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| Q-ary COLLISION RESOLUTION ALGORITHMS IN RANDOM-ACCESS
SYSTEMS WITH FREE OR BLOCKED CHANNEL ACCESS

P. Mathys, P. Flajolet

Résumé: les protocoles en arbre du type Capetanakis-Tsybakov-Mikhailov-
Vvedenskaya permettent de gérer de maniére distribuée I'accds & un canal & |
acceés multiple. On étudie dans cet article I'effet de branchements "Q-aires" o1 Q
est un paramétre utilisé pour séparer les groupes d'utilisateurs entrés en
conflit. Différents algorithmes sont analysés et 'on montre que 'emploi d'un
branchement ternaire au lieu du branchement binaire habituel conduit & une
optimisation aussi bien en terme de délai que de capacité de transmission. Ceci
permet d'atteindre, avec un protocole & accés libre, une capacité de transmis-
sion sur le canal égale & 0.4018.

Abstract: Tree protocols of the Capetanakis-Tsybakov—Mikhailov—Vvedenskaya
type are encountered in the distributed management of a single communication
medium. We study here the effect of "Q-ary” branching where Q is a parameter
used for splitting contending users. Several algorithms are analysed and we
show that using ternary splitting (instead of a customary binary splitting)-
results in an absolute optimization both in terms of throughput and packet
delay; the maximal throughput attainable in this way with a free access protocol
i equal to 0.4018 packets per slot. '



~y
=¥

Q-ary Collision Resolution Algorithms'in Random=-Access

Systems with Free or Blocked Channel-Access

by
Peter MATHYS : ' Philirpe FLAJOLET
Institute of Telecommuﬁications INRIA
ETH Zuerich " Le Chesnay Cedex
Switzer}and France

August 1984

N D PAPIER RECUPERE ET RECYCLE



Abstract

Q-ary tree or stack algorithms - Q@ 2 2 is a parameter
used for splitting contending users - of the Capetanakis=
. Tsybakov-Mikhailov-Vvedenskaya types as encountered in the
distributed management of a single communications medium
with an infinite number of users» are analyzed. Boths free
and blocked channel-access protocols are considered and
combined with Q~ary collision resolution algorithms using.
either binary or ternary feedback. For these algorithms
fuhctiona; eqﬁations for the generating functions of all
moments of the collision resolution interval leneth are ob~-
tained, The maximum stable throughput as a fﬁnction of Q
is given and it is shown that the favourite algorithm (in
terms of ease of imﬁlementatibn) uses ternary splitting and
binary feedback while allowing free channel-accesss thereby
yielding a maximum stable throughput of .4016 packets per

slot when the new packet process is Poisson.
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Ile Introduction

The problem considered (see Fige l.1) is the random=

accessing by an infinite population of transmitters of a

common time-slotted collision-type channel with either

' . ' Channel

- Xmtr i « o o Xmtr 2 | Xmtr 1

Fige 1.1 Diagram of the system

noiseless binary feedback ("collision" or "no collision"),

or'noiselass ternary feedback ("idle"s "“success' or %col-
ljSion") .

All transmitters are assumed to be identical and to

transmit independent information. The transmitters are con=
strained to transmit data only in the form of "packets"
whose length is one time slot. Moreovers the transmitters
are time~synchronized and obliged tb start their transmis-
sions exacfly at the beginning of 'a slot. When more than

one transmitter sends a packet in the same slots a 'colli-:



sion" among the packets occurs; it is assumed that all pack-
ets involved in that collision are completely destroyed B
and lost. Immediately at the end of each slots all trans-
mitters are informed simultaneously whether that slot con-
tained a collision or nots ors for the ternary feedbacks

whether that slot was empty ("idle'")s contained a single

packet ('"success") or suffered a collision.

The real issue in zny random-access system (RAS) of

the above type is the resolution of conflicts for the'use
of the common medium. Beginning in 1970 with publication of
the ALOHA-alzorithm by Abramson [ABR70)s a huge literature
has sprouteds devoted to the analysis of the performance of
random=-access schemes. Until quite recentlys most of this
work consisted of variations on the original ALOHA system
althoughs unfortunatelys this Sysfem is inherently unstable
in the absence of external control when the number of sta-
tions is large - for a more detailed surveys see (KLE76J.
The next major innovation came in 1977 with the introduc-
tion by Cavetanakis [CAP77] of the concept of a collision

resolution algorithm (CRA). Tsybakov and Mikhailov [TSY-

MIK78J) laters but independentlys proposed the use of CRA's
and advanced their analysis = for a rather complete surveys
see [MAS8l1]. The use of CRA's was shown by Capetanakis to
result in stable RAS's when the packet arrival rate is not
too high;s the key parameter of the system is then its maxi=

mum Stable throusghput.
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5
A CRA can be defined as a distributed algorithm that
organizes the retransmissions of packets’in such a.way thats
after every initial collision of first=time-sent packets,
‘{provided fn some cases that the packet arrival rate is
not too high) each ot the colliding packets and each later
first-time-sent packet (if any) is eyentually sent success~-
fully ands moreovers all‘transmitters simultaneously become
awaré of this fact. The time span from the slot where the
initial collision occurred up to and including the slot
‘from which all transmitters recognized that all colliding -
.and later first-time-sent packets had been successfully re=~

ceived is called a collision resolution interval (CRIJ.

We say that a CRA is Q=-ary (where Q@ is normally an integer
greater or equal to 2) if a transmitter after being in a
collision must choose randomly among Q possible further

courses of actione

In order to form a RASs a CRA must be used together

with a channel=-access protocol (CAP). The CAP is the distrib-

uted algorithm that determines for each tranémitter when a
newiy arrived packét af that tranSmiﬁter is sent for the first
time. The simplest CAPs both conceptually and practicallys is
.the free access protocol (FAP) in which a transmitter sends.a
new packet in the first slot following its arrivale. All ot her
CAP's will be called blocked access protocols (BAP's}. The ob-
vious BAP is that in which a transmitter sends a new.packet

in the first slot following the CRI in progress upon itsarri-

vale Al)l other BAP's will be called non-obvious.



An individual transmitter can be in one. of three main

states (see Fige 1+42). Transmitters who have no packet to.

oW Packef wst

oot

s s
Un
~ _C:'plorzA__‘_ -

S“Cc
« v
Jf“’ ("*’Q*r‘o'\smissl‘m\

\

Fig. 1«2 Transmitter state diagrame The dashed arrow lead~
ing back from the "CRA" to the "CAP" state refers
to certain non-obvious BAP's (e.g. [GAL78] or
{TSY=-MIK801) which are not treated in this paper.

transmit (or retransmit) are in an idle state which in the

case of BAP's does not necessarily relieve them of observ-

{ng the CAP or the CRA currently in progresse. When a trans-~

mitter obtains a new packets it moves to the "CAP" states

jeces it follows the CAP (which might involve observing the

CRA in progress) until that packet is sent for the first time.

If a collision occurss then this transmitter follows the

CRA ("CHA"™ state) until that packet is successfully retrans=-

mittede.

This paper will be concerned with the analysis of KAS's
consisting of a Q=-ary CRA and a CAP of either the free access
or obvious hlocked access types For two reasonss non=obvious
BAP's will not be considered althoughs as will be discussed

‘laters these BAP's offer the highest stable throughputs pres=
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enfly known. The first reason is the p?acticallone'that the
domplexity of implementing the protocol ‘and its‘5usceptibrﬁ—
'fty to disturbance by channel error conditions militate a-'~
gainst the ﬁse of such BAP'S in real random-access Situa="""
tions. The second redason is that the ‘emphasis of this papeT:
is on Q-ary CRA‘s_with @ > 2 » and ‘such nonbinary CRA's
dffer no advantage over binary CRA's when used with any of

the non-obvious BAP's that have previously been introduced. v

All of ﬁhe CRA's considered previously have Dbeen bini-
ry. Tﬁis exclusive focus on binary CRA's is perhaps due to
the fact that Canetanakis [CAP77] proved that a binary CRA
maximizes the maximum stable throughput when thé CAP is
always chosen optimally (e.&. after the termination of the
preﬁeding CRI) for RAS's of what.he called the "dynamic tree
algorithm" typé. This seems to suggest that binary CRA's:
are generally optimﬁm. In facts howevers we shall) show that
@=3 is optimum for CRA's used with either the FAP or the
obvious BAP». We ;haly show further that the most attraétive‘
‘RAS from a practical viewpoint is a ternary CRA with free
access-requiring only binary feedback whose maximum stable
throughput is .4016 packegs per slot when the packet arri-
val process is Poissone. In order to demonstrate this supe-
riority of ternary CRA'ss we develop anglytical techniqueg
of considerable generality that should be of some intereét

in themselves (see for instance [FLA-50T82] for other ap-

plications).

t) There is one exception: RAS's which use the ohvious BAP
and a CRA with ternary feedback turn out to perform
slightly better when Q=2 is chosen instead of Q=35 see
Section lll. ‘
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The paper is organized as follows. In Section II» Qe
fntroduce the four specific RAS's that will subsequently be
analyzeds. In Section IIls we treat those RAS's which use
the obvious BAP. Sections IV and V deal with the analysis
bf RAS's which make use of the FAP. Finallys in Section VI,

conclusions are drawn from the preceding analyses.
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1. Specification of the Algorithms

In this section we specify the CRA's and the CAP's
eand define some terms needed for the understanding of the

later computationses

The CAP states the rules for ;he'firstétime transmis-

sion of a newly arrived packet. Two different protocols are

considered.

a) Free access protocol. New packets are transmitted im=

mediately at the beginning of the next slot following

their arrivale

‘b) Obvious blocked access protocol. New packets are trans-

mitted in the first slot after all previous conflicts
‘are resolveds iseer» new packets remain blocked at their

‘respective transmitters until the current CRI (if any)

terminatese.

In the sequel we assume for al)] algorithms that a trans=
mitter has at most one packet on hands, either one involved

dn a previous collision or a new one waiting for its first

transmissione.

The CRA determines ﬁhe actions to be taken to resolve

¢ollisions oqcurriné on the channel. Two CRA'S are treated

$¢n this papere.
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¢) Basic Q-ary CRA. After a collision each transmitter

involved flips a '"Q=-sided coin" with values 1,2....9Q:’
(The Y"Q-ary boinsﬁ need not be fair; we assume-vhoweveno
that all coins are biased in the same way whenever bie~,
asing is used.) This splits the set of contendfng |
“transmitters into Q@ subsetss according to the valvue.
each one fliphed. Transmitters already assigned to sub~-
sets because of previous collisions increase their sub;
set indices by @ when the collision occurs. Transmit-
ters in subset ls together with transmitters having
new packets who are permitted by.the CAP to sends send
in the very next slot. When a success occurs, all
transmitters assigned to subsets decrease their subset
indices by one. Again those in subset 1y together with
transmitters'having new packets who are permitted by
the CAP to sendy send in the very next slot. Thuss if
after an initial collision of two or more packetss each
of the Q@ resulting subsets contains at most one trars=-
mitters then the collision will be resolved after ex-
actly Q@ slots following the initial collisions ile€ns
the CRI will be Q+1 slots long. The CRI-length when
2ero or one packets 'collide” iss by definitions one

slote. The basic CRA distinguishes only “collision" and

“no collision", thérefore binary feedback sufficese.



d) Modified Q-ary CRA. The basic collision resolution meche.
anism is the same as described under c)s except that

the ternary feedback informations which distinguishes

slots containing exactly one transmitter from idle
slotss is exploited. If after a collision the next Q-1
slots turn out to be empty (implying no new arrivals .
during Q-1 slots if the free accéss protocoi a) is
used3, then the next slot (corresponding to subset Q)

" must contain a épllison if the basic CRA is used. This _
otherwise-wasted slot can be skipped by having all
transmitters immediately act as if it had occurred. It;.iﬁé
should be noteds howevers that in the presence of chanf;;g.
nel errorss the modified CRA can suffer from deadlock _ ;

wvhen used with with any of the BAP/'s [MAS81J.

