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ABSTRACT : An equilibrium finite element method for fourth order elliptic
problems with variable coefficients on convex polygonal domains has been
developed. In the pafticular case of bending problems of elastic anisotropic/
orthotropic/isotropic plates with variable/constante thickness, this new
equilibrium method allows a simultaneous abproximation to the displacement
and the bending and twisting moment tensor. Error estimates and results of

numerical experimentes and results of numerical experiments are also given.

RESUME : Pour les problémes elliptiques du quatrieme ordre avec les coef-

ficients variables sur un convexe polygonal, on a developpé une méthode’
équilibre des éléments finis. Dans le cas particulier des problémes flexions
des plaques €lastiques an1sotrop1ques/orthotroplques/lsotroplques avec
1'épaisseur variable/constant. Cette nouvelle méthode équilibre donne une

approximation simultané de la deflection et du tenseur de moments. L'esti-

mation d'erreur et les résultats des essayages numériques sont aussi données.
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AN EQUILIBRIUM FINITE ELEMENT'METHOD FOR FOURTH ORDER
ELLIPTIC EQUATIONS WITH VARIABLE COEFFICIENTS
P.K. Bhattachafyya*, S.’Gopalsamy**

l.'INTRODUCTION

In [5] - [8] four different mixed f1n1te element methods have been

developed for the Dirichlet problem of fourth order elliptic partial differen-

tial equations with varlable/constant coefflclents, the biharmonic problem‘and
the bending problems of elastic —anlsotroplc/orthotrop1c/1sotrop1c- plates w1th
varlable/constant thickness being particular cases of this problem, for which
the mixed methods of [5] - [6] give a simultaneous approximation to displace-
ment u, curvature tensor (u .J) and bending and tw13t1ng moment tensor (w ),
and those of [7]- -[8] allow a simultaneous approximation to displacement u and
bending and twisting moment tensor (Y, J)} In the mixed method of [8] , the
continuity of the normal bending moment M at the interelement boundaries is
required as in the mixed method of Hellan—Hermann—Johnson for the biharﬁonic
problem [4],[101,0131,0[171,[181,0201,[241,[25]1 . 1In [15] Fraeijs de Veubeke
devéloped the equilibrium finite element.method in which the continuity of
both normal bending‘moment M and Kirchhoff traﬁsverse force Kn is required

at the interelement boundaries, [16] being a subsequent paper based on the
general procedure developed in [15] . Hence, the equilibrium finite element
method may be regarded as abnatural extension of the Hellan-Hermann-Johnson
miXed method for the biharmonic problem th],[ll],[ZS}.

The present paper is devoted to the development of such an equilibrium finite

" element method for the Dirichlet problem of fourth order partlal differential

equations with varlable/constant coefficients. This paper contains new results

" -in this direction. In fact, for bending problems of anisotropic/orthotropict

isotropic plates with variable/constant thickness, this new equilibrium finite
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Department of Mathematics, Indian Institute of Technology, New Delhi 110016,

Indla.

Résearch Scholar, Department of Mathematics, Indian Institut of Technology,
New Delhi 110016, India. ‘



element. method gives also a simultaneous approximation to displacement u and
bending and twisting moment tensor (wij). Moreover, the equilibrium method
C11],[25] for the biharmonic problem, which allows a simultaneous approximation
to displacement u, change in curvature tensor (u’ij)‘(but not ‘the 'actual'
bending and twisting moment tensor (wij) i.e. further computation will be
necessary to find bending and twisting moments), can be retrieved as a parti-
cular case from the general scheme developed in this ﬁaper by means of a
suitable choice of the coefficients of the equation. Under the assumption
ofAnecessary regularity of the solution of the Galerkin variational problem
error estimates for the equilibrium finite element solution have been developed,
following the general techniques of Brezzi-Raviart [10], Raviart [25], and

Fortin [14].

