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»

RESUME : Sur un ordinateur vectoriel, l'organisation des tableaux de

données en mémoire, conditionne 1'éfficacité des accés mémoire et par la
la performance globale de la machine. Ce probleme peut &€tre formuié en
termes de compatibilité entre une fonction de rangement et une famille de
fenétres. Une fonction de rangement est une fonction associant 3 chaque
€lement d{un tableau le numéro du banc mémoire dans lequel il est stocké;
une fenétre est un ensemble d'éiéments d'un tableau devant B&tre accédés
simultanément: partie de 1ligne, colonné, diagcngle, bloc carré,... La
premiére analyse en profondeur de ce probleme z &té réalisée bar Shapiro.

."Son travail repose sur une notion de compatibilité rendant équivalent
1'étude de 1'accés en parailéle d' une seule fendtre et celle de 1'accés
en paralléle 3 tous les translatées de cette fenétre. En pratigue, cette
hypothése s' avére beaucoup trop contraignante car seul un sous-ensemble
restreint des translatées d'une fenétre est utile, La théorie de Shapiro
a pour défaut majeur que dans nomdre ce cas elle ne permet pas de trouver
une fonction de rangement compatiible avec les fenétres requises, Dans cet
exposé, nous utiliserons une définition de la compatibilité permettant de
privilégier la forme géométrique des fenétres par rapport au nombre de
translatées. Dans ce but, nous analyserons les propriétés d'une noﬁvelle
classe de fonctions de rangement{ les schémas en diamant. Enfin nous
donnerons des exemples d'utilisation de ces schémas pour des methodes

multigrilles et des traitements ‘d*' images.



ABSTRACT : In a parallel vector computer, the way of storing arrays
conditions the efficiency of memory accesses. This recognized problem may
have a dramatic effect on the overall performance. It can be stated in
terms of compatibility between a skewing scheme and a family of access
templates; A skewing scheme is a funcgion expressing in which memory bank
each array element is stored whereas an access template is the "form" of
of a set of array elements to be accessed simultaneously: portion of row,
column or diagonal, square block,... The first in depth analysis of the
parallel storage problem is Shapiro's work. It is based on a concept of
compatibility assuming that, whatever the translation applied to the
reference access template, the array elements within its image are stored
in distinet banks. This reguirement is unnecessarily constraining in many
practical situations where not all translations need to be considered. As
a troublesome consequence it frequently happens that no skewing scheme is
compatible with all of a family of access templates desired required by a
programmer. In this paper we modify the compatibility objective so that
the variety of access templates may prevail over the density of possible
translations from the reference position. From this point of view we
analyze the structure of diamond schemes, a new class of skewing schemes
‘der'ived from a lattice of permutations. As examples we suggest array

.implementations for multigrid methods and for image processing.



Categories and Subject Descriptors : B.3.2 [Memory Structures]: Design

styles 2 Interleaved memories; C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures - Array and vector processors;
E.2 [Data Storage Representations]: Contiguous representations;

G.4 [Mathematical Software]: Algorithm analysis ~ Efficiency.

General terms : design, performance, theory.
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image processing.

Author's addresses

W.Jalby: INRIA, B.P.105, 78153 Le Chesnay Cedex, France.
J.~M.Frailong: Laboratoire d'Informatique, Ecole Normale Superieure, 45
rue d'Ulm, 75230 Paris Cedex 05, France,

J.Lenfant: IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.



1. INTRODUCTION

One of the main issues in supercomputer architecture is the design ¢f
a 'main memory having a bandwidth fitting the throughput of the arithmetic
operators. SIMD architectures answer this problem by using fully parallel
access to memory, thus providing computationnal units witﬁ a whole data
vector at a time. The effective memory bandwidth‘ will reach i.‘cs peak only
if the datz to be accessed lie in different memory mo&ules. This implies
that data must be organized in the memory in such a way that all accesses
required by a given algorithm are conflict-'-free, i.e. can be made in
parallel. It also implies that data must be unscrambled between memory
and processors, so that operands required by a computational unit " are

brought together correctly.

The wusual solutions to the parallel data access problem in SIMD
machines imply dissymetric architectures, with a number of memory modules
larger than the number of processing elements. The latter is usually a
power of two, for the sake of hardware design simplification. A first
approach is to use a ‘number of memory banks that is a prime number
sligthly larger than the number of processing elements [5]. Such is the
solution used in BSP [6] [7] [8], and suggested by BURROUGHS for the NASF
project. This organization gives easy access to rows, columns and
diagonals of matrices. The drawback of this solution is that it requires
non'-symmetric networks, address computation modulo the number of memory
banks, and that it gives little opportunity to access other types of
templates. A second approach, proposed by Lawrie [9], uses twice as many
memory modules as processors. It is thus rather expensive, due to the
nﬁmber‘ pf memory modules and to the increase in size of the

interconnection network required.



In this paper, we will use a minimal hardware configuration, .with N
. processors, N memory banks, and an NxN intérconnection network (Fig.1).
For this architecture, we will develop techniques for data skewing
ensuring maximum effective memory bandwidth for a given algorithm. In all
our examples, N\will be a power of two; although the theory developped
here does not depend on it, it is the mecst interesting case from the
hardwaré designer's point of view as it corresponds to the size of the
most eficient networks, such as the Q, baseline and Benes networks [10]
[20].

For a given algorithm, computaticns can be organized to modify the
type of parallel ‘access required. Let us take as an example the

computation of the discretization of the 1laplacian Af on a finite

difference grid. For each peint (i,j), Af is given by:

Af(i,3) = L [E(i+1,3) + £(i=1,3) + £{1,§+1) + £(i,3=1) = 4 £(i,3)]
N )

On a parallel- machine, two approaches are possible to compute Af.
The first one consists in emphasizing the parallel access requirements of
the pointwise equation. Then, we will need to access in parallel, for
each point (i,j), f£(i,j) and its four neighbours'in the north, east,
south and west directions. This means that the array’f musf be organized
S0 that it allows parallel access to a cross-shaped template centered at
any point. This approach has been developped by Shapiro (3] [4].

In a secbnd approach, we emphasize the fact that the computations at
each point (i,j) are independant. Taking into account the degree of
parallelism of the machine, we will partition »thé grid into subsets
and compute Af in parallel over all points of a subset. Then, for each
subset S, we will serform consecutively the foilowing parallel memory
accesses:

- access to S, giving f(i,J)



- access to S + (1,0), giving £(i+1,3)
- access to S + (-1,0), giving f£(i-1,j)
- access to S + (0,1), giving £(i,j+1)"
- access to S + (0,-1), giving f(i,;-1)‘
This means that f must be organized to allow parallel access only to
the subsets S and to the templates obtained by a translation of a
subset S by one of the vectors (1,0), (-1,0), (0;1), (0,-1).
For an SIMD machine, the second approach is thé reasonable ohe, as
it reflects the simultaneity between the processing elements. In fact,
this approach is also the appropriate one for general purpose vector

computers, which lack special=-purpose hardware for 'sophisticated

addressing.