The combinations of a) and b) with c) and‘d) result in four

gs?ferent RAS's.

e) Using b) and c) results in the basic blocked access

5A§;; (basic CRAs obvious BAP)e. This iss» from a compu=
tational point of views the simplest case. The origina)
source in the binary case is [CAP77J and [CAP791s in
the Q-ary case [MAT82]. For a flowchart and an example
of a basic blocked access RASs see Fiés. 201‘and 2o3

respectivelye.
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Combining b) and d) pields the modified blocked access

RAS's (modified CRA» obvious BAP). The original sources
when Q=2 are independently [(TSY-MIK78] and Massey in
[CAP79) and [MAS81]s some remarks concerning the Q-ary
case when Q>2 are in [(MAT82). Refering to Fige. 2.3y a

modified blocked access RAS would save slot 19%

The combination a) and c¢) produces the basic free ac-

cess RAS's (basic CRAs FAP). Computationallys these

RAS's cannot be treated recursively anymores as was
possible with the blocked access RAS's. This {s due

to the free access of newly arrived packets which éan
cause the number of contending transmitters to in-
crease during a CRI. In principles the original source
of the basic free access RAS's with @=z2 is [TSY-VVE80J»
computations in this particular case were first pub-
lished in [FAY-HOF83] and [FAY-FLA~-HOF82l. Later ons
and independent of our investigations, basic free ac-
cess RAS's with Q=2 and Q=3 were also treated in
[VVE-TSY83]. For a flowchart and an examples see Figs.

2.2 and 2.4.

Finallys a) together with d) gives the modified free

access RAS's (modified CRAs FAP)e In terms of mathe~

matical treatabilitys this is by far the most compli=-
cated class of RAS's. The original source when Q=2
is [TSY=-VVEB0ly a mathematically different approach
can be found in [FAY-HOF83l. Refering to Figoe 2.4s a.

modified free access RAS would save slot 19.
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-.The flowcharts of FigSe. 2.1 and 2.2 and the examples
in Figse. 2.3 and 2.4 use a stack model to describe the re-~

spective RAS's.‘

1) Each transmitter Kas his own local stack consisiting

of cells Osls2see. (In practices each transmitter
.keeps only a counter that gives the size of his stack).

Each celi can either store a packet or.én empty frame

(space holder). Cell 0O is at the top of the stack and

is also called sending boxe All other cells can only

be accessed‘vié push and pop instructions. Push moves
the contents down by one éell: thereby transfering
~cell O to cell ls‘pop is used to move the contents upy

" thereby transfering cell 1 to the sending sending boxe

J) From a global point of view there is a conceptual

quantity called the system stack which consists of

all local stacks superimposed. The variable "depth"
in Fige 2.1 refers to the depth of the System stack
which is the number of cells used (whether they be

empty or contain a packet)s excluding cell O.

Note-thats from an implementation point of views the main
difference between blocked access RAS's and free access
RAS's is that for the former each transmitter has to main-
téin the global variable "depth" = i.ee» monitor the chan-
nel without'interruption - while for the latter tranSmit-

ters only need local quantities = i.e.s monitoring the
¥
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channel by a transmitter is required only when that trans-
mitter has a packet not yet sent successfully - which is

an enormous practical advantage.
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IIT. Analysis of RAS's with (obvious) blocked access
In this section we first derive the probability gen-
erating function (pgf).of Y, - the CRI-length given N pack=
ets initially collide - directly from the specification of -
the blocked access RAS's. This p&f can then be used in a
standard fashjon to obtain equations (which are recursive
in nature) for the firstsy second ands in principles all
higher moments of Y+ The first moment ECY,] will be de-
noted by L,s the second moment E[YJJ by S, Nexts we
set up L(z) (and S{(z))s exponential generating functions
(egf's) for L, (and SN.‘respectively), in order to get a
descrirtion of the moments of theOCRI?length by way of
functional equations. To obtain more convenient expres-
sions (in terms of finding non-recursive solutions for the
moments of Y,) we subsequentlv use transforred (or Poisson)
menerating functions (tgf's)s denoted by L¥(z) (and S™(z),
resbectively).yWe then propose two methods of solution for
the tgf's. One of them yvields a solution which will be é-
henable to an analysis of the asymptotic behaviour of Lg
(ands in principles of S.) as N> which will be essen-
tial for the determination of the maximum stable through-

put of the blocked access RAS's.

Figs 3.1 visualizes the CRA for the blocked access
RAS's. N is the number of packets that initially collide

and I& is the (random) number of corresponding transmite~
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slot

Fige 3.1 Splitting N packets to Q@ subsetses (a) represents
one stage of the "coin®” flipping process in the
normal) cases {(b) shows two stages of the "coin"
flipping process in the modified casee.

ters that flipped the value j on their "coin"s je{ls2s..

eesQ}e From Fige 3.1 we obtain directly the following re=

currencess for the normal case

[}
Y, =1 + Y P (3.1)
N E L e N2 2 »
i
and for the modified case
Y, =1 + (Q@=1)-Y, + (Y, ~1) y N 2 o (3.2)
with the initial values Y, = Y, £ 1. (3.3)
Define the pgf of Y, as [FEL68J
o0
G (s) & D> Priy, =k}-s* = ECs™ 3 = ECsTIND . (3.4)
ks 0 .

By the standard technique of further conditioning the ex~

pectation on the RHS of (3.4) we get

Gu(s) = EC ELSTII, easlgsN] IND o (3.5)
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whichs upon substituting (3.1) and noting that the size of
the j=-th subtree in Fige. 3.1 depends only on I; » yields the

following relation between.pgf's for the basic CRA

G (s) = s (k_lq) pJl LG ts) s N Y2 - (3.6)
Limtg et
N
vhere 2 sum over all possible combinations of i, eeei,
Lt ]
such that ;ﬂ i; = N and 1,2 0 » (3.7)
N Co . .
(h ______ %)g multinomial coefficient, , (3.8)

and  p; £ Prithe j-th value of the “coin" is flipped}
a
with E pi’ =1 . (3.9)'
Per

‘The initial conditions (3.3) translate into

G,ls) = G, (s) = s . (3.10)

Nexts for the modified CRAs a term corresponding to
the modified case (from equation (3.2)) has to be included

in (3.6) which gives

N a .
i N 3 P S T
Guls) = SE (.o, OTT pidrots) = 8y ‘PaGyl8): (s=1)

Vb - }=ﬂ
N 22 » (3.11)

0 if the basic CRA is useds
(3,12)

1"y

with S,
1 if the modified CRA is used.

To obtain an equation for Ly ve simply take the first
derivative of (3.11) with respect to s and evaluate it at .
s=1 which yields

L, =1 +ZZ( Joitocamp ML - spl N3z,

é-{ |,l° (3013)
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with initial conditions from (3.10)

. Loﬂ = L' =1 o i (3.14)

Note that equations (3.13) and (3.14) could be used
to compute L, recursively (see for instance [MAS811). In
this paper we are interested,.however, in the asymptotic
behaviour of L, as N—soo and we will therefore require a

direct expression for Lye To this end we define a egf for

Lw
& = ZN .
Ltz) = E LN'—;lT . (3.15)
N=0 *

Substituting (3.13) in (3.15) and taking care of (3.14)

vields

"
-
1
[ 2]

EN
o

ez
Im
+

Ltz) = 1 = 2

N'."S N

Q 0o N N ..
£y TLY—J(‘LS)'PQH'(I'PJ) Lzé'}—

751 Ne2 g0 N!

o N
N 2z
= E (I-S.‘»pa)":" - (1=8,) = z.(1=8,p,) +
N=O :
& = NNy N-i N
(59 -4 z
DI INDINE Y A L TR e i
6"4 NeO \,3'-0 3 .

a ' &
- Q = ;:‘ (1-pi)‘z bl ;.1 p’z . (3.16)

From this we easily obtain a functional equation for Ltz)

‘ [}
2 -2
Ltz) = e ) et Lip;z) + e - a-lsz) - Sle
i .,

2
L P

(3.17)
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It will be more convenient for our subsSequent computae

tions to use a tgfs therefore we introduce

. *
L¥(z) & > L .z*

Note that (3.15) and (3.18) imply the following relation

"y

oLz . (3.18)

. N . »
between L, and L,
L= zf: N (3.19)
w7 s (N - k)! k ¢ . - *
Multiplying both sides of (3.17) by e ® and substituting

(3.18) we have

- ‘( a ’ ‘ .
LTz - D L¥(p,z) = a-£%(z2) + h*(z) (3.20)
=1 . .
where  £(z) = - e [1+z = $,-@ " - (14poz)d » (3.21)
-2-(A- ' o
and h*(z) = 1 = SH-e!( Pa) ’ (3.22)

with initial conditions

) -
Lo =1 anda o = 0 . | (3.23)

To obtain a similar tgf for the S, (ands» in principles

for all higher moments of Y, ) we first observe that

1) '

G, (1) = s, = L, . (3.24)
Defining

stz) 25 s -3— ’ (3.25)

N=Q N

and

- a &0 L] A 2z

sYz) 2 3 7 os;.2* & etisezy (3.26)

k=0

. (
.Y We use the definition ¥™(a) throughout

dz" 2=2
the Daper to denote the n-th derivative of a function
¥(z) evaluated at z= ae
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we obhtain in the same manner as we did for (3.20) a func-

tional equation for the tgf of the S
2 ’ »*

s¥(z) = 1 S"(p;.2) = @-t7(z) + n¥(z) + ¢z, (3.27)
a -

where {:(z) is essentially a function of the conditional
first moments of the CRI=-length (see Appendix B) and f™(z)
and h“(z) are defined as in (3.21) and (3.22). Note that
the initial conditions for (3.27) are

)
s“to0) =1 and S"40) =0 . (3.28)

We will now consider two basic methods to solve func=-
tional equations like (3.20) (and (3.27)). In the first ones

which we will subsequently call the direct methods coeffi-

cients of z¥ are equated on hoth sides of (3.20) which

vyields
» »
LY o= Qfe * b s ky2 » (3.29)
[ K 4
-2 p |
)s\
. 2 %
with L, =1 L, = 0 (3.30)
N

. u
and fy and h, defined as the coefficients of the power se-
ries representations (cf. (3.18)) of f¥(z) and h“(z)s re=-
spectively. Thuss together with (3.19)s the mean value of

the CRI-lengths given N transritters initially collideds is

) NNy (1) {0 (k) = S [kepg + (1-pg ) -

Le= 1+ > (V). )-{ ke Pa) 11}
3 [ - Z; mk .

: N> 2 5 (3.31)

with initial values (3.14). Note that the RHS of (3.31) is

a series of alternating terms which makes numerical compu-
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tations very sensitive as. N becomes largee.

The sebond method uses an iterative scheme (cf. Appen-
dix A) to solve (3.20) (and (3.27)) airectly for L*(z)
(S*(z)). In the sequel wé refer to this method as the it-

eration method. In order to make the paper more readables

we restrict ourselves to CRA's which use fair coinss ie€as
-4 . . .

P;=Q@ » all je{ls2s.+5Q}e To obtain a functional equation

which satisfies the contraction condition (cf. Appendix A)»

we proceed to differentiate (3.20) for fair coins twice

wrt zs thus getting

* (2D

e -1 w () %@ (z) « (3.32)

(z) - @ L (z.0hH = a-f (z) + h

Heres A=0 and therefore the m=th iterate of z is (from

(Aed))
& z) = 2@ . (3.33)
Nows using -(A.11) we can solve (3.32) for L"®(z) which
yields .
L*P(z) = }fi e a P ez 2PN . (3.34)
m=0 .o

To recover L™ (z) we have to integrate (3.34) twice.
‘Note that the initial conditions (3.23) determine the inte=-
gration constants. To have a more convenient notation we

: ¢
define the operators Rand R as

<} : o = m T ‘Ten S
KRMYasz2) 25 Y@Mz - Yoy . (3,35

o

me

ite

O
Rivearsz) 2 5 @™ vie(2)) = Yo 0 = a2z ¥ (o002,
ms ’

(3:36)
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Hences integrating (3.34) yields

Lu(ﬂ

and finallys after intezrapinz once more»

L¥(z) = L*(0) + z-L*(“(O) +R-f"Ce) + M™()iz) o (3.38)

The advantage of solution (3.38) over (3.29) is that in
order to obtain an equation for L, we can now use (3.18)
to convert (3.38) directly into a relation for L(z)s ieees

(with (3.23) substjituted)

Liz) = e L™(z) = e + e™Rea-f%(«) + n"()32) o« (3.39)

By ecuating coefficients of z"/N! on both sides of this

last equation we end up with

Ly =1+ a->  @™-01=(1=0"" ) =@ (1= g
me0
= ‘N N omet
-8,-0_ emqri=a™1-e7 ™ ence™™ 1™
med

N 32 (5.40)

which is our desired non-recursive formula for Lye The

same procedure can be used to obtain an expression for §,

(see Appendix B) andy in principles for all higher moments

of Y, o =«

Comments:

(1) From equation (3.31) one can immediately deduce that

the first conditional moment of the CRI-length exists

independent of the”arrival process as long as pj<1

(z) = L0 + R ") + "3z (3.37)

}o
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" for all je{lazg..Q}..This proverty can be shown to, - - -~
hold for all hizher moments of Yy since the denomina= ...

tors which is the critical quantity in (3.31)s.does. ...

not change essentially for the higher moments (cf.