2. NOTATIONS

2 and Hm(Q) be the

Let ) be a convex polygon with boundary I' in R
Sobolev spaces [1],[23] of integral order m > 0 equipped with inner product

such that HO(Q) = LZ(Q),

<"'>m,Q , norm |[.H m,Q and seminorm I'lm,Q
il (@) = {viv e ﬁl(Q) v =v|, =0}
0 . A ’ Y o I'! b
(2.1) .
2 2 : k
HO(Q) = {v:v e H (Q),‘Yov = VIF - Of‘YIV = (Bvlan)lr = 0} ,

where 3v/on 1is the derivative of v in the direction of the exterior normal

to the boundary T';

Yy ¢ Hm(Q) - Hm_k-I/Z(F) are trace operators [1],[23] ,

m=1,2; k=20, m1 ; HI/Z(F), H3/2(T) being the fractional
order Sobolev spaces of functions on T ;

Hg(ﬂ) = D(R) in the norm topology of Hm(Q), m=z20,

. D(2) being the space of test functions on Q .
For p > 2, let Wé’p(Q) be the Sobolev space [1],[23] defined by :

Wé’P(QY = {viv ¢ Wl’p(Q),'yov = VIF =0} ,



"

such that ¥p > 2, H @ < W, by o H © : | (2.2)

 with dense, contlnuous lnjectlons, and Vp >2, H (Q)C; W ’p(Q)Cb c® (Q), 0 (2.3)
. " (2.2)-(2. 3) being the consequences of the Sobolev s 1mbedd1ng theorem [1], [12]
{23] . '

3. THE CONTINUOUS VARIATIONAL PROBLEM

" To the Dirichlet problem (P) defined by : For given f ¢ LZ(Q); find

u such that

A= f in § R uwr = (Bu/an)lr = 0, ' : (3.1)
where | v' ’ V
32 5%a | :
() (x) = R (@510 a}.{ ax T = (g u ) kl(x) inQ , (3.2

(in (3.2) and also in the sequel, the E1nste1n s summation convention has been

" such that -

- followed), we associate the following Galerkin variational problem (PG) defined

by :

Find u ¢ HS(Q) such that

(3.3)
a(u,v) = 1(v) ¥v ¢ HS(Q) s
'where the continuous, symmetric, b111near form a(.,.) and the contlnuous linear
form 1(.) are defined by P W, we H Q) -
a(v,w) = </\v,w>0,Q = J aijkl V,ij w,k]dQ 3 _ (3.4)
f i
_ | 20 5
1(v) = <f, v>0 q = J fv»dQ \Vv € HO(Q) H - | (3.5)
Y]

the coefficients aijkl satisfy the following conditions : ¥i,j;k,1 = 1,2,

(Al) :a e,Co(ﬁ) 3 ay (x) 2.0 ; a. (x) = a,

ijkl 15k1 ®) 7 gy ji1 ®) =

ajilk(x) Vx_e Q

- e
(a2) : VE (€11,£‘2,£12,€21) e R w1th'.£lzb— €21, 3 a constant o >0

V€0, a 1Jk1< x) €, akl z o BN e s

4
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a2 : W e Hg(Q), a(v,v) 2 o||v] % Q for some 0. > 0,
. ’

i.e. a(.,.) defined by (3.4) is'Hg(Q)—elliptic.

Remark (3.1) : In [9], sufficient conditions for (A2) to hold can be found

along with interesting examples, and it has also been shown that (A2) => (A2').

Theorem (3.1) : Under the assumptions (A1)-(A2'), the ﬁroblem (PG) has a

unique solution.

4, EQUILIBRIUM METHOD FORMULATION

For the construction of suitable bilinear forms of the equlllbrlum
method to be formulated, we prepare the following results.

. 4 . .
To every & = (£11’£22’512’521) e R with ng = 521, we assoclate

—_' 3 -
£ = (§15899581p) R such that ¥x € Q ,

- - 2 -
a5 @ Gighia = BT E zag IEIE, = o | e,

where a. ijkl satisfy (AD)- (AZ) H ET is the transpose of & ; [A(x)] 5 2f0R3)

is deflned by : ¥x € Q,

a1 ® 2™ 22111,

5511 () 85y, (X) 2855, ()

2a 1,11 () 23155, () bap, ), ()

[AGx) ] - A1 . | G%.1)

Prop031t10n (4 1) : ¥x € Q [A(x)] qf Gi), deflned by (4.1) is symmetric,
p051t1ve—def1n1te, and 1ts inverse [A (x)] € ZZGR ) defined by :
vk e § [AG)] AT )1 = T ‘

A1 A0 AL ®)

(a6 d = @) w | =nlwl (4.2)

Ayp11 ) Agag 45912

° App @ Apppp® Ay ™)

where T ¢ GRB) is the identity matrix ; for 1< i<j<2,1£ks1l<2,

Aijkl = Aklij’ is a;so symmetric, positive-definite.