The main theoretical results on parallel access to templates have
been obtazined by Shapiro [3] [4]. If T is a template in Z2, there exists
a skewing scheme giving parallel access to the patterns obtained by all
translations over Z2? of T iff T tesselates Z2 by translations. The same
kind of result holds for a finite set of templates; there exists a
skewing scheme giving parallel access simultaneously to a family of

templates T """Tﬁ and their images by all the translations over Z2 iff

1
each Ti tesselates the plane with the same set of translations. These
theorems, which fit in the first approach described earlier, put very
restrictive constraints on the patterns. For the second approach, they

could also be used, but it is tempting to weaken the conditioﬁs of the

theorem.

By noticing that only certain translations are really required by
the algorithm, we will build skewing schemes giving parallel access to
families of templates that cannot be covered by Shapiro's results. For

example, it is possible to access in pérallel rows, columns, and all



possible rectangular 2P Zq templates in a matrix, for a subset of
translations that still provide a full cover of the whole matrix for each
template. Shapirc has shown that, if all translations are needed, it is

impossible to access in parallel rows, columns and a single rectangular

template.

We will first define a class of well-behaved skewing schemes, called
diamond schemes, that includes most of the skewing schemes found in the
literature and we will study their basic properties. Then, we will
develop a few tools on permutations necessary to manipulate the
mathematical.structure efficiently. The following §ection will state the
main results concerning compatibility o% diamond schemes with data
templates. Finally, we will describe three applications that show the

interest of this class of skewing schemes.



2.PROBLEM FORMULATION AND DEFINITIONS

We consider the problem of skewing a matrix A into N memory modules.
The matrix A is assumed to be infinite, indexed by Z?*. This does not
change the nature of the problem and allows to neglect boundary

conditions, which can be handled By processor masking.

Definition 2.1  : A - skewing scheme is a mapping ¢ of 22 into

{0..N-1}, where ¢(i,j) is the number of the memory bank in which Aij is
stored [5].

In ourwfigures, we will depart from the usual representations of
matrices. Ai,j will be represented as a point in Z2 using the standard

basis, The unit square based at point (i,j) will contain-the value ¢(i,j)

of the skewing scheme.

Definition 2.2 : A data template is a finite subset of Z*, It will

be used as a parallel access window. & template T is compatible with the
skewing scheme ¢ iff the restrictibn o | T of ¢ Lo T is injective, i.e.
if all elements of T may be fetched in a éingle memory cycle,

It should be noted that, in Shapiro’'s formulation of the problem, a
skewing scheme ¢ is valid for T iff, for all translations t of Z2, <(T)

is compatible with ¢.

Definition 2.3 : The reference rectangle is a given rectangle

defined by Rx v ={ (i,3) € Z2 / 0&i<x , 08j<y } with xysN. The

reference covering of Z2? is the set of all rectangles that are images of

Rx y by the translations in the set II :
]

I = { T e Zz/ T = aX"’bY 9 X = (X70)’ Y = (O)Y)! (a)b) E ZZ }



In order .to simplify notations, we will denote the reference

rectangle as R instead of Rx y

?

, except whep ambiguous. Symbol Wa.b will
denote- the translation aX+b¥, an element of I, and we will systematically
identify Tab with the point (aX,bY) in Z%, and identify the groups (nfo)
and (22,;3: Fig. 2 shows ‘r‘iu,2 and the associated covering.

Greek letters A, u will denote permutations of {0..N-1}, © a

translation in I, 1 any translation of Z2.

If A, u are two permutations on {0..N-1} commuting with each other,
i.e. Aou = oA, and if 7 = aX+bY is a_ translation in T, then we will note

b
[A,u]1r for Aa o u . It is obvious that:

PR

VTR LALUNINY SUP LEPSS SURTh L | (1)

Cur main tool to define skewing schemes is to extend a scheme from

the reference rectangle to the reference covering.

Definitien 2.4 : Let 1 and u be two permutations of {0..N=1}
commuting with each other and let ¢ be a mapping from R to {0..N-1}. The

. Ay . .
extension ¢ Y of ¢ by (A,n) is defined over Z2% by :

for all = in T, ¢A,u = [x,ul" o ¢ o ! (2)

| 7(R) | R
This definition is consistent, as the set { w(R) / = & N} covers
Z2 (it is our reference covering). Moreover, ¢Afﬁi = ¢ . Whenever no

ambiguity may arise, we will simply “use ¢ instead of ¢A'u.

Ir ¢A{; is a one-to-one mapping onto {0..N-1}, ¢*'¥ will be said to

be a regular extension. This of course implies that xy = N.



Definition 2.5 : A skewing scheme ¢ is a diamond scheme iff there

exist a reference rectangle R, a mapping ¢ from R into {0..N-1} and two

permutations on {0..N-1}, A and u, commuting with each other, such that

R A

Definition 2.6 : A skewing scheme ¢ is a regular diamond scheme iff

it is equal t'o‘some regular extension ¢)"”.

It is noteworthy that a diamond scheme may be obtained by several
extensions. As shown by example 3 below, the reference rectangles of the
various extensions yelding the same diamond scheme need not to have the
same cardinality. Some of t;nese extensions may be regular and others not.

If a skewing scheme ¢y is a regular diamond scheme with reference
rectangie R, it 1is compa_tible with all rectangles of the reference
covering associated with R. Some other translations may belong to the set
' of &all permutations 1. such that the regular diamond scheme is

compatible with t(R): I C r C 2Z3.

Shapiro [3][4] uses a similar mechanism to derive a skewing scheme
from a tesselation of tpe plane., Althougnh the tr'ansla:tions operating on
the base template to geherate this tesselation are not required to form a
group (as in @), this condition is fulfilled in all applications.
Extensions used by Shapiro rely on permutations A and u which are both
the  identity. This limitation and the stronger condition for
compatibility recalled above make most storing problems impossible to

solve.

Now we consider some diamond schemes.



Example 2.1 : Let us build the extension with the following

parameters:

R = [0,3]*[0,3]

-¢lR=i+uJ

A(k) = k+4 mod 16

k+1 mod 16 if k is even
u(k) = (exchange permutation)

k=1 mod 16 if k is odd

A and p are commuting permutations of {0..15}. The extension is
regular, as ¢ is a one-to one-mapping from R onto {O..15}.'The result is
depicted on Fig. 3, where the value inside the square (i,j) is the value

of ¢(i,j), i.e. the number of the memory bank where Aij is stored.

AExamole 2.2 : The skewing schemes described by Van Voorhis [10] are
diamond schemes extended from:
“ Ry T {0..N=-1}x{0} (x=N,y=1)
- E : any function with range {0..N-1}
by means of:
- ) =1Id

- u(k) = k+1 mod N .