(B.4) for the second moment).

Assuming the new packet process to be Poisson with .

g
~

£ ‘
rate A s the blocked access RAS's will be stable (ji.ees

indiVidual>packetsxare successfully transmitted w{th
finite delay almost sure1y+”) if |
| A< 7‘5‘* - g, . (3.41)
" Converselys a sufficient condition for instability is
N> Nt *t € e (3.42)
In equations_(3r41) and (3.42) we used the definitions

R : max |ag (N) - g |
Aait = (%a) and g o = — s (3.43)
. =

where &, is the mean value (wrt 1084(N)s as N—so0) w0f . .

Lu . L ' ‘
AN sy as N—»oo (3.44)

Nymt .- N

o (N) 2

where N,.. denotes the number of packets successfully

pq-~--v—----——--- ---------------------

f)Actuallv, for the h]ockod access RAS's which we treat
‘heres the critical measure for stabilitv considerations
in the above sense is the mean number of newly arriving
packets per slots in that cases the distribution of the

number of new packets per slot is not essentials provid- -

~ed that the new packet process is sufficiently time ho-
moreneous and independent of the state of the svstems
see . [FAY HOF83) or [HOFSZ]e - :

t9The gualifier almost surelv is necessary since it is |
posSible (with vanishineg probabilitys however) that two
or more transmitters flip exactly the same '"coin'" se=~
quence.

3

- e S EhGn e Gm e GO e G WS
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transmitted during L, In the case of Poisson arriva%ga
our conjecture is that (with the above definition fo:A;
stability) Aeat is exactly the limit of stabilitys we
haves howevers not been ahle to prove this so far when

fair coins are utilized (cf. comment (8)). For a proof

of (3.41) and (3.42)s see [FAY-HOF83].

(3) - EQuation (3.40) can also he obtained in closed form
for arbitrarily biased coinssy see (¥AT843 -ands for a
case with Q@=2s [HOF82l. A third method to solve (3.20)
tand (3.27)) is to replace L*(z) by L*(z)=-1. The re-
sulting equation can then easily be solved by Mellin
transform techniques. We do not further investigate
this technique here since it can not be Reneralized

for the free access RAS's.

ésymntotip analysise From comment (2) we see that one needs

the quantities %o (N) and &, so as to be able to say any-
thing about the stability of the hlocked access RAS's. To

compuyte K (N) for large N we use the exponential approxi=

mation

a2 D)
- -Na™ e (™Y 0 (! :
(1-0"™)" = e * (a0 . (3.45)

This suggests approximating (3.40) by

' We say that f(n)=0(g(n)) if one can find integers N and
M such that tf(n)i¢M-g(n) for all nyN» see for instance
CGRE-KNUBZ2]. :



-m -m

: o ,‘Q . - -N-Q
fN =1 + Q-E Q™. (1-e " -N-Q7 e ) +
ms0
oo -N'Q'm'ﬁ"d")' -Na"™ -M-i. -N-c™"™ .
- 55 Q™ (e —e M e e

It can be shown that L“-fh=0(1) as N—»o0 » see [MAT84] and,
for a similar case in the context of radix exchange sort-

fngsy [CKNU73s ppe. 131-13213.

To decompose (3.46) and isolate N one can use the
Mellin transform and the Mellin summation formula [DAV78J,
ors equivalentlys use a relation of the gamma function to
replace e » see for example [KNU73s pp. 132-134J. The
Mellin transform (if it exists) of some function f(x) is

defined as [(DOES0Js [DAV78]

o0 .
-4

MCftx)3s) = Fis) 2 -( x° - flx)-dx s @ < Rets) <l
' 5 {3.47)

with the correspvonding inversion formuia

c+ioo
a 4 -s .
fix) = — - f’ x -Fls)-ds a<c <& . (3.48)
2T J
[ X

Letting x_:N-Q"", the Mellin transforms required for

43.46) are
Aitl-e'““-xm»e'm";sJ = -(s+1)-T(s) s =2 < Rel(s) <0 s
. (3049’)
-%ym* 1'°-‘) -Xm -1 -X
#Ce"( T -e “Xn'Q@ - e "3s] =
- eq ~S : ‘
= =f1+@” ' s=(1-2"")""3:T(s) , Rels) > ~-2.

{3.50)
Thuss applying the Mellin summation formula we may express

' 43.46) as
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<% vl D
v Q ™ -8 Tk
LN =1 = -{Tﬁ— [ {s+1) P(S)-§ Q@ -x, -ds + ;
-—’fz-l@ med .
¥ aico
8 -1 ey =S = m -S
+ = ’,f [1+Q@ - s=(1l«@ ") J-r'(s)-g Q -x, -ds
21 ) : m=0 '
e | (3.51)

Equation (3.51) has the pleasing property that N and Q"™
can be separateds thereby allowing us to evaluate the sum

over me This leads to

-3/3_*'Lﬂ |
- Q . N F
L, =1 - _ . (s+1) - (s) - N ds +
Q_"ﬁ‘ 1'@.“‘
-3 -iv0
-‘/zeiao
-1 TR B -$
+3§;’.‘- f [t s-0-0") i,r‘(sw' N ds + (3.52)
' AT i-a

The line integrals in (3.52) can be evaluated by using the

residue theorem (cfe Fige 3+2)e If we close the contour of

. the inversion integrals in Im ()
| N \
the left hand half plane ! l?;
abri of I % ’ -+ _11_7?_
we ohtain an ascending (in cm‘:,%mc,_l L .Q
\ { /.:
terms of powers of N) ex- | '
) arr
S B R
pansion which is just e- : * na
N L
qual to (Z.4€). We ares poles of Cls) ! ' ' -
- _ * x N 3 — ' » Re(s)
howevers interested in the -4 -3 -2 - L
|
|
asymptotic behaviour of f; | ‘ _am
_ | X e
8S N—soo and therefore wve ‘ -
» |
close the path of inte- [ ! | WT
: | 1“ ha
gration in the right hand ”
complex line
wi L
half plane tdescendineg heare
expansion). Hences we take Fige 3.2 Location of poles

of the integrands
the negative of the sum of in equation (2.52)
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the résidues of the poles to the right of -3/2 which yields

for N>>1

L, = —Ea--{a-fl-f,(mj - Sttt e1-a7 ) inc1-aT -f (03 4

N

+ 0Ny . (3.53)

a-1
where f,(N) and f,(N) are Fourier series (with small ampli-

tude) in 108,(N) of the fornm

_ : ok loa - (N
£,(N) = 2Mik g, 20K, =2Mik lega () ’ (3.54)
‘ kso nQ tna
_ : - —amik - loga (4-a7Y) o
£.00 =3 te1-a7" ) (1-e e ye 20k 5
e @-lnG
’ . - "I .b N ° °
X Teeps Zhk, o2miklasld) g s,
lnG .

with f(NIEf(Q-N).

For the quantities ®g(N) and &, in which we are pri=-

marily interested we get for N—oo (using (3.44) with L, =

b

L)

?

a-[1-£.(0] - s;-La"»e A= tn (1-aY '-'{1 (Nﬁ]
ln & ) '

g (N) =
(3.56)
ands when neglecting the fluctuating terms f,(N) and f,(0

— 6=+ (-a) ln (1-07]

AR, = . e i3.5 )
@ n @ , 7

Comments:
(4) The use of the residue theorem to obtain (3.53) needs
some Jjustifications which wé tacitly bmitted. The in-

terested reader may‘find ihesé in CMAT84Jvand [KNU?S,
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pp. 132-133) ors in more general forms in [LDOES5S53.
For a tutorial on the use of Mellin transform tech-
niques for the analysis of computer algorithms we re-

fer to (FLA-REG-SED841].

(S5) The fact that a quantity like «g(N) does not neces=-
sarily ﬁave a limit as N—oe was first shown in
(KNU73y pe 134) in the context of radix exchange sort-
inge For the blocked access RAS's with Q=2 and fair
coins this was first proved in [HAJ80J by the useé of
the well=known approximation of binomial probabilities
by Pbisson probabilities. For biased coins_see com=

ment (8) belowe.

(6) The same techniques that led to (3.53) can be used
to obtain an asymptotic expression for S, ands using
the relation

Var, = S, = L ’ (3.58)

for the asymptotic behaviour of Var, (the cond;tional
variance of the CRI-length given N packets initially
collided). In particulars it can bé shown that Var,
is linear in N as N-»o0. The derivation of these two
quantitiess howevers is rather léngﬁhy and complicat-

ed (cf. [(MAT84)) and is therefore omitted in this pa-

Pere.

(7) Another technique to obtain arbitrarily tieht bounds
on xo(N) ands with some restrictionss on Var /N for

N—oc uses an inductive argument for a;l N greater



(8)

T
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than some fixed threshold Ms for CRA's with Q=2 see

LAMAB1] or [MASB1l1l.

Biased coinse. The expression corresponding to (3.52)

above is
Mh+ioo
' -s
“ Q . .
fo=1-2 ,/f e+ LY N2
L -s
A Lo U ;‘ Pé
“Yy4tes
L5 [4+pas ~(1-pa) “1- T N”
+ = Pa P: ds « (3.59)
. 2m -s _
-3 -ioe : 1- ; P}

Agains. the asymptotic behaviour of f; as N—» e is de-
termined by the poles to the right of =3/2. In par-

ticulars the fluctuations of EN are determined by the

‘poles at s=xziys where x and y are the solutions of

Q- Q
- -X
'E- P; +cosly-1ln p}) = 1y , E P +sin(y-1ln pj) = O

}t‘ &c{

X 2 =1 9 y> 0 . (3.60)

G
Letting x=1 in (3.60) we see that since 2 p, = 1
_ P
solutions for y>0 are possible if and only i1f we can

find positive integers ké such that

! Y. Y
oz p/h ke (3.61)

p( _p1 - e 0609 =pa ®

Consequentlys the amplitude of the fluctuations of

. is proportional to N iff (3.61) is satisfied; oth-

. . . . -5

erwise the amplitude is proportional to N‘ wvhere §
is some (small) positive conStant. In the latter
case we find that 1im o (N)=+, whence we have the

N ~—> co

result that the blocked access RAS's will be stable
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A -1

for all arrival rates A<l =(&g) if biased coins

are used such that (3.61) is not satisfied. Note
that if one were ahle to show that the maximum sta=-
ble throughput of the blocked access RAS's must be
a coniinuous function of the biasing of the coins
then our conjecture in comment (2) would holde. For

&g in the biased coin case we obtain

Q- Su [Pa+(i-pa) In ({=~pa)]

@ = a o . (3.62)
Py tn P

-2

e

Numerical results. Here we give the numerical values of

Aeeit @and £, for @=2..10. Numerical values for )

L l Basic CRA ! Modified CRA !
I Q l===—e- et DL L DL L L e e D e !
i I Acait I €, b e € !
|t v e e rr rr e e e e, e c et r - - |
I 2 | 346574 | .00000038 | .375369 | .00000033 |
b 3 1 +366204 | .0000948 | .374062 1 .0000910 |
I 4 1 .346574 | .000644 | «349560 | .000641 |
I 5 1 321888 1 .001712 | 323277 | 001712 |
I 6 | 288627 | 003093 I +299362 1 003095 |
b7 1 277987 | .004590 I «278414 | .004583 |
I 8 1. .259930 | .006075 I «260196 | 006078 |
I 9 | 244136 | .U07479 | 244310 | .007483 |
I 10 1 250259 | .008771 I «230378 | .008775 I
T o o e e e e e o o - - - . . P = = = - v A - Cn - . - )
Table 3.1 .t and £ as a function of @ for the blocked

access RAS's with fair coins,(The systems are
stahle for all A< x4t =€)

ma x lXg(N)=RKols Ly» S, and Var, can be found in Appendix C.
All computations were done on an 8-bit microprocessor de-
velopment system using the equivalent of Fortran double
Precision arithmetic. Numerical stability proved to be sat-

isfactory for moderate N (up to N®30) with the direct meth=-



!

1 R e  italtdab et blnt ettt ==
I | optimum pg I et !
fomom e oo - e o em e e e - - |
[ 2 | .582492 ! « 381260 |
! 3 1 . 373358 ! . «375087 !
I 4 | 271332 ! «349834 i
]

Table 3.2. %“ea and p, for the modified blocked access
RAS's with optimally biased coinse. The coin
values 1s2s.e9Q=1 are equally likely and have
probability ps with p=(l-pgl/(@=-1).

ody with ;he iteration method and suitable regroupings (cf.

Appendix D) numerical stability is excellents even for

N>10'000. The results for Q=2 are not news they merely

serve as a reference for compar;sons.