]
.

Proposition (4.2) : ¥x € ﬁ, the symmetric [A*(x)] eﬁﬁ(fms) defined by :

A& A 24,

AT = A, A 28,,G| = 4% 3 (4.3)

2A 2A

1211 1222()  4A)5,®)

) € R , .3 o, > 0 such (4.4)

is p051t1ve—def1n1te, i.e. ¥x € Q VE = (Ell’g 1

2 22’512
that £ (A" > a Hall

Proof : The symmetric [A*(x)] will be positive-definite, iff ¥x € &,

3 1A @ Ay ®
Al @® > 0, o , >0

Aa11 ™) Byppp ()

det ([A*(x)]) > .0, which follow from the Proposition (4.1), since [Af;(x)]b
is positive~definite, and det([A*(x)])’= 4 det ([A_l(x)]) >0 Wx e .

Now, define new functions A (1 £1i<j <2) with

2121 Aij210 A Zlij
f | the help of functlons__Ale'1 in (4.2) as follows : 2121 = A1212’_Aij21_? A21ij =
Aij12’ 1 £i<j <2, from which, together with (4.2), we have : ¥x € 2,

’ [’
Proposition (4.3) : ¥x € f, ¥E = (£ s8,,0E 55, ¢ R° with

£ = : = b i =

"Aijkl(g) aijﬁn(x) Em -t T gij_cijv.; o .', ~   (4'6)
A @ By B 2 o ¢|g|g;4 _ for some ay > 0 o (4.7)
”Bzggi : From (é,l) and (4.2), Vx.€ Q,
Alwiam1= 1 = Qx ¢ 3 k,1 = 1,2, o
| A @ 2q @ = 1 5 | . @®
o ‘. S Mg @ ?12k1(x5 =1
] .Aukl(")wa kl(.;‘)f 0. for ifn or jn, o



Then, from the property of symmetry of the coefficients aijkl and Aijkl 12

(A1) and (4.5) respectively and from_fhe relations (4.8), we have : ¥x € Q,

(x) a.

Ajskl i3mn G ay () &y + A () 21520 Bpp

(0 £ L, = @,
Y25 &) 35500 Epp) Tyt (Rygpy (0 a4y, (0 6y
* A @) 2559y 00 Byp 28,0550 ag, () Epy) Ly,

2(855120) 835100 B+ Ay () 2y, @) &y

+

1 1

+

281512 a5y () 19001, = &1 1T+ EyTs, * 2858,

TRy Rig o

Now, for (4.7), we have : ¥x ¢ ),

. =T ) 2 2
A ® &5 Bg = EAT@I1E 2 a H&]Lm3 > uleEIER4

with dz = al/Z (by virtue of (4.4),

VE = (6 Eyp0E1p06y) € R with £, =6, ¥E = (£)).5,,.6,,) ¢ R

Remark (4.1) : ¥i,j,k,l = l,2flthe functions Ai' € Co(ﬁ), which follows

1kl

‘from (Al) and the Proposition (4.1). .

.. are
1jkl
not positive-valued functions in general, i.e. there may exist some i,j,k,1 = 1,2

Remark (4.2) : From (Al), aijkl(x) 20 ¥x ¢ O ¥i,j,k,1 = 1,2, but A

and some X ¢ 2 such that Aijkl(x) < 0.

Now, we define the following spaces :

o

B=(o: o= (0,0, I<iix2, ¢¢ L2@, ¢, = ¢} (4.9)
. |
. 2 2 2
with IIQ’IH =ll®llo’9 =2 , | ¢ij” 0,0 ¥oe H
- 1sJF :

1, | '
W= P@, ez x| - lIxlly 5 g ¥xeW (4.10)



Cwhere J, .(9) = M, (®)(a] ) - M_(®)(a; )

Let T, be an admissible triangulation [12] of Q into closed triangles

h

T. Given a triangle T € T, with vertices {a, .} 3

._, and boundary 9T and a

h i,T° i=1 2 ;

t - i = ). . : i ‘s i oo = 0.
ensor-valued function ¢ (¢ij)1,J=1,2 with ¢1J e H°(T) and ¢1J ¢31

1 £i,3 £ 2, we define the 'normal bending moment Mh(@)', 'twisting moment

’