Example 2.3 : Linear skgying schemes are a straightforward method

for storing arrays in Fortran, Algol, Pascal and similar programming
languages. Therefore, their properties have been investigated in depth
both from a theoretical and from a practical point of view [31[41[5][7].

For two integers u and v, the linear skewing scheme Lu v is defined by

14

Lu,v(l’J) = ui+vj mod N.

A linear skewing scheme is a diamond scheme as stated below:



Proposition 2.1 : A linear skewing scheme Lu v is a diamond scheme

’

with a reference rectangle reduced to the point (0,0) (i.e. R1 1) and the

following parameters :
_' ¢ IR(O;O) =0
- AMx) = xtu mod N
= u(x) = xHv mod N
This is quite obvious, as by construction:

. uJ ((0,0)) = ui+vj mod N

R1 1 is not the only réctangle from which Lu v can be extended:
’ H

.Proposition 2.2 : A linear skewing scheme is a regular diamond

scheme iff gcd(u,v,N) = 1. As it can be easily verified, an adequate
reference rectangle is Rx, with x = N/ged(u,N) and y = ged(u,N).
Extension is made by means of A(x) = x+lcm(u,N} and u(x).= x+ged(u,N).

It must be noticed that, if ged(u,v,N) = 1, then the skewing scheme
is concentrated in a fraction of the banks, and thus of little practical

interest. If N is & power of two, the condition is simply that one at

least of u, v must be odd.

Example 2.4 : Rows, columns and diagonals.

Shapiro's results show that it 'is impossible to build a skewing
scheme compatible with rows, columns and diagonals when the number of
memory moaules is a power of two, as it is impossible to tesselate the
plane simultaneously with those templates. If the skewing scheme 1is a
diamond scheme, one can easily prove that'paréllel access to all lines,
all columns and the diagonal based at point (0,0) implies parallel access

to all diagonzls, and hence is impossible. We thus have to weaken



our constraints; for example we may require parallel access to only a

subset of columns.

For example, let us assume that paraliel access is required to:
- all lines
-~ the columns shifted up by half height from each other
- the diagonal based at point (0,0) |

for N a power of two.

Let us take for reference rectangle the column at point (0,0). Then,
we will also have access to these templates shifted at any position along
the x-axis, and the plane will be tesselated with rows, columns and
diagonals.accessible in pérallel.

In order to have access to the row at point (0,0), X must have a
single cycle of length N; as a matter of fact, the value of ¢ at point
(0,0.) being equal to Ai(¢(0,0)), if ﬂ.has a cycle of length < N, ¢ will
not be a bijection from the row located at point (0,0) onto {0..N~1}. We
can assume (i) = i+1 mod N. Then, to have acéess to the diagonal, we
mu;t choose ¢ on the reference column such that ¢(i)+i is one-to-one.
¢(i) = 2i is a suitable choice. Then, by choosing u(i) = i+1 mod N, the
column shifted up by half height is accessible in pafallel. Permutations

A and p quite obviously commute.

Thus, the diamond scheme based on :

TR

~ (i)

i+7 mod N

= (i) = i+1 med N

¢(1) 21 mod N

answers our requirements. Fig. 4 shows the skewing scheme for N = 8,

- 10

\



‘Unscrambling requires only circular shifts. It must be noticed that
reverse diagonals located .at the same points as the diagonals can be
accessed in parallel. This extension is not regular (whatever reference
rectangle is uéed). This is a good exezmple of a diamond scheme which is

useful although non regular.,

11



3.BASIC PROPERTIES OF EXTENSIONS, SEPARABLE EXTENSIONS.

We shall study here the basic properties of extensions
periodicity, effect of large translations , independance on ¢ [ R for
regular extensions. The following lemma will be of use :

Lemma 3.1 : Let ¢ be an extension. For all translations m in I, the

following equality holds :

pom="[rul"0¢ ’ (3)
Proof : We will prove the equality over each rectangle of the
reference covering. Let 7' I, we have, using (1) and (2)

(¢ o m) I,n,q(R)= ¢I1T+‘ﬂ'(R> o I“v(R)

o+ ! -
=[nul™ " oo b E o (mwow') ! o

T -1

= [)(,‘,.1]. o} EXIU]T{' o ¢ iR o
= [qujﬁ o ¢ l“'(R)

Thus (3) holds over Z2 for all 7 in I. a]
This lemma is also useful to unscramble data for templates obtained

by translation of a template by elements of 1.

Proposition 3.2 : Let r (resp. s) be the order of A (resp. u), i.e.

the smallest positive integer such that Ar = 1d (resp. us = Id). Then

¢A’u is periodic, and its period is (rx, sy).
Proof : Apply lemma 3.1 with 1 for (n, m) belonging to 22 :

nr,ms

w
- [i,u] OFemS

5 O T =
¢ nr,ms

c ¢

n m
= (") o (4% o0 =9

Thus, (rx,sy) is the period of ¢, 0o

12



Proposition 3.3 : If a template T is compatible with ¢, then, for ,

any I, w(T) is compatible with ¢.

Proof : Apply lemma 3.1 to all points of T:
w Inul" o s T = (¢ o m) |
= ¢ | w(T) o | T
As t and [A,u]“ are bijections, ¢ | w(T) is a bijection. Then, =(T)
is compatible with ¢. O
This proposition enables us to check the compatibility of a data
template only on the translated. template by I that contains the origin

(0,0). It will be the case in all our figures.

We shall now give, for regular extensions, an equivalent definition
which will be more convenient for visualizing the effect of the
permutations. For a regular extension ¢, as ¢ IR is a one—to-ong mapping,
we can introduce the conjugate of X (résp. 1) with respect to ¢ [R :

Y=¢- ©OXOY
IR | R

i=29 oy o¢
| R | R

% and { are permutations of R, and they commute iff 2 and y commute.

Proposition 3.4 : ¢ is a regular extension of base R iff there exist

two permutations %, i of R, commutihg with each other, such that :

a) ¢ | R is a one-to-one mépping onto {0..N=1}

b) for all 7 in &, ) |w(R) = ¢ E o) [I,ﬁ]“ o “r1

Proof : obvious. u]

13



Using this alternate definition, we get the following property:

Proposition 3.5 : The set of templates compatible with a regular

extension ¢ does not depend upon ¢ TR , but only upon % and ii.

-~

In other words, two regular extensions having the same R, 2 and {i

have the same set of compatible templates.

Proof : Let ¢, ¢' be two regular extensions associated with the same

permutations on R, % and i.

Let 8 = ¢', g © (¢ l R)_1' & is a permutation of {0..N-1}. The

following equality hclds:
1 -1 H
60¢IR=¢°¢ O¢IR=¢IR
Hence:
=1

806 | 1a) -eoq;lRo[X.'ﬁ]"ow

=¢',Ro[x,a1“ov"

= 1
¢ | m(R)
Thus, 8 0 ¢ = ¢'. If a template T is compatible with ¢, it is also

compatible with ¢' because 8 is a one~to-one mapping. o

This proposition will help to design the unscrambling algorithms by
modifying the numbering on the reference template, i.e. ¢ TR , Without

changing any of the compatibility properties.