®

Comments:

" (9) The basic CRA performs optimally (in terms of heet?
when fair. coins are utilized (cf. (3.62)). Intuitively,
this can he estimated from the symmetry of the respec-
tive equations with resvect to the p;- The opt;mum-
howevers is quite flat:; slightly biased coins do not
suﬁstantially affect system performance. The modified,
CRAs on the. other hands performs somewhat better for

-4 .
p, greater than @ (cf. table 3e2)

(10) The modified CRA with @=2 is slightly superior to the
same CRA with @=3. This superiority is further in-
creased when biased coins are used (cf. table 3.2).

"It should be noteds howevers thaﬁ the modified hlockéd.

accesSs RAS's can suffer from deadlocks in the presence
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of channel errors (cf. [MASB11).

(11) Note that for N iesg than 4 the CRA with Q=2 is gen-
erally optimum for all blocked access RAS's (cf. ta-
bles Ce3seeCeb6 in Appendix C)5 this is essentially
what Capetanakis proved for his '"dynamic tree algo-
rithm" (CAP77]. All of the noﬁ-obvious blocked access
RAS*'s known make use of this property of the CRA with
Q=2 to increase the system throughput to values above
those given in this papers: at the expeﬁse, howevers
of increased system complexity and stronger reqguire-
ments on the distribution of the new packet afrival
process. At presents the best value known is (using

a modified CRA with @=2) Neu =.48775» see [HUM=-MOSS803]

and [TSY-MIK801J.



IVe Analysis of RAS's with free access .and basic CRA

Wicﬁ the techniques in mind whibh we developed in the
»previous section we are now ready'to aftack the practical-
ly more interesting (but mathematically more complex) free
access RAS'é. In this section (which will be concerned with
the basic CRA case only) we develop first the tgf for the
L, ¥We then solve L'(z).(for the sake of simplicity for
fair coins only) by the iteration method and show that the
crucial quéntity to determine the limit of the maximum
stable throughput ( Ay ) of the free access RAS's isv
LY, fhis means that in contrast to the previous section
an'aSymptotic analysis of LN.as Ne—>oo is not required to
determine At <+ We wills howevers conclude this section
with an asymptotic expression for L, as N—e since this.
result is of some interest in its own. For the solution of
L¥(z) by the direct method (for arbitrarily biased coins)

we refer to Section V.

-

The starting point for
the analysis of the basic
free access RAS's is again
the inspection of one stage
of the splitting proéess )

(see Fige 4.1)¢ X; denotes

the (random) number of new-

ly arriving packets in the ,
' Fige 4.1 Splitting N pack-

root node of the Jj=th sub~ " ets to Q@ subsets
: - ' for the basic free

tree. From Fige 4.1 we im- ' _access RAS'se.
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mediately obtain fhe recurrence
) Q
Yy = 1 + Z Yy, » N 22 (4.1)
et . .

with initial values as in (3.3). Using the same definitions
and procedures as in Section II]l (this time conditioning
on I; and X;) and making use of the assumptions (i) the new
packet arrival process is independent of the collision res-
olution processs (ii) the new packet arrival processes of
the Q@ subhtrees are mutually indpendent and (iii) the number

of transmitters is infinites we obtainﬂ

N a . oo '
Gy ts) = s-Z (L“r'\luiﬂ)"[_]’ pj‘;-z p(x})-G;é‘,&(sv) sy N 2 25
tee.ta i=1 ¥, =0 : (4.2) ‘
with initial conditions (3.10) and definitions (3¢7)¢eo
eel(3.9). p(x}) denotes the prohability distribution of the
new arrivals in the root node of the j-th subtree and, as-

suming a Poisson arrival process with rate A (packets/slot)s

we have
N
- - - -‘)\.
p(xé) = Pr{X&-)\)} = e 'K&! ) (4.3)

Substituting (4.3) in (4.2)y taking the first derivative.
of the resulting expression wrt s and evaluating it at s=l

therefore yields

N> 2 » (4.4)

) Assumption (iii) is_ essential because otherwise the sum-
mation over X; in eaq. (4.2) would depend on N and this
changes the nature of (4.2) and thereby the RAS which
it describes essentiallys see [MATS43].
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with initial conditions (3.14). Insoecting the last equa~-
tion we see that unlike for the blocked access RAS'ss L,
can not bhe computed recursively anymore for the free access

RAS's.

Indeeds to elicit any information from (4.4) one has
to resort to techniques like using some form of truncation
{like the one used in [TSY-VVE80J) or like introducing

generating functions for L,. Noting that

- .

L% = 37, 2 » and ‘ (4.5)
N=O N!

Q) -E W ' = s ket

L*Pzy = e LW -Lz23 = S5 koL 27 (4.6)

k=t
we proceed directly to the tgf of L, (using the same pro-

cedures and definitions as we did to obtain (3.20)) and

thus
.
L*(z) = > L"+pez) =1 + LMtz + L*Tn-g" 2y
o=
(4.7)
» -2
where f (z) = = e "~ (l+z) (4.8)
and g¥tz) = < z.e* ’ (4.,9)

vith initial conditions (3.23). Note that the RHiS of (4.7)
contains two unknown constants.(éonsﬁént wrt z)s namely

LY () and L*“Y(N\). The tgf for the SN.can be obtained in
ihe same manner as (3.27) was-ontained, see Appendix B for

the resulte.

For reasons of simplicitys we again discuss the iter-
ation method to solve (4.7) only for fair coins. Differen-

tiating (4.7) for fair coins twice wrt z yields
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P et L e = el 0 £ P+l 0 gt Pz
(4.10)
which satisfies the contraction condition (cf. Appendix A).

Noting that this time

ez = Mo vz = p-™ + @™z s 4D

% 14 (4.12)

vhere p £ e

equation (4.10) has the solution

o . L)
) - ) - “ - @
L*Pzr=e-t* S @™t M ezl N 0 ST dmeT M.
ms0 meQ

(4.13)

As in Section 1Il, we have to integrate (4.13) twice to re-
cover L*(z). In the course of carrying out these integra=-
tions we will also gets almost as a byproducts the solu-
tions for the two unknown constants L*™ (A and L" (M. Us-
ing (3.23) and definition (3.35)s the first integration

amounts to

# (O (O]

) )
L (z) = @ LRz + L - R g s
(4.14)

whence letting z=A and solving for L*® (A) we obtain

(N
x «(j (,:)’ﬂ = el On--E— . 4as)
1 - RO N) f-p

L*O ) = q-L* -

The last equality in (4.15) follows from observing that

-m

1-@
4-q!

-m [meid

+ A-Q = §, (0) ’ (4.16)

s',';'“’ (A\) = A

and hence



w =2 il o
R (YN = > ¥ (o Ti0)) - ¥, (o))

med

. = ¥ - YO . (4.17)

Integrating (4.14) brings us back to L™(z) which may now

be written as (with (4.15) and (3.23) substituted and us-

ing definition (3.36))
L*(z) =1 + @ L") 4%z ’ T (4.418)

wvhere d (z) 2 R(f*(.)32) +/;.KL(%)va(g‘(.):z) y (4.19)

] 4

s

and K (D) = 1/(1=p) . - , (4.20)

Note that with (4.12) substituted the condition for K (A)':

to be positive and finite is
A < (a=-1)/aQ . T (4.21)

The next step is to get rid of the last unknown on the KRHS
of (4.18)s i.ees to determine L¥(XA). To this ends let z=7

fn (4.18) and solve for L*(A) which yields

" i
L (A) = —— (4.22)
1-@-d*(2) >’ , et
with -
- = - " - - - 'Q'-N v
CAPSEER Y D NN MR 4 3 E PR R & E- RS T P R
. ma0 S
_ - N
- - ety L s23)

The crucial quantity which determines A.u is readily seen
to be the denominator on the RHS of (4.22). Hences ve de~
fine Aew implicitly as

A" (A ) 2 Q7" y Q>1 . (4.24)



vhere 2. has to satisfy (4.21) in order to guarantee that

definition (4.24) is unique.

Returning to equation (4.18)s we obtains upon multi=-
Plying both sides by e and equating coefficients of z"/N!»

an explicit expression for Lys i.€e»

L, =1 + a-L"(x)-d, ’ N > 2 ’ " (4.25)

-

O 'G -, . .
vith d, = K, ee?uw> el cra-e™an ™ -13

mel
= ™ }‘.a-m ‘ em N -m o H=1
+ E Q -e ‘[1-(1=Q " ) ~N-Q -(1=-@Q ) 1}
mes0

N> 2 .« (4.26)
The rather messy expression for S, can be derived in the

same manners see Appendix B for the final equation.

Comments:

(1) From equation (4.22) we see that (since L, must be
positive and A must be greater or equal to zero and
satisfy (4.21)) L*(A) and therefore (by (4.25)) the
first mement of Y,, exist if and only if
A< At and Q> 1 . : (4.27)
It can be shown that the above conditions not only
guarantee the existence of L, but also theAexistence
of allAhigher moments of Y, (cf. Appendix B for the
second moment). For A2 A st » the functional equation
(4.7) cannot provide a solution for equation (4.4).
Inspecfing (4.4)vwé sees howevers that the onlyAsé-

lution in this latter case is L =e for N2Zeo
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From comment (1) above it is clear that the basic
free access RAS's are stable (cf. comment (2)» Sec-:
tion I1I1) for Poisson arrivals with rate A if and
and only if A and Q@ satisfy (4.27). Note thats in
contrast to the blocked access RAS'ss the turning

point between stability and instability can be deter-

- mined exactly from (4.24) without the need of an a-

¢

symptotic analysis. For comparison purposes we shally
neverthelesssy investigate the hehaviour of L,/N as

N—o and we define | ..

L’N LN
(N) 2 = sy a5 N—>oo (44,28)
Fa Neott N |

where N“¢ denotes the number of packets which ini-

tially collided. Since we are dealing with free access

RAS'ss Nuwmp f(cfe comment (2)y Section III) is greater

than N,u for Nou »2 and A>0s namely
Nomt = New + A-(L,=1) . (4.29)
¥e can therefore establish the following relation be-

tueen Bo(N) and % (N) (as defined in (3.44))

L Ba(N)

% (N) = = : ' 2S N-—— o0 .
Neott + 2 (Lg-1) £+ A ga(N) (4.30)

Again» &, and B, denote the mean values (wrt 1og (N),

as N—oo) of «o(N) and Bo(N)» reSpectively.

A convenient consequence (which is at first not obvi-.
ous) of our using tef's is that for the free access
RAS's with Poisson arrivals quantities like L* (™) and

S“(A) (cf. Appendix B) admit a physical interpreta-
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tions viz. as the unconditional first and second mo~
ment of the CRI-length. To see thiss we first note
that for the free access RAS's the trénsmission proc-
ess has recurrent renewal points which are best de=-
scribed by the state of the system stack. One such set
of renewai points are the time instants at which the
system stack is empty (i.ess» the time instants be-
tween disjoint CRI's). The interpretation of L*(A)
and SY(X) follows then immediatley by making use of
the Poisson arrival process assumption and by evaluat=-
ing equations (3.18) and (3.26) (with (3.15) and
{3.25)y respectivelys substituted) at z=A. Hences wve
may write

ECY] = L" (W) and ECY*) = s* o, (4.31)
For the unconditional variance of the CRI-length we

have thus

VarfYl = s* ) - L u 3t . (4.32)

For @=2 and arbitrarily biased coinss the guantities
" 0 (cf. (4.15)) and S (M) (cf. Appendix B) can
aiso be determined (in terms of ;;(X) and s*(N)) by
evaluating equations (4.7) and (B.7), respective1§9 at
the fixed points z, =A+p.z, and z, =h+p,z, (i.ees z, =
Al=p)s 2z, =A/(1=p,))s see [FAY=-FLA-HOF=~JAC82]. For
R>2 this technique can only be used for fair coinss in
which case one has to evaluate the first derivative

wrt z of (4.7) and (B.7), respectivelys at z =X+Q "z,

H

‘i'e" Zozfl)oj



YASymptotic analysise. To compute the aquantity B,(N) vhich

ve introduced in comment (2) above we again make use of

approximation (3.45) to obtain (from (4.25))

oo -m —N'Q.m :

ru = 1 + Q'L“(')sl-l('_('%)-e'/‘~[/.*-§ e (e #N-Q™ -1) +
mad
o0 -th - -
s S Qe =™ ane™ ™M L s

mesd
Note that L,-L,=0(1) as N—ses (cf. Section II1). To isclate
N we again have recourse to Mellin transform techniques.

