considered as "not done”.

Concerniny atomic transfers from SR to disks, we employ a
strategy similar to that proposed in [9]. However, the use of SR

memory ensures that the objects to be copied onto disks cannot be

35

" damaged between transfers as SR is protected against uncontrolled

accessese.

Hardware devices necessary for implementation of stable’
storage have been designed and developed locally. Performances
of these facilities have been evaluated. Access timel to SR
" memory is twice higher than access time to usual RAM memory. It
is much faster than access time obtained for stable storage buiit
from disks: for example, writing 256 bytes on our SR memory takes
0.5ms (with 18086 processor) and the same operation in the DFS
system. takes 9ms (with ALTO processor) [ll]. Power failure
damages to the stable memory are minimised by battery back—up to

these memory boards.
6.2.2. Commit protocols and recovery algorithms.

We have concentrated on the design and implementation of
protocols which ensure the atomicity ﬁroperty for activities. 1In
particular, we must ensure coherent updates of and coherent
access to objects in an unreliable environment. In order to do
this, we have used a model somewhat similar to Reed’s one [15]
and realized a coﬁplete implementation.

A particular property of the application, the possibility of
activating é transaction from within another one, lead us to the
iﬁplementation of nested activities. This 1implementation has
been fully realized and constitutes an original piece‘of work

described in [2].

36
7. DISCUSSION.

This paper summarizes an effort which took 12 men-years and
lead to the implementation of a complete distributed operating
system. We have tried to describe the main steps involved in the
development of the system, from the application to the
architecture. We particulary insist on the development of
prototypes and exibit some current research issues which have to
be tackled in order to produce a realistic implementation.

However, some particularities of the application have
somewhat limited the generality of the operating system which can
be qualified of "object-oriented”. Actually, it is possible to
handle reliably, not only files, but all types of objects used by

processes. This consideration makes us feel that the work

" presented here could be generalized in order to produce a general

purpose object—oriented distributed operating system. This is the
orientation of our present research.

Concerning related work, some projects currently under
development are defining and implementing concepts such as:
atomic actions, decentralized control, etc..; Let us mention for
example EDEN {3}, LOCUS [12], our main originality, stands in the
fact that the research issues we have tfeated have been geared by
a specific application, which allowed us to study and experiment

some major topics concerned with operating systems.

37
ACKNOWLEDGEMENTS :

The authors gracefully acknowledge the contributions of
B.DECOUTY, Y.PRUNAULT and L.UNGARO ("Atelier Micro") and
Ph.HERINGER (SOFREL), in the design and the ihplementation of the

ENCHERE system.

REFERENCES:

1. BANATRE J.P., BANATRE M. .
Language Features for the Description of Cooperating
Processes.
Proc. 4th. Int. Conf. on Soft. Eng., Munich, Sept. 79,
pp.308-314. ’ .

2. BANATRE M.
Le Syst@me ENCHERE: une Expérience dans la Conception et 1la
Réalisation d”un Systéme Réparti.

"Thése d"Etat, Université de Rennes, Mars 1984.

3. BLACK A.P.
An Asymmetric Stream Communication System
Proc. of 9th Symp. on Operating Systems Principles,
Bretton Wood, Oct. 83, pp.4-10.

4. CLARK D.D., SVOBODOVA L. 4
Design of Distributed Systems Supporting Local Autonomy.
Dig. Papers COMPCON Spring”80, 1980, pp.438-444.

5. ELLIS C.S., FELDMAN J.E., HELIOTIS J.E.
Language Constructs and Support Systems for Distributed
Computing.
University of Rochester, TR-102, May 1982.

6. GIFFORD D.K.
Information Storage in a Decentralized Computer System.
CSL—-81-8, Xerox Palo Alto Research Center, March 1982.

7. GRAY J.N.
Notes on Database Operating Systems.
LCNS 60, Springer—Verlag, 1978, pp. 393-481.

10.

11.

12.

13.

14.

15.

16.

38

LAMPORT L.
Time, Clock and the Ordering of events in a distributed

System.
CACM 21,7, July 1978, pp.558-565.

LAMPSON B.W., STURGIS H.
Crash Recovery in a Distributed Data Storage System.
Working Paper, Xerox PARC, Nov. 1976.

LANE S. ed.
Proceedings of Electronic Trading of Agricultural Commodities

Seminar.
Winnipeg, CANADA, Nov. 1981.

MITCHELL J.G., DION J.
A Comparison of two Network—Based File Servers.
CACM 25,4, April 1982, pp. 233-245.

MUELLER E.T., MOORE J.D., POPEK G.J.

A Nested Transaction Mechanism for LOCUS.

Proc of 9th Symp on Operating Systems Principles,
Bretton—Wood, Oct 1983, pp.71-89.

NEEDHAM R.M., HERBERT A.J., MITCHELL J.G.
How to Connect Stable Memory to a Computer.
op. Syst. Rev., Vol 17,1, Jan. 1983, pp.l1l6-16.

ORGANICK E.I.
The Multics System: An Examination of its Structure.
M.I.T. Press, 1972.

REED D.P.
Implementing Atomic Actions on Decentralized Data.
ACM Trans. Comput. Syst. Vol. 1,1. Feb. 1983, pp. 3-23.

SPORLEDER T.L., ed.

Proceeding of the National Symposium on Electronie Marketing
of Agricultural Commodities.

Texas A&M University, Dallas, March 1980.

Imprimé en France

par .
I’ Institut National de Recherche en Informatique et en Automatique