We will now define a special class of extensions obtained with a
simple choice of £ and {, which will simplify the computation of
compatible templates.

Definition 3.1 : A separable extension is a regular extension where

% is a permutation of rows of R, §i a permutation of columns of R.

14



In other words, there exists a permutation 1 (resp c) of {0..y~1}
(resp. {0..x-1}) such that:
2(1,3) = (4,1(3)) (resp {i(1,3) = (e(1),3) )
' Then we have:
." J' i'
¢(1,3) = ¢ |R (c (io). 1 (Jo))
- where 1 = xi'+ io and Jj = yj'+ jo are euclidian divisions.

Example 3.1 : Example 2.1, described in Fig.3, is in fact a

separable extension. The row permutation 1 is a circular shift by one
position, and the column permutation is a pairwise exchange .of adjacent

columns.

15



4 .CYCLES AND ORBITS

In this section, E will denote a set of N elements, actually

{0..N-1} or R for our purpose, A and u will be two commuting permutations

over E.

We will examipe some basic properties of permutations, that will
enable us to split the sets {0..N-1} or R into subsets (cycles and
orbits) on which the actions of A and u will be simpler to describe. This
will be useful to build skewing schemes compatible with a given set of

templates, by establishing constraints on cycles and orbits of A, p or %,

ﬁ.
First we will recall the definition and elementary properties of

cycles.

Definition 4.1 : Let ) be a permutation on E. A cycle § of ) is &

minimal non—empty subset of E stable by i:
§ = &
§ is a cycle of X <=> A(8)C 6
VaCs, A =48: M(MCA =>A=58
The number of elements of & is the length of the cycle,lél.Basic
results concerning permutatiéns are recalled in the following proposition
a proof of which can be found in usual algebra textbooks.

L

" Proposition 4.1

a) JG’ is the identity over &, and |6lis the smallest

integer k such that there exists an element 2z of ¢

verifying A“iz) = z.

16



b) 6 is the disjoint union of the sets {A1(z)} wnere
i pelongs to {0..}6}-1} and z is a given point of 4.

¢) The cycles of A constitute a partition of E,

For example, if ¢ .is a separable extension, cycles of % are sets of
columns of R and are obtained by translations of cycles of 1, conjugated

to R via ¢.

Proposition 4.2 : Let A, u be two commuting permutations over E, let

6 be a cycle of \. Then, u(é) is also a cycle of A.

Proof

1) u(6) is stable by A.
A(1(8)) = u(r(8)) = u(s) .

2) (minimality): Let D Cu(8), D = @, A(D) C D. We will prove

that u-1(D} is stable by x: |
AT = W TGN Cu D).

As u-1(D) is not empty (D is not empty), u_1(D). stable by

and included in §, is equal to &, a cycle, Thus D = u(8) . and

u(é) is a cycle. D

Definition 4.2 :ALet A, u be two commuting perﬁutations on E, An

orbit © of A and u is a minimal non-empty subset of E stable by 2 and u.
6+ d
: A(e)C e, weC o
® is an orbit of A and p {=)>
' VaCe, A=4d

=> A = 0

The number of elements of € will be called the length of the orbit,

noted 16]. As we shall see, orbits have properties very similar to cycles.

17



Example 4.1 : Orbits of separable extensions. The orbits of a
separable extension using 1 and ¢ as row and column permutations are the
cartesian products of cycles of 1 and ¢, when lnterpreted geometrically.
Fig. 5.a shows the cycles of the 1 and ¢ permutatlon of the separable
extension described in example 3.1 (Fig. 3). Fig. 5.b shows the

corresponding two orbits, obtained as cartegian products of the cycles.

Example 4.2 : Let us consider a sligthly more complex example. Let
- E = {0..7}

~ A, u defined by the table:

i A(1) u(i)
0 1 3
1 0 2
2 3 0
3 2 1
4 5 6
5 Y 7
6 7 y
7 6 5

The reader will check that A and u do commute. The cycles of X are
(0’1) (2»3) (4,5) (6,7); the CYCleS of 4 are (0)31112>v (uys), (597).

There are twc orbits, o, = {0,1,2,3} and 6, = {4,5,6,T}.

1
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Proposition 4.3 :

a) An orbit may be partitionned into cycles of A of
equal length and into cycles of u of equal length.

b) Let © be an orbit for A and u, let z be a point in ©.
Then, there exist two integers r and s, such that
© 1is the disjoint union of the sets {Aib uj(z)} for
(1,j) ™belonging to [O..r~1]§[0..sr1].

¢) Orbits of A and uy form a partition of E.

Proof : This proposition stems directly from propositions 4.1 and

4.,2. ©

Note that statement b) is a two-dimensional extension of the similar

statement on cycles.

Representation of cyecles and orbits.

Proposition 4.1 enables us to identify a cycle & of A with the group

of integers modulo the lengthl|élof the cycle, by the application:

Z/ 1612 —————> ¢
i — Ai(z)
where z is an arbitrary element of §.
The action of A on 6 is then eqguivalent to an addition by one iﬁ
this group. The equivalent idéntifiéation for orbité is unfortunately not
to the rectanglée suggested by the proposition 4.3, but to a more general

structure.
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Proposition 4.4 : Let A and p be two commuting permutations on E, ©

an orbit of A and u, z an arbitrary point of 8. Then the set of integers

n

(m,n) such that PP ' is the identity over © is a lattice L (i.e. a

two~dimensional subgroup) of Z#*, The orbit © may be identified with the

~.
N

quotient group Z2#/L by the mapping:

v :  Z2/L

> 8

> ido wl(2)

(1,3)

The action of A (resp. u) in © 1is thus identified to an x-wise
(resp. an y-wise) translation in Z? modulo the lattice L.
The inverse mapping from © onto Z2/L will be noted as a —> a where

a belongs to @.
Proof : obvious. O

The quotient group Z%?/L may be geometrically interpreted as a
parallelogram folded onto a torus. The sides of the parallelogram form a
bagis of the lattice L. A lattice on Z2? does not have a unique basis,
thus L may be represented by several parallelograms, each of them
associat;d to a different basis of L. Two bases are of particular
interést; the first one has a base vector Ux parallel to the x axis:
Ux = (ux,O). u >0; the second has a base vector Vy parallel to the
y axis: Vy = (O,vy), vy >0. Such bases always exist.'Thg length of Ux is

equal to the length of the cycles of A in the orbit 8, and the length of

Vy is equal to the length of the cycles of u in ©.