The same steps that led to (3.52) yield for the basic free

access RAS's '
Y 1o

. - . s
r =1 + Q~L“(7\)'K (k)-e"‘-[ . .4‘:‘.__1_ _.C.g.s_‘\)_i__.dS‘b
e - # L-Zo ¢ 2mi {-qs*
. -X¢'yu -%-"“
[ { - LA
S J S N (s+) - ()N e
- 5 2! Tt f 1-0‘_‘_1-0. .ds ] . (4.34)
- “¥-too

The descending expansion (poles to the right of =3r72)
yields in this case

- “ - = -m QT £, (N
z e L Ok e N> - pw@ e s - Il (
Ly ] L 2 e’ e el rotno

"(4.35)

with f,(N) as defined in (3.54). Hence, neglecting the

smail fluctuations f, (N)s setting L~=EL and using (4.28)

we obtain for N—soo

F.a = Q-L“(X?-KL (%)-e'/‘-( E /u.Q-m. e + QA.Q ) e (4.36)
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(6)
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el
Al

As can be seen by a direct comparison of (3.46) and - .
(4.33), the first sum of the former {s almost identi=--;:.:-
cal with the second sum of the latter. Consequently»
££2u5°'(N) does not exist for fair coins.'Notice’ -
héwevero that the l1imit of the first sum in (4.323)
{when divided by N and letting N—-w) existse. This is
due to the absence of the factor @ in this sum. We
can therefore state that the fluctuating behaviour of
PolN) is induced entirely by the underlying splittihg

process of the CRA and not by the new arrivals which

transmit for the first timeo

Biased coins. As mentioned in Appendix As the iter-
ation method can be extended to the use of severaly
different Moebius transforms which is necessary for
treating the biased coin cases analyticallye The re= . v
sulting expfessions, howevers turn out to be consid-
erably more difficult than the ones wve gave above for
the utilization of fair coins. For small values of A
we obtained for the guantity L*(}) (cfe [FAY-FLA-HOFj

JACB3)y Section 6.1s for the method used)

(e} 2 . 2 3.
L* (N =1 + . > .8 3 _ix2zeth
1-Xg 2 1-Zp* 1-Z¢ 1-=p* 3
+ 0 (N s (4.37)
Q -
k

i

From the symmetry of equations (4.7) and (4.37) with
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respect to the p; one expects the use of fair coins.
to be optimum for the basic free access RAS's. This

anticipation is confirmed by numerical results which

- we obtained with the direct method (cf. Section V)s

see Fige 4.2 o

basic free access RAS's’

4

- —— !

N\

~.

<
P
4

+

2 Y .. o ] 2 10

Fige. 4.2 Biased coins: A,y as a function of p,s the
probability that the value Q@ is flipped.
All other values (l..0=1) appear with prob~
ability ps where p=(l=-pgl/tQ=-1}.

The asymptotic behaviour of f; as N—>ow exhibits

similar (but more involved) properties when biased

' coins are used as the ones we described in Section II1ls

comment (8). In particulars we have that 1lim pq(N)zﬁi
. N—» 0t )
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iff condition (3.61) is not satisfied by the p; of the

- piased coins (cf. [FAY-FLA-HOF82] for Q=2).

Numerical results. Here we give the numerical values of

Neit fOr @=2..10. Numerical values for the other quantities
wvhich we introduced in this section are relegated to Appen=s

dix C. Computations were done by the same means as de=-

|

+

{ «360177 |
| «401599 - |
| » 399223 |
! «387241 1
! « 373354 !
| «359731 [
| »347002 i
i «3 35304 |
] «324604 !

Table 41 M.t as a function of Q@ for the bhasic free ac-
cess RAS's with fair coins (the systems are sta-
ble for all A< Agie?e '

~scribed in Section IIl. Numerical stabilitys also for large

Ns is excellent with suitable reegroupings of terms (cf. Ap-

pendix D). Some of the results for Q=2 can also be found

in {FAY-HOF82] and [FAY-FLA-HOF-JAC83J.

Comments:

(7) There is a fundamental difference between CRA's com=-
bined with blocked access and CKA's combined with free
access which pérhaps shows up best when comparing and

interpreting numerical resuits. In the blocked access



(8)

cases the hehaviour of the CRA itself is completely
insensitive to the actual rate') with which new pack-
ets arrive at the systeme. This insensitivity even
holds for rates beyond A for whichs of courses the
transmission delays get excessive but without substan-
tially affecting the system throughﬁut. Ih the free
access cése, on the other hands the CRA depends heav-
ily on Ay especially for A close to A,y ¢ Care must

be taken thens not to exceed Xo i+ because otherwise
the newly arriving packetss .to which free access is

granteds tend to clog the system which leads to a drop

"in system throughput. Hence» when interpreting the nu=-

merical results in Appendix C» keep in mind that the
indication of the actual rate A is essential for the

free access RAS's.

When using'the basic free access RAS'sy Q=3 is by far

the best choice. For 22.2s the expnected length of the
CRIs» when N packets initially collide9 is minimized
for all N22 if Q=3. For arrival rates less than .2»

G=2 performs slightly better. Howevers if one plots

“ L¥(A) (the unconditional mean of the CRI-length) ver-

sus @ for various rates A it is evident that this su-
periority of @=2 for low A is quite inessential com=-
pared to the superiority of Q=2 for A approaching
Neit » see Fig 4.3. Asymptoticallys the system with

Q=3 needs in the average somewhat more than 2.54 slots
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Fize 4.3 Mean CRI-length (L“(X)) versus Q@ for the
free access RAS's with fair coins at vare-
ious arrival rates A,

in order to successfully transmit one packet if ARe3.

The processing of packets speeds up to values slightly

belowAz.S slots per successfully transmitted packet

as A reaches A ¢ o



Ve Analysis of RAS's with free access and modified CRA

The main Roal of tﬁis section is to provide a suita-
ble method for éomoutinz the characteristic quantities of
the modifﬁed free access RAS's. As a byproducts this meth?
od will also yield an efficient way to produce numerical
results fof the hasié free accesé RAS's when biased cceins
afe useds. Firsts we set up the tgf fdr the LN., a proce-
dure with which we are quite familiar by nowe. Then we use
-the direct method (cf. Section I1I) to obtain a solution
in terms of the coefficients of the tgf. The crucial quan-
tity which determines A.. and therefore the limit of sta-
bility of the system will again be L*(X\), the uncondition-
al first homent of thé CRI-lengthe. The use of the direct
method for the free access RAS's does not permit us to
say anything about the aSymptotib behaviour of L, as N-se
buts as we know from the previous sections this causes no
hardship (in terms of stabilfty consiéerations) in the
free access case. Ve conclude this section by giving some
hints‘how the iteration methoq can he extended to include

the equations which one encounters for the modified free

access RAS's.

We start by observing from Fige 5.1 that the modifi-
cation can only be enacted if after an.initial collision
all colliders flip the value Q and if at the same time no

new packets arrive during Q-1 consecutive slots. For this
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Fige 5.1 Two stages of the splitting process in the modi-
fied case combined with free access.

event we obtain the recurrence

Y, =1 + (@=1)-Y, + Y, =-1) ’ N2 2 . (5.1)

N

For all other cases the splitting process‘is described by
recurrence (4.1), Note that tnhe initial éonditions for
both recurrences are defined by (3.3). Let P, denote the
prebability of the event that no new packets are transmit-
ted in the first Q-1 slots after a collision. Then we ob-
tains under the conditions stated for equation (4.2), in

the same manner as we did for (3.11)

N Q i [
G,(s) = s. ; ’ (i,...,.q.‘.‘i.a) _I_I p;’ ‘Zo: Plx; ).Gi}"‘é (s) +
.""‘Q 6‘ i‘ R

o

' a=1 N
- &yus -pa‘P°~[s-§ PUxg) Gy g, (s) = G (s)] »

Kgs 0
N 2 s (5.2)

A\

with initial conditions (%.10) and definitions (3.7)es.



{.(3.9) and (3.12). Making use of the Poisson arrival proc-

eSS assumption whence we note that

P - 9-7\.(&-{) 9 ) ] (503)

we proceed directly to the tgf for the L, which yields

Q : .
- e (§~
L*z) = 5 ¢ (A+p;2) + . P, -e™" ¢ P“-cL“<)+p,z)~L’<p,z>J =

Y
=@z« LY 00tz ¢ nt i (5.4)

with £%(z) = = e™®.[14z = §,-P,- Q™' - (1+po2)] (5.5)
g"(z) = = z.e*+(1 = §.-P, -p,) (5.6)

n*(z) = 1 - g, P -e’”“'PO ’ (5.7)

and initial conditions (3.23). It is easily verified that
for the basic free access RAS'S (i.ees $u=0) (5.4) reduces
to (4.7) and for the blocked access RAS's (i.e.» A =0)

(5.4) is equivalent to (3.20). For the tgf of the S, see

lAppendix Be

Applying the direct method to (5.4) is more compli=-
cated as opposed to its application in Section II1 which
is due to the free access which is granted to new arri-

vals. Equating coefficients of z*¥ on both sides of (5.4)

ve get

o; =2 * o2 "

Lk' a,, ¢t Z Li "yt SM' E LL by =
Lo ket 22

b} .
=Ll LT 0 gl . hy s k32 » (5.8)

with



1-;”;:; » i=ky2z o
. 5.9
A ¢ (L) )_‘_k <3 N )

ERY'YA ) j ;

IRy
el 2 W T
Po - tpa=11"-5_ £>'(pe-1) Tt krirzo
b = . ) e A
L @ .
P, (pg=1) - “( ) v 1 >k 22,
DI I =y
and
* (-1)“ -t :
f, = 0 »Lk=1 = &,-P-Q@ - (kp,=1)] » Kk 22 » (5.11)
k
g = ;&%..k.<1 - 8. P-Da) » k22 (5.12)
k ’ :
hy = = §.'B, (P‘l:!‘) "y k22 . - (5.13)

Equation (5.8) can be written as a linear system of infi-

nite dimension

- * —r (.1 am—tg —
L¥-(A + §,-B) = @ L"\)-F% + L* D N).g% + h* (5¢14)
where I—.: é CLi, L:’ L:’ ®e5 0 00 0 :l 9 (5015)

and f*, E? and F: are row vectors analofous to (5.15) with
componénts as defined in (5¢11)ee+(5.13)y respectively.
Matrix A in (5.14) is Jower triangular with elements a;
as defined in (5.9) whereas matrix B is fully populated
with elements b;, as defined in (5.10). Letting CZ2A+ S, B,
equation (5.14) can be solved for E: provided that ¢™' ex-

ists (cf. comment (1) below). Hence

- — —
L* = a-L"v-0% + 1" 00 .9% + we , (5.16)
L — e - —— —— -
with u* = rf*.¢c"" y v* = gw.c and w* = ET-C ! ’
(5.17)
_.7 ._: . —y . » »
wvhere u*s v* and w™ are row vectors with components U,y s v
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and w,» respectively. Note that like in Section IV L*™(X)
and L™ ()\) are tvwo unknown constants. To determine these
we substitute (5.16) together with (3.23) in definition

(3.18) whence we obtain

L*(2) = 1 + @ L*O0u*(z) + L* PN -v™(2) + w™(z) » (5.18)

ands upon differentiating once wrt zs

1)) ' - .
L* () = @ L* N u®iz) + "0 -v* P o+ vz,

(5.19)
with
= Y O oo * k-t '
u¥tz) £ 5 ulizt s ut i tz) = ) keu, ez s (5.20)
ke2 e 2 .
' ) : :
and vi(z), v*“’(z), witz) and w© (z) defined analogous to

u*(z) and u*"(2). Evaluating (5.19) at z=X and solving

for L") yields

’ . ”» . *((3 %(" \
PN TR e RTul ¢ Ve ik e VU (s.21)

'1 _ Vo(»(«) (X’

Subhstituting this last equation in (5.18) we end up with

L¥(z) = 1 + @-L" O -d%cz) + danezy s (5.22)
where d%(z) £ u*(z) + k (- w*PCOn.viz) (5.23)

dotz) &2 w¥z) + K O-w*C vz (5.24)
and K () 2 1/01-v* P O0y . (5.25)

Letting z=Ain (5.22) we can solve for our second unknown

gquantity and we get

- : .
o = Arde OO (5.26)
1-6-d"(N)



Agains the quantity which determines Neit is the denomina=-
tor which appears in (5.26) and we define A.y4 as the

smallest positive A which satisfies
a*Oo = a7, Q>1 (5.27)

where d™(X) is ohtéined from (5.23). Finallys we obtain an
equation for L, by equating coefficients of z“ on both
sides of (5.22) and by substituting the resulting L} in

(319) s i eCe

N

N
N! » N! *
L, =1+ aLl*O0-> T4 + E ——dy 2 N> 2,
" T Nk R T (- (5.28)
with  d, 2ol + k.M -u* vt s k32 (5.29)
abhy 2wk s Kk 0w 0wy s k32 (5.30)

and initial values (3.14). Note that S"(}) and S, (and, in
principles thé corresponding expressions for all higher

moments) can be computed by following the same steps as we
did above for L"(N\) and L,» see Appendix B for the result-

ing expressionse.