Example 4.3 : The lattices associated with separable extensions are

always rectangular, i.e, have an orthogonal basis, with base vectors
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parallel to the x-axis (resp. y-axis). If &, &' are cycles of the 1 and
¢ permutations, the cartesian product &x8'is an orbit and its lattice is
obtained as: -

L =i6lZ x|¢"Z

.
~—

Example 4.4 : Using proposition 4.4, let us examine the structure of
the orbits for A and p as described in example 4,2. The lattice L1
associated to the first orbit 61 is generated by the two vectors

U, = (2,0), V. = (1,2). The lattice L2 associated with the second orbit

1 1

is generated by U2 = (0,2), V2 = (2,0). These lattices are represented in
figure 6.

The structure of L is described by a single rectangle. L

2 1

examplifies the more general case. Orbit 91 consists of two cycles of A,
each having two elements, but only of a single cycle of u havihg four
elements. Fig. 7 describes the ackion of » and p on the representation of
@1-

The main interest of proposition 4.4 is that it will allow us to
transport equations on orbits onto the group Z2/L, i.e. 2 parallelogram,

where they will be easier to solve.

Conversely, given k numbers n1,...,nk such that n1+;12+...+nk = N, it
is possible to build a permutation the cycles of which have precisely the
lengths n1,...,nk. Similarly, given k lattices.of z2z, L1""’Lk , Such
that the sum of their areas (i.e. the area of; the associated
parallelograms) is equal to N, it is possible to build two permutations A

and y commuting with each other and such that their orbits have exactly

the structures described by L1""’Lk'
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5 Compatible templates

Y

We shail first establish a general theorem expressing the conditions
on the parameters i, u, q)IR of a diamond scheme ¢, for a given template
to be compatible with ¢. Then we shall study the two cases where the
template has a 'regular' geometric structure and where the extension is
separable. All templates considered in this section will have exactly N

points, N being the number of memory banks. Thus T will be compatible

with ¢ iff ¢IT is bijective,

Definition 5.1 : Let T be a template; the decomposition of T on the

reference covering is a set of distinet points {ai} in R and, for each

point a,, a set of translations C(ai) in II. These sets have the property

i
that:

T = G U w(ai)

$ weC(ai)

U is used to denote the union of disjoint sets.

The decomposition is obviously unique. The points a; are the
elements of R such that some -rr(ai) lies in T, and the sét C(ai) is made
of all translations having this property. Fig. 8 gives an example of
decompesition.

Each element w of c(ai) béing a translation by a vector *of the form
(ux,§y), we denote by M(ai) the set of associated points (u,v); that is:

M(ai) = { (u,v) € Z%/ (ux,vy) € C(ai) }
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Lemma 5.2 : Let T be a template, A, u, ¢IR an extension, {ai.C(ai)}
the decomposition of T. T is compatible with ¢ 1ff, for all orbits © of A

and u, the following equality holds:

o = U U Dnul™ ea) | 4)
a; such that w EC<ai) '
d;(ai)'ee

_ Proof : Whether T is compatible with ¢ or not, by using the

w

decomposition of T, the subset ¢(T) verifies:

¢o(T) = ¢ D [j w(ai)‘ (disjoint unions)
a; = weC(ai)
= U % U om(a, ) % (not necessarily
a TmeC(a,)
1 disjoint unions!)
e - U [A,u]’" $la,) % (5)
2, ﬂEC(ai) '

T is compatible with ¢ iff ¢(T) has the same cardinality as T, l.e.
N, that is iff the sets whose union is considered in equation (5) above
are disjoint.

a) if T is compatible with ¢, let © be an orbit of A and u. Then, ©

is equal to ¢(T)N © since ¢(T) = {0..N-1}. Then, using (5), we find that:

& = o N ¢(T)

= U U [a,u1" ¢(ay)
a; such that wEC(ai)

¢(ai)ee

. . m
because the integers [A,ul ¢(ai) are in 0 if ¢(ai) belongs to © and only

in this case (stability of an orbit by ) and u).

.
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b) Conversely, let us assume that (4) holds for all orbits. From
equation (5), it follows at once that all orbits are contained in ¢(T).
Therefore, ¢(T) is equal to their union, {0..N-1}, which means that T is

'

compatible with ¢. u]

In section 4, we have associated with each orbit © a lattice L such
that © is mapped onto the group Z?*/L by a canonical isomorphism
X —> x . From this identification, we get another statement of lemma
5.2, which gives rise to easier computation and suggests algorithms for
testing compatibility.

Theorem 5.3 : T is compatible with ¢ iff, for each orbit 8 of A and

W, the group Z2/L asscciated with © is obtained by:

Z2/L = U <_b(ai) + M(a’.) % (6)

¢(ai)€6

where x —> ; is the natural mapping from © onto Z2/L and where the

M(ai) are mapped from Z2 into Z2/L.

This theorem has thus established an equivalence between the problem
of compatibility and the problem of 9partitionning a set of
parallelograms, the Z2/L groups. We will now examine a case where this

partition is simple.

Definition 5.2 : A template T is uniform iff all the M(a,) of its

decomposition on R are identical to the same rectangle M in Z2, of the

form:

M=1{ (h,k) € Z2 / 0sh<H, 0sk<X } H, K 21
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The template is said to be one-dimensional if M is an horizontal or
vertical segment, two-dimensional_otherwise. The set of base points of T,
{a;}, is called the atom of T, and will be noted A. It is noteworthy that
HKcard(A) = N, since T has N elements. ‘

Fig. 9 gives examples of regular templates, with reference Ru ye

Theorem 5.4 : Let T be a uniform template, ¢ a diamond scheme. T is
compatible with ¢ iff, for all orbits € of » and u, H divides the length
of the cycles of A in ©, K divides the length of the cycles of u in o,

HK card(¢(A)N©) = card(®) and one of the two conditions holds:

a) The intersection of ¢(A) and any cycle of X in © is either
H
the empty set or a cycle of A", and the intersection of ¢(4)

and © is contained in an orbit ef ) and uK.

b) The intersection of ¢(A) and any cycle of p in © is elither’
the empty set or a cycle of uK, and the intersection of ¢(A)

. H
and © is contained in an orbit of A and u.

Proof : For a uniform template, (6) in theorem 5.3 reduces to:

Z2/L = U (v +M)
vev

where V= ¢(A) 1 © and M is the rectangle 0sh<H, 0sk<K. This equation

expresses that Z2/L is paved by rectangles based at the points v.

Let us assume that T is compatible with ¢. Then, for a given orbit,
we have a paving of Z2/L by rectangles, which naturally can be extented
to a tesselation of Z2 by the same rectangles. This tesselation may be

achieved only in two ways: the rectangles must be drawn up horizontally
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or vertically as shown on Fig.10. Let us assume that the first is true.
Then, the base points of the tesselation of Z2? lies on some horizontal
lines spaced by steps of K and along these horizontal are regularly
spaced by steps of H.

If we return to the interpretation in the orbit, this means that the
intersection of V and a cycle of X (i.e. an horizontal segment in Z2) is
emptf or a cycle of AH (spaced by H) and that V is included in an orbit
of X and uK , as the horizontal lines containing the points of V are
spaced by K. These are the conditions enumerated in a). If we had assumed
a vertical tesselation, we would have ot-ained the set of conditions b).