Commentsf

(1) To obtain equations (5.16) and (B.23) one needs the
inverse of the doubly semi-infinite matrix C. A thor-
ough discussion of the conditions under which C™' ex-
ists turns out to be rather complex. To compute c
numericallys we inverted the Eruncated version of C
and checked whether C™' converged elementwise as we

increased the truncation index R in the range R=10.%
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«e40. For values of p3<.9, all je{l’Z,-.sQ}’>1€-6 and
Q@32 we observed excellent convergence for R=16. 4303
‘most of the practically interesting (i.e.» X<3““‘)
results can be computed to a brecision of at least 6
decimal digits with R=16. It is worth noting that the
inversion of matrix C is not affectea (in the sense
of matrix C being close to singular) if A\ is close to

or even above A,y

(2) From equation (5.26) we deduce that L"(X) and there-
fore (by (5.28)) the L, exist if and only if A< At
and Q>1 (the second condition follows trivially from
the fact that a group of colliding transmitters can-
not be split up into smaller éropps if Q(l). Similar;
lyo ip can be shown that under the above conditions
all higher moments of Y, exists see Appendix B for
the éecond moment. AS was_the'case in the previous
sections the only soiution for th-e'LN if A2 1s

L,=e for N22.

¢3) The quantities L™ (A) and s"(\) (cf. appendix B) of
course admit the same interpretaticn as the uncondi-
tional first and second moment of the CRI-length as

we pointed it cut in comment (3)sy Section IV.

t4) Biased coins. In the light of the asymmetry of equa-
tion (5.4) it does not come as a big surprise that

the modified free access RAS's perform somewhat bet=-



modified free access RAS's

» Pq

Fige S5.2 Biased coins: Aoy as a function cof Par the
probability that the value Q is flipped.
All other values (1..Q-1) appear with prob-
ability ps where p=(l-pgl)/(a=-1).

ter when biased coins with p,>Q@' are utilized. We

plotted At versus p, in Fige. 5.2; for numerical

valuess see table 5.2.

Iteration method. There SeemS to be no principal reason
which prevents the applicability df the iteration method
for the modified free access RAS's. For the sake of rela-
tive 51mp11c1ty we give some clues for the solutlon of
(5.4) when fair coins are used. Let € (z)=A+p-2zy i€{1s2,

3}» be distinct (but not necessarily different) Moebius



- 5-9 -

transforms (cf. Appendix A)e Thens under certain contrac-
tion conditionss the general equation {(where d(z) is an
entire function)

2 ;-5 (2)
t(z) - E a,-e ¢ - tle;t2)) = d(z) 5 (5.31)

i34
‘has the uniqué{ entire sojution

oo 3 3 .

t(Z) :d(Z) + LE‘ .21 ee e E{ al«\. alz. .'O'a'LL X

_ = (75 Les .

x 4y, Gy, oee G, (2)) 5 (5.32)

e ta

where the ~ operator is defined as

N ey L Gy S B sy 6y ... 6
Y(GL‘ G'.‘; vee G-‘l (z)) g e “;' cn.. c.‘ GI-Q l) - e “1 6'1 G‘L (1) %
L=k, i (), o
X g00°€ ¢ Y(G'Hg‘l oooe';l(z)) 3
{5.33)
I3
- and A 6, 02) = (& el Nlz) = & (e (2)) (5.34)

The set of all substitutions &, & eeeGi(2)s £=0513529000y
(where ¢ is called the substitution length) form a non-
commutative semigroup under the operation of composition

of functions (cf. Fig. 5.3) with identity element (¢=0)

eE{z) = 2 " e (5.35)
Note that

G, veeCi (2) = 6 G eee 6 (00 + plaz (5.36)
and
A 1 L4 ‘. M . e M ’ - M . H .
‘i’m(e';‘ . ---G'-‘,_(z)) = o % .G‘..c'.l &, (&) e 3% C’«;---G'.,.(ﬂx

—uil-cit(i)

X ee o' '[Y(Q(G";‘C’ oo.G"Lt(Z)) +

‘2

__(u;t+°:’+...+;°LT":‘!‘)'W(€-LAG;1 "':i‘(z))] e (5.37)
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el(z)
‘/<z>
o,(2) o,(2z) o,(2)
<A, ¥p2? <A,*prz? <A,+p-2>
0161(2) 6,0,(2) ) 0,0,;(2) ‘
<Ap(lep)+plz > . <A, +p-d,+piz> <A, +p-A,+piz >
6,0,0,(z) 0,0,0,(z) 6,0,0;(z)
<a,-(Qephyrp 2, tplz> <), +p A, (1ep)+piz> <A P -A PN, rpiz >

Fige 5.2 The non-commutative semigroup which is generated
by s, » & and 6, under the operation of composi-
tion of functions.

In the case of the modified free access RAS's with fair

coins the parameters in equation (5.31) are

a, = @ y &, = 0 s &, (z) = A+ @tz 5 (5.28)
a, = =§, s &, T Q=1 s &,lz) = A+ ™Yz (5¢39)
a8, = $,'P v oy = Q=1 5 e5lz) = Q™' 2 ’ (5.40)

ands if we restrict ourselves to the first moment of the

CRI-lengths -
tiz) = L¥(z) ’ . (5.41)
dlz) = @-L*(A)-f™(z) + L* n-g"z) + n™(z) (5.42)

with £(z)s g*(z) and h™(z) as defined in (5.5)ecee(57)
{with ps replaced by @ '). If we iterate the basic equa-
tion (5.31) m timess substitute (5.41) and take care of

-

the initial conditions (3.23) we certainly have
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»* A A » :
Litz) =1 = R, ds52) + 8§, (L*()s52)

mA: l’ZQOol’ (5.43)

vhere the operators R, and §m are defined in the following

way

3 3
A a : -
Sm(\r(n)QZ) = E ) E a-‘", a"l' oo .'alm.[Y‘(c‘h:;z ...Gin(z)_) +

EX Ut
o - -m 8w ‘ '
- \P(O',"‘G"z ...g;m(O)) - z.Q 'Y ( “giz oo e G.M(O))j ’
(5.44)
P~ | 2 Y “
S Y(e)32) =2 ¥Y(2) - Y(0O) - 2. v ’ (5.45)
A N bl A .
RatYa)32) % E S, MWtarsz) _ (5.46)
L=0

Note the analogy between the R operator which we defined

A " -
in (3.36) and R, as defined above as m—oos Equation (5.43)
suggests the Tollowing solution for equation (5.4) when

fair coins are utilized

A . A
L¥z) = 1 + @ LR " tarsz) + L* 00 Re(g*(ur3z) +

+§M(h“_(.);z) ’ (5.47)
provided that
lim §_(L*(.)52) = 0 ’ . (5.48)
I3 A N . )
and lim R,.(d(e)32) < oo . (5.49)
. m - OO .

It should be emphasized that equation (5.47) is a conjec~-
ture since we did not prove (5.48) and (5.49) sc far. To
do sos it is not encugh to rely solely on some form of

. contraction condition (like we did in Appendix A); the
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special form of the term preceded by &, in eguation (5.4)
suggestss howevers the additional specification of an "an-
nihilation condition's i.e.s» we can expect that most of
the'iterates of some large enough substitution length ¢
will cancel out due to the minus sign of the factor a, in
(£.39). To complete the solution of (5.4)s one must of
course determine the constants L*(\) and LA in (5.47) .
This can be done by the‘saQF method which we used to ob-

tain (4.15) and (4.22).

Numerical results. Here we give again the numerical values

of Newy for Q@=2..10. In additions we computed .4t and p,
for optimally biased coins for Q=2..4. Numerical values
for the other quantities which we analyzed in this section

can be found in Appendix C. Computations were again done

S 7‘Crii !

| . 387222 !
1 «406970 'l
| «400746 |
[ « 367780 |
! « 373576 ]
A « 359853 N
! « 347053 !
t «335330 !
l « 324619 |

Table 5.1 2.y as a function of @ for the modified free
access RAS's with fair coins (the systems are
stable for all A< h i)

by the same means as depicted in Section III. Numerical

stability (with the direct method) is satisfactory for



[
w
.
[y
W
I

| Q | optimum pg | N it |
| - - dow - - - - - - - o e - - - - |
2 .593200 I . 293225 !
I3 «370911 | 407614 |
|4 | 266662 ! 400851 I

Table 5.2 Acrit and p, for the modified ffee access RAS's

with optimally biased coinse. The coin values
152y +45Q-1 are equally likely and have probha-
bility ps with p=(l=pg)/7(Q-1).

moderate N (6 to 7 digits of the results are precise up to’

N=25 when Fortran double precision is used) with a trunca-

tion point R®*20..30.

Comments:

(5)

The modified free access RAS's dispnlay the same sen=
sitivity on the mean arrival rate A as described in
Section IVs comment (7) for the basic free access
RAS'se. Thuss the indication of A is essential for the

interpretation of numerical resultse.

As might be expecteds the modified free access RAS's
outrival the other three RAS's which we considered
in this paper (cf. Séction VIi). Agains Q=3 is the
best choices althoughs this time the superiority of

Q=3 over Q=2 is less pronounced than it was for the

basic free access RAS's. For A>.3s the conditional

expected CRI-length is minimized for all N22 if Q=3.
Note that if one plots L*(A) versus @ for various

rates A then one obtains a figure similar to Fig. 4.3,
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Vl. Conclusions

We have analyzed the thrdughput characterisitcs of

four différent classes of RAS's whose salient features are

their simplicity (in terms of implementation) ands as op- .

posed to the well xnown ALOHA systems their inherent sta=
bility (under the assumption of a Poisson arrival process)
fbr arrival rates A less than A, « At this point, a com=
barison of the fou} classes of RAS's intrudes itself. We

made allowance for this by including Fig. 6.1 which de-

_fair_coing

1.5 2.0 L5 30 ' 35 4o

Fige 6s1 it versus Q for the four RAS's which we ana-
lyzed in this paper.

L1y



picts A.qi versus the splitting parameter Q@ (in the range
of interest) for the basic and the modified CRA combined
with either the free or the blocked access CAP. What imme-
diately catches the eye is that for Q@ say Areater than 3

it is hardly worthwile to worry about the modified CRA»

the important consideration here is whéther to use the
blocked or the free access CAP. For @ between 1 and 2 (if
this could be realized somehow)s on the other hands the
dominant factor is the CRA and here it certainly pays to
apply the modified CRA» althoughg as we already stressed
earliers this requires a ternary feedback channel.instead
of only a binary oné. This supports our intuition which
tells us that for large Q a considerable amount of empty
slots is created which can be exploited by the new arrivals
under the free access CAP whereas for small Q@ the collision
slots prevail such that the modificatibn of the CRA can
take effect. Al]l tolds the favourite RAS which excels by
its simplicity while offering good throughput characteris-

tics (A4 =.4016) 'is the basic free access RAS with Q=3.

Besides the more system oriented quantity N\ ... any
RAS must also be judged by its more user oriented behav-
iour; a good measure for this is the first and second mo-
ment of the packet delay. We did not touch upon this issue
in the current papers mnainly for reasons of space. For the
basic free access RAS's with Qiz the deléy question has
been addressed in [FAY-FLA-HOF-JAC83]) ands independentlys

in CVVE-TSY841; for @>2 we refer to the forthcoming paper
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[MAT-TSY-VVEB4l. To give a flavour of the delay character-
istics and to further Jjustify our choice of the basic free
access RAS with Q=3 we plotted the meaﬁ and the standard
deviation of the packet delay versus A for RAS's which use
the basic CRA with @=2 and @=3 (fair coins) combined with
either the obvious BAP or the FAP, see‘Fig. 6.2 and Fige.

6.3. We obtained the two figures by simulating 50'000 slots

E{p]

22

’I
- oww blochad access
“0 o L,

— {rte oscess d I,’

|
[
!
!
I
l
!
|
|
l
|
|
|
!

o A 2 3 A
L33 360 36 vo2

Fige 6.2 Mean packet delay ELDJ for various rates A when
the basic CRA with fair coins is combined with
either the blocked or the free access CAP., The
results were obtained by simulating 50'000 slots.

for each valﬁe of k-and each of the four RAS's: our thanks

for carrying out the simulations are due to B.V. Faltings.