These conditions are not sufficient, as they only used the fact that
72 is tesselated by the rectangle M. We will now use the fact that this
tesselation is also valid for Z2%/L.

Let us consider a basis of the lattice having an horizontal vector.
The length of this vector will be exactly the length of the cycles of A
in 6. H must then divide this length, so that the tesselation of Z? may
be folded into a paving of Z2/L. A similar argument shows that K must
divide the length of the cycles of u in ©. Finally, an obvious counting
argument shows that HKcard(V) = card(®).

Conversely, conditions a) ‘ or b) and the '. fact that
HKeard(V) = card(e) establish a tesselation of 2Z2. The divisibility
conditions on H and K show that this tesselation may be fclded into a

paving of Z2?/L by rectangles, which proves the result. ©

The practical interest of this theorem 1lies in the following two

corollaries.

" Proposition 5.5 : Let T be a one~dimensionnal uniform template with

K =1 (resp, H=1), ¢ a diamond scheme. T is compatible with ¢ iff H



(resp.. K) divides the length of the cycles of ) (resp. u), and the
intersection of ¢(A) with a cycle of A (resp. u) is a cycle of AH (resp.

ux).

Proof : Let us assume that T is one-dimensional with K = 1. M is

.
.

then reduced to an horizontal segment (i,0) O0si<H.

If T is compatible with‘ ¢, the tesselation induced on 22 will
necessarily be of the horizonfal kind, as, in this cése, vertical
tesselations are also horizontal tesselations. Then the points of V along
2 horizontal line are spaced by H, and V has points on all horizontal
lines. In terms of cycles, this means that the intersection of ¢(A) and a
cycle of . (i.e. a horizontal line) 1is exactly a cycle of AH. As in the
main theorem, H must divide the length of the cycles of A. The counting
argument is unnecessary, as there are points of V on each horizontal

line,

Conversely, the hypothesis on cycles of ) gives a tesselation of YA
by horizontal segments, which may be transformed into a paving of Zz/ﬁ
pecause H divides the length of the cycles. O

Proposition 5.6 : Let T be a uniform template, for which the atom A

is a cartesian product (i.e. A = Axx Ay ), let ¢ be a separable extension
with parameters 1 and c. T is compatible with ¢, iff for all cycles & of
1 (resp. c), the intersection of ¢ with Ax (resb. Av ) is a cycle of lH

(resp. cK ) (thus, non—empty).

Proof : The orbiﬁs of a separable extension are cartesian products
of cycles of 1 and c. Thence, conditions a) and b) of theorem 5.4 and the

fact that A is a cartesian product imply that the base points of the
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tesselation (i.e. the intersection of A with an orbit) lie regularly on
the grid HZxKZ (i.e. an orbit of XH and ﬁK); so, the intersection of A
~K
u

-~

with any orbit of 1 and u must be an orbit of X}i and (i.e. a
cartesian product of a cyecle of lH and a cycle of cK). A counting
aréument proves that if this is possible, then H and K divide the length
of the cycles of % and i in 6, and that HK divides the cardinal of é. the

converse proof is similar. o
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6. APPLICATIONS.

In this section, we will find skewing schemeé suitable feor certain
families of templates. For each case, wé will deduce from the theorems
developed in the previous sections constraints on the permutations i and
u, ‘and then exhibit "simple" permutations meeting these constraints. An
easy unscrambling is an important argument in the choice of 3 and u.

.

1) Access to an arbitrary template.

Using the ideas previously developped, we will now show that, given
a reference rectangle R and an arbitrary template T such that T is
covered by four copies of R in a square pattern as in the example of
Fig.8, it is possible to build a regular diamond scheme with which T and
'R are both compatible. Thus, it is possible to access in parallel an
(almest) arbdbitrary templat;e and a rectangle. Throughout the proof of ths

assertion we will refer to Fig.8 as an example.

Up to a translation, we can assume that the four copies of R
covering T are obtained by the translations (0,0), (x,0), (0,¥y), (x,y),
associated with the permutations Id, A, u, iou. We will buila a regular
diaménd scheme based on R such that each orbit of A and u contains
- exactly one integer ¢(x) where x 1s in the decomposition of T on R. Let
us choose for ¢ én arbitrary bijec.tion on R. On Fig.8, we will choose

$(i1,3) = i + 43 mod 8, for (i,j) belonging to Ru 5

The decompesition of T may be written as:

T= U u v(ai)

'ai wEC(ai)
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In our example, T is decomposed With the following values for ai and

C(ai):
a, = (3,7) Clay) = {(1,0)}
a, = (0,1) C(ay) = {(1,1)]
a; = (1,0) C(a3) = {(1,1)}
ay = (2,1) : C(ay) = {(1,0), (1,1))
ag = (1,1) Clag) = {(1,0), (1,1), (0,1)} .

In the general case, there are 15 possible sets C(ai). For each set,

we will build an orbit ea containing one value ¢(ai) and we will define
i ,
over ea two permutations, X and u, commuting with each other and
i .
verifying equation (4) in lemma 5.2. Thus, we will have built A and u on

{0..N~1} that are solutions of the problem.

The orbit ©_ associated with a, will contain exactly ca}d(c(ai))
integers, one of éﬁem being ¢(ai) and the others chosen in [O..N-1}, such
that the sets ea. form a partition of {C..N-1}. An obvious counting
argument that suc; a choice is always possible. In our example, we can

choose the ea as follows:
i

- ¢(a1) =7 card(ea ) = card(C(a1)) = 1
1
ea1 = {7}
- ¢(a2) = U card(@a ) = card(C(az)) =1
2
Ga2 = {4}
- ¢(a3) = 1 card(ea ) = card(C(aB)) = 1
3
9a3 = {1}
- ¢(au)-= 6 card(ea ) = card(C(au)) = 2
k
o = {6,0}
2y
- ¢(a5) =5 card(ea ) = card(C(aS)) =3
5 .
@as = {5,2,3}

These orbits respect the aforementionned conditions.
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Now, we will define 1 and u on each ea such that ea will be
i i
composed exactly of the integers [x,u]" where m belongs to C(ai). Four

major cases must be examined,vacccrding to the cardinality of C(ai).

1) card(C(ai)) = 1, The orbit is reduced to the set {¢(ai)}. and we

define ) and u over it as the identity:

Me(ap)) = o(a;) n(éla)) = ¢la)
In our example, a, » 2, and a3 have single~point orbits. Thus, A
and p are the identity on © , © and ©
a a a
1 2 3
MT7) =7 u(7) =17
ACH) = & p(l) = 4
A(1) =1 u(1) =1

2) card(c(ai)) = 2, There are six cases. Let us consider the_ca;e
with C(ai) = {(1,0),(1,1)}. Then, if the orbit is {y1,y2} wiﬁh
v, = ¢(ai), if we define A and u by:

My,) =9, uly,) =y,

A(yz) =Y, Hy,) =y,

Permutation u (resp. i) is the identity (resp. exchange
permutation). Then X} and p obviously commute and (4) is verified.
THe five other cases have similar solutions.

in our example,. ea has two points, and C(au) has exactly the

y

configuration considered above. Hence, A and u are defined on ea
4

as: '

A(6) =0 u(6) =6

A(0) = 6 ' p(0) =0

3) card(C(ai)) = 3, There are four cases. Let us consider the case
with'C(ai) = {(1,0),(0,1),(1,1)}. Then, if the orbit is {y1,y2,y3}

with ¢(ai) = ¥4, if we define A and u by:

31



Myq) = yg ulyy) =y,

AMy,) =y, ulyy) = vq

Myg) =y, ulyg) =y,
then, A and p commute (in fact A = u) and (4) is verified. The five
other cases have similar solutions.

In our example, ea has three points and C(as) has exactly the

configuration consideied above. Hence, X and u are defined oﬁ ea5
as:

A(5) = 3 u(5) = 2

A(2) =5 -ouw(2) =3

A(3) =2 u(3) =5

4

4) card(C(ai)) = 4, The orbit is {y1,y2.y3,yu}. If we define X and u

by:
A(y1) =y, uly,) = Y3
A(yz) =Yy u(YZ) =Yy
A(yB) " Yy u(y3) =‘y}'
Myy) = Y, ulyy) = v,

then, A and py commute and (4) is verified.

In our example, we have no orbit with four elements.

Thus, we have built permutations A and u on {0..N-1}, having the
required orbits such that, on each orbit, the éonditions of lemma 5.2
are verified. Then, T is compatible with the regular extension from ¢ by
A and u, which solves our problem. In our example, X and u have been

built on each orbit and the resulting scheme is depicted on Fig.it.

This method appesars to be quite clumsy, as it consists in examining

a rather large number of cases. Actually, a simple explanation shows how
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and wny‘it-works. The problem lies in proving that adequate permutations
exist on each of our orbits. |

CIf C(ai), considered as a subset of Z7%, tesselafes Z%2 Dby
translations forming .a lattice L, then C(ai) may be identified to Z2/ L
and hence to the orbit itself. As it is always possible to build two
permutations having an orbit asséciated with a given lattice, thus we
have ﬁuilt permutations A and u on our orbit that verify (4).

In our case, up to symetries, there are five cases, described on
Fig.12, for C(ai), and each of them tesselates regularly the plane.
Hence, a solution exists.

It must be noticed that this proof does nct work if the covering of
T by R is different, for example obtained by translations

(0,0),(0,1),(0,2) and (0,3).

2) An organization for image processing.

On a Zp memory .bank system, we want to have parallel access to

rectangles having different shape factors: an Zp-n. Using Shapiro's

theory, it is easy to show that it is impossible to access in parallel
all those rectangles located at any position on the plane if-3,on more
rectangular shapes are required. instead, we will assume that parallel
access to rectangles of a given shape is rgquired only for a subset that
covers the plane, This choice of templates is useful fbr image
processing and generation as it permits parallel access to shapes with

various form factors. For example, such an organization would allow to

draw vectors in parallel in a minimum number of memory access.

We will choose as reference rectangle the rectangle R1 2p (X =1,
14
Y = Zp), i.e. a segment of vertical line. This choice is natural, since

py Proposition 3.3, it will ensure that, if a template is compatible,
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all templates obtained by an x-wise translation will also be compatible.
We will require parallel access to all rectangles of size Zn;'zp-n
located at points (th,kzp-n); for each form factor, the rectangles
selected above tesselate the plane. Fig.13 shows the templates to which
parallel access is required for p = 3., All the required templa£es are

regular and one~dimensional.

Let En K be the vertical segment of length 2P located at
1
(0,k2p_n), for k in {0..2n:q}. For a given n, the En K form a partition
’
of our base rectangle, which is equal to EO 0° In fact, En K is obtained
by the union of En+1,2k and En+1,2k+1 .

The rectangle of size an 2P located at (O.kzp-n) is a

one—-dimensional template of atom E . If we apply Proposition 5.5, we

n,k

see that, if § is a cycle of i, then for any En
n

2 . .
of » . Considering Ep

K ¢(an’k}r16 is a cycle

0" which is reduced to the single point (0,0), we

see that all cycles of A contain the point ¢(0,0), hence A has a single
n

cycle of size Zp. Hence, any ¢(En k) is a cycle of Az .

’

As we assumed that ¢ was regular, this means that X has a single

cycle of length Zp, which splits into 2 cycles of \2 of length 2p~1’ and

so on. The simple permutatibn A i > i+1 has cyeles with this

property. The remaining problem is to build a skewing scheme on E0
. n

into a cycle of 21— i+2n.

,0

(i.e. p ) that maps En

R
. 1 ’ 2 ’ k
If we examine the binary decompositidn of the elements of an E
_ n
and of the elements of a cycle of A » We have:

n,k

E PoJdeedd L XXl XX
- p p-i p~n+ e

n bits
n
S8(X% ): YYY...YYi i eesdl
p p-1 p—n+1

n bits
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It is thus natural to find that the pit~raversal permutation (noted

n
BR) does map the En into cycles of 22 .

s K

Then, a solution to the problem is to use:

1,2P
yu = Id

= A ] em> i1 mod 2p

6(0,5) = BR(3) on R, ,p.

Fig.14 gives the full skewing scheme for p = 3. The function ¢ is
easily computed on the entire plane by:

Py

¢(i,j) = i + BR(j mog2

The choice of ) simplifies greatly the unscrambling of data. The

reader may check thaf, in order to map the rectangle of size 2“x2p"“

located at point (i,j2p—n) onto the rectangle of size anZP-n located at

point (0,0), the unscrambling permutation required is the circular shift:

X > x = (i + BR(j2P " mod 2P)) .

In fact, choosing u = 1Id has for consequence that columns are
accessible in- any position, as well as rows. Unscrambling of rows
requires a simple circular shift. Columns in a random position are mcre
complex to unscramble, but the permutation may be performed by an i
ﬁetwork; as it can be expressed by a circular shift (x-wise displacement)
followed by a permutation of the form x~—>BR(y+BR(x)), which is Q-pass

as shown by Feng [13] and Steinberg [12] .

3) Multigrid methods and Total Reduction (T.R.) Fast solvers,

For. this class of numerical methods [12] [15] [16], it is necessary

to have parallel access to ‘blocks and &ll levels of blocks on coarser
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grids; i.e. accesses by steps of 1,2,4,...,2%. Fig.15 shows an example of

such data accesses. We will suppose that the number of memory banks is an
even power of two: N = 22p. It must be noticed that under Shapiro's
conditions, it is impossible to access efficiently more than one grid
level. The advantage of our skewing scheme is that it allows efficient
parallel access on different grid levels, éhis without any data
recrganization even when handling various geometries or using local
refinement techniques [17] [18].