The most striking feature (with respect to the packet de=-

lay) of the basic free access RAS with @=3 is that it not
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Fige 63 Standard deviation of the packet delay D for var-
jous rates N when the basic CRA with fair coins
is combined with either the blocked or the free
access CAPe. The results were obtained by simulat-
ing 50'000 slotse.

only has good first order properties but also .second order

prooperties which outperform those which can be achieved by

selecting Q=2.

As to the mathematical tools which we provided in this
papers we believe that they should be applicable (some in
fact have been applied) to a number of problems which are
recursive in nature. For analytical purposess the iteration
method is clearly head and shoulders above the direct meth-
od: if one is merely interested in numerical results for

certain quantitiess like L¥*(X) or S*(\) in our cases then
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the direct method can be as precise but more efficient than
the iteration method (in our context this holds before all

for .the free access RAS's when biased coins are used)s

Finallys we would like to point out that one nust be
cautious in applying the results of the free access RAS's
(with the Poisson arrival assumbtion 1) to systems with a
finite number of transmitters (if packets must be sent se-
guentially)s see [FAL83]., Just to give an examples assume
a System with only three transmitters. It is then possible;
that the total load offered to the common channel is main-
ly made up by packets transmitted from two of the three
stations. In such a case it can happen that the third
transmitters once he has to put one of his packets onto
fhe stacks sinks infinitely deep into the stack although
the total arrival rate N does not exceed N it « This comes
from the fact that in any system with only a finite number
of (active) transmitterss the state can be reached where
there are Jjust simply no more (active) transmitters with
nevly arrived-packefs to take advantage of empty slots.
Hences Xent drops to tﬁe value of the corresponding block-
ed access RAS. Instability of the channel and unfairness
of the system can be prevented in the finite transmitter
case by the introduction of the free accesss blocked exit
CAP which essentially states the following (in addition to
the free access CAP and tﬁe CRA). Every transmitters if he
is involved in a collisions haé to simulate the behaviour

of the "worst case transmitter" (i.e.» the transmitter who



always flips the value Q@ on his coin) who is involved in.
the same collision until this unlucky fellow had a chance
to transmit his packet. It is only after the occurence of
this event that the above cited transmitters are allowed
to reaccept new packets for the first-time transmission:
for a more detailed descriptions see [MAT&4l]. It remains
to note that also for the free accesss blocked exit RAS's

the choice @=3 is optimum.
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Appendix A

Iteration Scheme to Solve the Functional Equations

Here wé develop an iterative scheme to solve the ba-

sic funtional equationﬂ
tlz) = y-t(A+p.2z) = d(z) . (AW
where Aand p are real constantss with O0<Ipi<l . Let

[p 2 , |
M = - (AOZ)
[ 0 1

be a Moebius transformation consisting of a rotation p
(applied first) and a translation A [HEN74]. With M we-as-

sociate the function
oy lz) = A+ p-z . (Ae3)

Substituting z in (A.3) m times with &,(2z) yields the m=th

iterate

5'5“](2) = ')«—1-1:——8—— + pr.z = 6, (0) + D -2z > (A.4)
- p _

with substitution len&th me The set of all substitutions

Y ve use the term "functional equation" to denote an e-
quation between two expressions which are built from a
finite number of functions (of which at least one is
unknown) and variables by a finite number of superposi-
tions. A simple example of a functional equation is
Y{l+z)=z-¥Y{z) which (under appropriate conditions) ad-
mits the gamma function as its solution. .



"'AOZ'

gﬁ"‘ for m»0 form a commutative semigroup H under.the op-

eration of composition of functionss i.€e»

m ™y .] ~™ ] '
(6':: J °5'f’“" )(Z) = G"[ jtgﬂm (Z)J - G“L ™ (Z) . (AeD)
The identity element of H(z) is:
Iy = 2 ' (A.6)

n

whereas the accumulation point of H is

&y (o) = . (AeT)

W 2 e = 11'_: ) (h.8)
))
and pd e = 17‘P . (Ae9)

With these prerequisites in mind we can now state: If

X in (A.l) satisfies the contraction condition
gl <1 , (A.10)

and if d(z) in (A.l) is an entire function then the func-
tional equation (A.l) has a uniques entire solution given

by
- | .
tlz) = ) (Male,™ (201 © AL

m3 0O
This is easily verified by letting
] o0

Y.t()+p.z) - Xz : x"‘,d[s.ﬁfml (}"’p'Z)j = :: XMA-d[é'H (Z)]

meo



-A.3-

and therefore

tlz) = ¢ -tO+p-2z) = dlef (203 = dtz) . (Aa13)

Al

For a proof of the existence and unicity of (A.l1), see
(FAY-FLA-HOF821]. It should be noted here that the itera-
tion scheme described above extends to the use of several,

different Moebius transformations to solve equations of

"the type
Q
t(z) =~ E X;-t(’)wpoz) = d(z) . (Ae14) |
it ,
"The resulting expressionss howevers are not easy to treat
in general - for a case with Q=2s see [FAY-FLA-HOF821J»
for Q2 see [MAT84l. For a general reference on functional

equations’ in one variable we refer to [KUC681J.:
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Appendix B

Here we list (without derivation) some of the expres-

sions for the conditional seqond moment of the CRI-length.

Rlocked access RAS's

j:(z) in equation (3.27) is

- Q-1 a
Pez) = 2-4L"(z)=1+» > L™(p;-z)-L" (ppz)t=e @ (a=1) - (1+z)+
}5‘ ks&'+1
2-(1- pad - -2 )
S[L*(p,2)+Q@=2] = e "-(Q=1)-(1+p,z)} .

(8.1) (O

- SN-Z.{e-

Direct method: S, and S, (cfe (3.29)...(3.31)).

o » >
* Q. +h
st o Qcferhe v fu s k32 (B.2)

t- 2
3=‘

with S, =1 » S& =0 o ' (Be3)

'3 » »
and ‘f, sh, and {, defined as the coefficients of the power
series representations of f"(z)sy h™(z) (eas. (3.21)s (3.22))

and f:(z’ (ea. (Ba.l))s respectively. Using (3.26) one ob-

tains
> 2N
-SN:1+LZI NS T ((-QP EZL ZZp} pk +
. ;3 4 1=0 £ htéw\
. (94-1) A
+ L, - S E -p.-L.J +
k T (k'b)! a t




- Bel -

N >2 s (B.d)

with initial values S, = S, =1 . (B.5) (O

Iteration method: S, for fair coins (cf. (3.40)).,

N
Sy =1 + (Q@~1) é:; Q" é;: (h.fu) 'Lk'Ll'(Q-m)sd" (1=-2-@" "
- L websa .
p2S ey (M) e assea™) 1= 4

(9-1)-59 Q" 1-(1-2-™ " -zN-a " 1=z ) 4

maq

(Q?-2) - § o™ r1-(1-a" " N-@ ™ =™ 1 e

ms»0

+

o0 .
S (2:2=3)-> a”-{c1-a'”-(1-a")J“-(l-a'“

med

-m~{ om N-=¢

-N-Q '(1"‘Q ) } 14 N } 2 . (BIG)D

Basic free access RAS's

Tef for the second moment of Y, (arbitrarily biased coins).

s“(z)- E{ s“(N+p;-z) = 1+@-s* 0 - 20245 0 gM iz (2
J'

(B.7)
with initial conditions (3.28)s f*(z) and g"(z) as defined
in (4.8) and (4.9) and '
'FL(Z) = Z.EL"‘(Z) -1 + E‘ kg 1 L (7\+p z) - ‘(>\+ph.z)j +

= ‘}4»

. (=10 " (A -e - LY (N - (14z) + 2L (N .22
(B.8))
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Iteration method: Solution of (B.7) for fair coinse.

SMz) = 1 + @-5"(A)-d%(z) + K O -Reg*arsz) + RepMtariz) s

(B.9)

with d*(z) as defined in (4.19),

S¥O0 = L*O0-TI+Ke ON-Reg™* (1M + R4 15N 3 5 (B.10)

s

)

ne -

KstA) & a-L" (0K (M -02-L7 (K = et @=10-1L" (N1 s

(B.ll)

. 0 ow e
L g = e LNk (M e ST el , (B.12)
. ' ms=0 . .

e

~ | - - RN Am
Reg* o)) = E Q™ L (1= A0 e e A " e A,

mz0 '

(B.13)
P R A & £ - B (B.14)

and

o
EX PSR STERS-RS YN WY 4 Al & WIS B R v W Bkl O )

wm=0

¢
» (Am)3 +

o0
« ()

+00-1) > QT {ILY N 23 =L O 1P =2- ™A L (N0 L

mz 4

(N ) 1+
+Q-0e=11-0L* (W2 - 8a™ M+ K (M R(g™(I13N] o (B.15)

For the quantities M L¥(X)s K (X)) and d¥ (X)), see (4.12),

(4.22)s (4.20) and (4.23)s respectively. : O

Iteration method: S, for fair coins (cf. (4.25)).

N

S =1+ ta-D-gS e mamS (V) L9100 x

me k,& u

kel32 et
x Q™) s (1=2-0"")" 4

=2 2%, ™
DN S A YD LR Sty WY & EF-25 TR - & T2 L I
mal . .
= y 22
- 20> LWL O et ez ™ 0y s

ms i



, N :
Ll ™m - k - N-k
24> ema > (B)-L® - cem™f e aa-am™y
ms 0 k=2
o0 - m - - N
- S L e Amamr1-n-Q " =1=a"™ g 4
mel
Cad - -m -9
-nD> L0 Prr-1- " 3y 4
ms0
»* 2 » =0 o N -m -
+ Q-{(@=1)-CL" N 1" +5 (X)}-E e "™@ -[1-N-Q =(1-@ )

mal

4 £Q-(Q@=1)-CLY 2T L2k (A1 =134Q -8 (N - K (N +Kg (D) 3 %

=2 Am .M -m -m N
% { E A€ cQ - [1=N-Q@ =(l=Q@ ) 3 +

ms=0

. o> . - o -1
+ N> e M orret1-™) Yy,
™m0
N2 » (Bel6)
with L )s 8™y K (N)s KgtXN) and A, as defined in (4.22))
(B.10)s (4.20)s (B.11) and (B.14). For LY (2m)» see the

footnote of (3.23). 0

Modified free access RAS's

Note: The following equations may be used for all four
RAS's which we consider in this paper. For basic CRA's
one simply has to set §, =03 for the blocked access RAS's

one has to set A=0.

Tgf for the second moment of Y, (arbitrarily biased coins).

Q .
s*z) - > $"(A+p,.z) + $,P, Lo U-ra) - [S™ (A\+pez)=8"(p,2)1]
i

*{4)

Q-s (M -2+ gt +n (e tz) 5 (BT

with initial conditions (3.28)s £™(z)s g*(z) and h*(z) as

defined in (5:5)ees(5,7}) and

N

J+



a-1 Q
2 [L*(2) =1+ > > L" x+pyz) - LY Ovepz) ] 4

FOETIRY

prez

(@=1)-L" (M) -e *-ra-L¥N) - (1+z) + 2L (.23 +

-8, 2P (e TP L gl1) L Oep, ) -(@=2) - (L* (pz)- 10D +

- e'z-(Q-l)-[L*(%)-(1+pfz)‘4 L*“‘()).p¢za}

(B.18) (0

Direct method: Solution of (B.17) for arbitrarily biased

coins (cfe (5.8)eeal5.26))

o0 o

» »* *- .
Seeay, * > SUcay * 8w | S b =

teked L=2

= @-sTO0fr ¢ T g+ hl ¢ fL 0 k2 2 (BalW)

with _
©k * (k=1 =)
». . L ()) L (
fo 2ol o T T ;:z;jp R
. - hsy
('1)“ ’ » * » » (1
+ = (Q=1)-L*¥(\) -t LAy - (k=1) + 2-k-L (N3 +
k ey
- LO.P . M__ .l-_(.?.‘l.. -2y .1%
S 2-P, {?w Y pa [(Q=1): = (g 2)-L7 +
k
’ e'1)k (-1) »*
+ (a-2). L8 o + = -e-1) -l (N) - (k-pg=1) +
+ L* N -k-pgdd s , K > 2 s (B.20)
* () _ = f.‘.‘ » g-i ‘
L (A) = 2 (E-D!'L‘ A ’ u (Be21)

L=
and. a;, » b, s f.» €. and h, as defined in (5.9)ece(5:13)%

Equation (B.19) can be written as

— —— i
SY.(A ¥ 5, B) = @-8"(N - f* 4+ S*O O g™+ A
(B.22)

with S* and f. defined analogously to (5.15). With CZA+s5,.Bs



. —
equation (B.22) can be solved for S™ (provided C™' exists)

pe

5% = a-s*-un 4+ st VE L T —f ’ (Be23)
with = ¢ , (B.24)

—

and U*s v* and W™ as defined in (5.17). Let

, od oo
Yoez) 2D oyt e i W = S ket o 2* s (Be25)
ke2 ka2
where-ql are the components of the row vector'§f. Equa~-
tions for S$™(z) and S*“’(2) are ohtained by substituting
{Be23) together with (3.28) in (3.26). The same procedure
that yielded (5.21) leads to

%* Q)

.o R 1G] (1)

$70 o = QST TOO) e wTO0) + WP O L (5.26)

1= v (N

Hence

S (z) =1 + Q-5 -d%(z) + di(z) + d,*: (z) (Bs27)

and

. a*% - .

S*(A) = 1*"‘”(”:&“("\3 , (B.28)
1-Q-4"(N)

where dg (z) 2 4Tez) + K OO 42O 0 vz (B.29) |

and d*(z)s dL(z) and K, (A) are defined as in (5.23), (5.24)

and (5.25)s respectively. : O

. Direct method: S, for arbitrarily biased coins (cfe (5.28 ).

: N | X |
S, =1 + @-8")- ..__N;_..d* + ._.___N_'___..(d* + a¥
" kZz: (N=k)! Tk ; (N-k)! wk tk O
N 2 2 » (B.30)

. * a * * (1) »
with d*g_ = Y ¢t KL(X)-¢L (A -v k > 2 » (B.31)
initial values (B.5) and d: and d:k as defined in (5.29)

and (5.30). O
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Appendix C

Numerical results for all four RAS's considered are
given for @=2...10 for o » max letg (NI =gls B, and
ma x ip,(N)-g:l: for @=2 and Q=3 for L,» S,» Var,» ELYd>

ECY?®) and VarlYl. The results for Q=2 mainly serve as ref-

erence.
| Basic blocked access RAS's » fair coins I
jmm————————— —— - e mem e e ce e m————— - |
| Q | Ko ma x ot N)Y= gl i
' ------ - - - e e e e A - ——--—--l
I 2 | 2.885390 .00000G%13 |
| 3 I 2.730718 . 0007074 {
| 4 | 2.885390 005372 |
| 5 | 3.106675 .016608 |
1 6 | 3., 348664 « 035044 |
| 7 | 34597288 « 060387 1
) 8 | 2.847187 092061 |
| 9 ) 4.,096077 , 0129451 }
1 10 | 4,342945 »171984 )
D e oo o e e e > s = A A S e e T S G e D G G S N e S SR TS P G e ]
Table C.l

I Q! g max (X (N)=X 1 |
|w————- e e - - — e - - -— i
| 2 | 2.664043 00000235 {
| 3 ! 2.673351 0006506 !
¥ 4 1 2.860692 .005254 !
l ) ! 3.093325 «016466 |-
! 6 1 3.340442 .034899 !
! 7 ] 34591775 . 060248 I
| 8 1 3.843265% «091931 1
] S ! 4.093157 «129330 |
| 10 | 4.340697 «171872 I
]

Table Ce2



S e s D Es TR ar Th o A em D e S e S G S WD MR ED ED SR G e TR G R G SR D D GP G AL WD D G e e e e

5.000000
7666667
10.522810
13.419048
16.2513057
19.200922

27.8535197
42.281247
56.,707829

33.0000
68.5556
124.28'%4
197.0083
286.4268
392.3620

BU9%.0322
1858.457
3283.446

8.0000
9.7778
13.5329
16.9375
20,3110
23.68506

33.8316
50.753
67.668

Basic blocked

access RAS's »

5.500000
7.750000
10.346154
13.080769
15.854291
18.624544

26.838887
40.431597
54.103256

37.0000
70.1875
119.9837
187.1949
270.8053
369 .6995

752.9989
1683.545
2992.316

6.7500
10.1250
12..9408
16.0884
19.44¢€7
22.8259

32.6730
48.831
65.153

e e o e e v — — 4 -

4.500000
7.000000
9.642857
12.314286
14.964793
17.650691

25.639897
38.560935
52.280872

25,0000
54,5333
101.0374
161.7214
256.6331
325.6458

677.5413
1548.163
2773.566

8.0527
10.0797
12.0890
14.09&9

20.13069
30.209

R R A i en e S - =t M S W D T e e Eh G Ue S AR G S W e G A S P e G = G S

Table C.5



N i L, Sy Var,
|mm———— L e T T
I 2 i 5.333333 53.8849 5.4444
| 3 7.585533 66.1389 8.6319
! 4 | 10.128205 113.5819 11.0013
! 5 1 12.799359 177.4194 13.5958
! 6 ! 15.509441 256.9375 16.3947
f 7 | 18.216106 351.1768 19.240¢9
| !

I 10 1 26.263712 717.3754 27.5928

! 15 1t 39.574342 1607.374 41 .246

I 20 1 52.954866 2859.215 54.997

U o an o o e T - . e = S e e e e o . - - - - - o
Table C.6

! Basic free access RAS'ss fair coins - |

i ? A= .3 !

omsemememo e e —em m e m—eme——mmee——e |

e oo S S LA S

! 2 i 17.248724 .0000 0824 [

! 3 10.736279 .0013551 |

| 4 | 11.479659 . 010542 !

I 5 13.543532 «035511 !

! 6 | 16.619169 . 084411 _ I

| 7 | 20.969191 .168822 |

! 8 ! 27.256852 « 3509411 |

! 9 | 37.099198 «549130 1

I 10 1 54.241541 «994873 [

? o or e S S A e D e 0 e = R G G G AP S e S Gr Ehem b b P an @ W Y S m '

Table .C.7

! Basic free access RAS'ss fair coins = |

I 2 A= .3 I

== e e e e e e e e e e e, e e = - |

I Q |1 g max log (N)= o] I

|m————- e e e e - e e e — - ———— !

I 2 | 2.793489 .00000022 !

! 3 1 2.543609 .0000761 |

| 4 | 24583241 . 000534 |

| 5 ! 2.674970 .001388 |

! 6 I 2.776455 .002366 |

! 7 i . 24876133 .003198 !

| 8 } 0970464 .003704 |

! 9 1 3.058527 .003784 |

! 10 1 35.140348 .003293 |

Table C.8



! sasic free access RAS's » fair coins » Q=2 |
Bttt bttt ittt it |
ion 1 LYOOEECY3 S™MEE(Y?) var[Y. |
=== et ettt l
| « 01 | 1.0002046 1.00169 .00128 . - |
| «05 | 1.0056488 1.05433 « 04300 !
[ ol } 1.0262215 1.31981 e 26668 |
i «15 | 1.0711281 2.18779 1.04048 !
| o2 | 1.1616706 5.16493 3.81545 |
] «25 | 1.3580076 18.5442 16.7000 |
! o3 | 1.9205465 137.992 134,303 |
[ e 35 | 8.2289164 34383.4 3431547 1
T e o o e e D o - T S A P s TS e N G R P WP TR e A R YR ED GRS G SPGB SR G D e e G G e T e ]
Table Ce9
| Basic free access RAS's » fair coins s Q=3 t
R et ittt btttk !
XN 1 LY(W\)ZECY] SY(MZELY?) Var(Y3 I
|- — e - - - e e e e e S e e - |
! «01 | 1.0002290 1.0U189 «00143 {
| «05 | 1.0061948 1.05821 « 04578 |
! ol 1 ‘1.0278809 1.32048 «26394 |
| «15 | 1.0726500 2.08075 « 93017 |
| o2 | 1.1558691 4 ,25722 2.92119 {
| «25 | 1.3134596 11.4727 Ge7485 {
| «3 | 1.6524178 45,0546 42,3241 |
! .95 2.6950807 406.044 398.781 |
P o cr e i e N T G e v S A g S T G e G e e R G G e B EE P G e Smey S e R D M8 S S [ ]
Table C.10
} Basic free access RAS's » fair coins » Q=2 !
| 2 A= .3 f
etttk i
1 N | Ly Sy Var, ]
| mm———— D ettt L L L e D L E L DD D D I
| 2 | 24.204578 3392.48 2806.62 |
| 3 | 40.491594 6356,07 4716.50 |
I 4 | 57.583524 10055.44 6739.60 |
l 5 | T7T4.856766 14382.12 " 8778.558 |
| 6 { 892.139184 19305.21 10818.59 |
! 7 | 109.401259 24825.25 12856.62 |
1 | |
| 10 | 161.137110 4493U,.,60 18965.43% , !
1 15 | 247.382311 90346.55 29148.54 |
| 20 ] 333.625650 150638, %9331. I

Table C.l1



! "Basic free access RAS's » fair coins » Q=3

| 3 A 3

jm———— e e e e e e e e e e e - — e - s — e ———e— - 1
! N L Sy Var,

| m————— o e e e e e e e e = |-
! 2 1 17.066U914 1096.82 786.92

! 3 1 27.134279 1980.87 1244 .60

i 4 37.472336 2133.,70 1729.52

| 5 | 48,1734 71 4550.11 2229.42

i 6 | 58.991556 6215.15 2735.15

! 7 | 69.817738 8116.25 3241473

| i

! 10 1 102.103213 15179.31 4754 ,24

] 15 | 155.659932 31494.53 7264.51

1 20 t 209.365436 53613.8 89779.9

P o on ar o oy e e s e W we e e s - ———— . G . S o S G e S R S P e W G W G GE G e
Table C.12

Table C.l4

1.0001787
1.0048978
1.0224334
1.0590257
1.1310868
1.2728475
1.6037531
2.8814136

1.0002206

1.0059652

1.0268245
1.0697562
1.1490826
1.2976157
1.6098284
245125697

1.00126
1.03976
1.22546
1.78979
3.51216
9.80719
44.9064
690.596

1.00172
1.05318
1.29207
1.97909
3.91707
10.1760
37.8286
295.467

. 00091
«02994
18009
«66698
2423280
8.18705:
42.3345
682.294

.00128
«U4l21
23770
83471
2+59668
8.4922
35,2370
289.155



|a7\:.3

! N Ly Su Var,

L e e e bkl hbdd it it bttt

’ 16.156412 1074.18 813.15
27.433960 2148.77 1396.15
39.175391 3544.21 2009.50
51.017180 5228.99 2626.24
62 .862861 "7194.93 3243.19
74.696904 9439.30 3859.67

110.171355 17845. 64 5707.92
169.30633 37453,35 8788.72
22844401 64054.4 118@9.5
. ------------------- G s SR G D s SR s B s EPOE S ED GD CD GBS @F TP A EE Gn D e S 4 SR G S o
Table C.15

I @ 2= .3

i N Ly Sy Var,

| w————- o e e s e e R o e ST G TR SR SR P D S S G e
I | 16.554918 915.90 641.83
i | 25.590214 1679.92 1025.00
! i 354359898 2676457 1426.24
! | 45.451826 3904.51 1838,.64
I ! 55.653855 5353%.21 2255.86
| I 65.867838 7012.60 2674.03
! | '

I, ! 96.345135 13205.92 3923.53
I 15 1 146.90344 27577.97 5997435
| 20 | 197.5900 47116.8 85074.8

Table C.16
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Appendix D

In this Appendix we list (withcut explicit deriva-
tion) some of the formulas which we derived for the pur-

pose of numerical stability.

Blocked access RAS's

L,_in equation (3.40). ¥%e ohserve that for N>3 L, can be

expressed in terms of L, , as follows

o0 _m N—Q.
L, = Ly, *+ [Q:(N=1) = §, ‘b— 123> e ) +
e
1 | = m N-1 N-2
+ 8,-t1-0"") > 1= 1=a )" S1-a"™y )
ms0 .
(D.1)
N | ,
S .
with L, =1+ @ . - . - (p.2)0

a-1  ala-1)

Basic free access RAS's

- e - G e AR e e e O e

d™(N) in equations (4.22) to (4.24). Fror (4.23) one gets

by expanding the exponential functions into power series,

summing over m and substituting (4.20) and (4.12)

' A Q Ay = % Cqedt o a .t A
a"(A) = ————— e %' . — (- - =Q7 ) () A
PRV 2 Tt g &)

(D.3Y(J



-th-

L,_in equation (4.25). Agains we observe that for N23 L

can be expressed in terms of Ly, » is.€es
| = - N-1
Ly = Ly, + @ L0k e 5> pa™ e/ ri-a-e™" g
. mu
oo o ~G.~ . -
s =D @™ et ca-e™M Ty, s
mei
- -/J = -m }"O-m -
with L, =1 + @ LR K, (Q-e 2 :q . e lepe@™y
mald .
(D.5)(J
R
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