In terms of extensions, it is natural to take as feference rectangle
tﬁe block Rzp,zp . Then all the required-templateé are regular, and their
atoms are cartesian products. We shall thus 1look for a separable
extension, in order to use Proposition 5.6.If we consider the block with
a step of 2k, this proposition gives as necessary and sufficient
condition tiat, if i is the atom, 6 an orbit of A and u, ¢(A) ) @ is an
orbit df kz. and uz . For k = n, that is for the coarsest possible grid,
A is reduced to a single point, thus Azp aqd uzpare the identity
function., If we interpret the conditions in terms of the row and column
permutations, 1 and c, we find that the cycles of 12k and czK are made up

. Kk . .
of integers regularly stepped by 2 . An obvious solution is to use for 1

and ¢ a ¢ircular shift of one position:

1(1) = c(i) = i+ mod 2P
Thus, if we take R = Rzp 2p , ¢ being the natural numbering of R
b
(i.e. ¢ I R (1,3) = 2pi+j), X the circular shift by one position of rows

and fi the circular shift by one position of columns, we have parallel

access to przp blocks, and coarser blocks of the form:
k O
(x,.7,) + (a.2 ,b.2%) osa<2®  osp<2P
k "k
<y £ <
O_xo 2 O=j0<2



This skewing scheme also gives parallel access to all rows and
cOlumns, as is easily checked by application of Proposition 5.6.

Computation of ¢(i,j) is quite simple. Let 1 = (12,1 i),

1770
2,31,30) be the binary decomposition o: 1Aand J where i1,31,10,30

are p bits wide. Then, we have:

J =@

o(1,3) = (3, + iy, 1, * 3g)

The reader should notice that all coarse blocks are not available,
only enough for a covering of Z*#. For example, the block by steps of two
located at point (3,3) in Fig.16 is not accessible in parallel. All the
unscrambling permutations induced by the computations on a gr%d level can
be achieved by a siﬁgle.passage through an Q-network, only when changing
grid levels (fine to coarse or coarse to fine), we need two passes
through an Q-network or a Benes network. It must be noticed that the
command o{ all the permutations required can be easily realized by the

same techniques as these developped by Lenfant [20].
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7. CONCLUSION AND GENERALIZATION.

The diamond schemes introduced in this paper are skewing schemes
derived from a rectangular tesselation of the integral plane by means of
two permutations A and p commdting with each other. Let us consider a
rectangle T of this reference covering obtained from the reference
rectangle by a displacement of K rectangles along the x=axis and L
rectangles along the y-axis. Each element within T is stored in a memory

K

bank number of which is the image by A o uL of the memory bank number in

which lies the corresponding element cf the reference rectangle.

(3

We have 1linked the compatibility between 2z diamend scheme and an
access template to the existence of a fesselation ¢f Z2/L where the L's
are integral lattices reflecting the structure of the orbits of
permutations A and u. A general result ktheorem 5.3) has been adapted to

the specific case of uniform templatas {theorem 5.4).

Various examples pﬁesented in this paper show that diamond schemes
are a valuable tool to build skewing schemes adequate for a large number
6f realistic programs. The prcbiem of storing several nestad arrays as a
single array to implement & multigrid algorithm shows the flexibility of
our concept of compatibility. All grid levels can be handled erficiently.
On each grid the programmer enjoys parallel access to a family of blocks
covering the grid and to blocks neighbouring them sc that the desired
computations (e.g. interpolations) can be performed without memory
conflicts. It is noteworthy that many blocks have distinct elements in
the same memory bank. The resquirement that all blocks can be sccessed in

parallel is too strong and can be satisfied at only one grid level.

The definition of a diamond scheme from its valuss on a reference

pattern by means of a tesselation of the plane is quite similar tec the



mechanism used by Shapiro. In this pioneer work, ) and p are both the
identity but the tesselation is less restricted than ours; the reference
pattern can be any N-element subset of the plane and it Is replicated by
a set of translations to cover the plane. The reader can check that most
of our results still hold if the reference pattern is not a rectangle.
However it 1is essential to our analyﬁis that the underlying set of

permutations be a subgroup of Z2, Although not mandatory 1@ Shapiro' work,

this assumption happens to be valid in his examples,

Our definitions and results may be readily generalized to

3y

n-dimensional arrays, using a set of 2n -permutations, (A1,...,An/ and

+ 3 ¥ ol P =
(u1'°"’un>’ commuting with each other (i.e. xio “j ujo Ai

oy, = p,0p, and e = u,0 i, J. A r izati ]
My uJ MO By Al uj uJu N ) deepe generalization is

obtained tuz noticing that the properties of extensions depend heavily

upon the fact that the application from II into SN , defined by:

(I,) > (SN’O),

- T
> LAsud

is a group homomorphism., By modifying the group structure on @I and
choosing other homomorphisms from @I to SN , an additional degree of
freedom is gained. In all cases, the basic properties of orbits described
in section 4 remaip valid, and most of the results in section 5 still
hold ﬁrovided that the right group structures are used.‘ Geometrical
interpretation becomes more difficult, due to the n—dimensional structure
to the problem and to the non-standard groups used. A full presentation
of these generalizations would have obscured the paper, as most of them

gain only very little in terms of the class of templates accessible.

There is one of these generalizations that is of practical Iinterest,

for very regular templates. In examples 2 and 3 of section 6, the skewing

schemes where obtained over Z2 as:
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;pz(i,J) = 1 + BR(J mod 2P) mod 2P
¢3(i.3) - (J1 + 10 ' JO +'i1 )

Here we have considered the pairs of integers less than 2P as
indices in a 2-dimension array. Alternatively we can consider them as
sequences of 2p+1 bits and interpret them as elements‘of the vector space
with dimension p+1 over Z/2Z (only the structure of additive. groups
matters). Using the generalized theorems and returning to the 2-dimension
array we can prove easily that the skewing'schemes defined over Z2? by:

¢ (1,3) = 1 ® BR(J mod 2P) nod 2P

2 (1,3) = (3, 81y, 3, 8 1, )
(where ® is the Bitwise Exclusive Or) allow parallel acce;s to the same
templates as ¢1 and ¢2 . Replacing additions by bitwise boolean
operations 1Is very iteresting for it suggests a simple and elegant
solution for hardware implementation. On the same way the linear skewing
‘scheme:

$(1,§) = 143 mod 2°

can be replaced by the scheme built into STARAN processor [19]:

$(i,3) =18 mod 2P
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Horizontal tesselation.

Figure 10 :

The two possible ways

Vertical tesselation.

of tesselating Z2 with a rectangle.



Figure 11 : A dlamond scheme carpatible with the template of Fig.8



Figure 12 : The five configurations for C(ai) up to symmetries.



Figure 13 : Templates required for image processing.
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