Mﬁt(¢)','transverse shear force Qn(Q)',V'Kircthff transverse force Kn(Q)' cor-

responding to the bending moment field ¢ along 9T as follows [25] :

Mn(é) = ¢ij ninj ; Mnt(Q) = ¢ij nitj~; Qn(®) = ¢ij,i nj 3
M () : (4.11)
. _ na
KH(Q) - Jt + Qn(q)) s
where n = (nl,nz) is the unit exterior normal and
T = (tl’t2) = (n2,~nl) is the unit tangent along oT.
. Then, we have the following Green's formulae :
¥o.. c HA(T), 1 < 4,5 €2, 6. = 6., ¥xeH(T)
ij ' ’ A I} 21° ’
$.. X :. dT = = | ¢ X . dT + r(M @ 2+ (@ HKyas 5 : (4.12)
L Tij 4,1 ij,j i J n 7 9n nt at ’ ' '
T - T o oT |
= | ¢ xdT + | ) &m0 X - g (®) xds ; (4.13)
ij,1j ' n on nt at n s
T oT : '

= j ¢ij,i'x dT + J(Mn(é) n Kn(®)x) ds

J
oT (4.14)
Ji,T§®)X (@; >

+
hMw

i=1

i,T
) _ (4.15)
= Jugp of Mnt(é) at the vertex ai,T’ 1 1< 3.
Definition : Let & e.E with ¢ij|T € H2(T)'VT € Th,_l < 1i,] < 2. Then,

' Mn(®) (resp. Kn(Q)) defined in (4.11)-is said to be 'continuous at the

interelement boundaries'of the triangulation T, if and only if for any

pair T, T2 of adjacent triangles ofATh with a common side Trn T2,



) = Mn (<I>|T ) on T, n T2 = BTln aT2 (4.16)

n T ) l

(resp. K_ (2|
| T 2 T

- _> < . 3 . ) 3
where n. = (n?, n;) is the unit exterior normal to the boundary BTi of Ti’

i=1,2.

) = - I(.n (@IT ) on Tln T2 = aTln BTZ) G4.1n

Now, we can define the admissible space of moment fields of the equilibrium

method formulation as follows : - s

V{0 0 e H, byly e BT ¥T e T, 1 <i,5 €2, M (9)

~ h’
and Kn(®) are continuous at the interelement boundaries} , (4.18)
2
2 2
lell; = = Eollegill 5 g
Yo oi,j=1Te T, 2,T

Obviously, we have V6 H, W & Hé(Q) with continuous imbeddings such that

voe v, lelly = llelly s | 419
¥X € W, HXlll,Q < c% Il x “W for some ¢ >0 . (4.20)
Proposition (4.4) 1 & = ()| o5 5 o0 Oy = $y1 0 94 € 12 (@)

¥i,j = 1,2 => 0 V.

Proof : ¥i,j = 1,2, ¢, ¢ ) ¢ H(T) W¥I eT,.

35|t h
bgain, ¥i,j = 1,2 ¢, « 2@ = (1) by € @ | (4.21)
.. 6.,
(ii) L , —=3  are defined at the
Sxk ot

interelement boundaries of Th 3

0

ce.n D __ 3 -
G e, ol - - & o G,
‘ | (4.22)
Q (@ )=-Q ((I) )’ K
oy T n, Ty

where T, and T, are any pair of adjacent triangles of T, with the common side

2



o BTI A 9T 2, n1 being the unit exterlor normal to the boundary BT of

Ti' (i=1,2). Then, the contlnulty of M (®) and K (@) at the 1ntere1ement

boundaries of T follows from (4. 21) and (4.22) reSpectlvely, and the result

- follows from the definition of V.

Corollary (4.1) : (1) #Q = (¢ij) eV, ¥ye HZ(Q),
qu; i = = Aq) ar + | o (0 )X -
) % % T ij,ij X n'® '
Q c € Ty, T
KH(Q)X) _dS + s Ze N J'i,T(@)X(ai,T) "‘
- i,T h ’ :
TeT 2 _ . :
D ¥ = 0 eV, W H@, | (4.23)
| ‘
| ey oxg e peq )t XA E 3 Oy ),
Q ' h T 1,T oh’ '
‘ TeT

- : h
where th(resp.'Noh) denote the set of all vertices (resp. all interior vertices)

of triangles of T, in Q (resp.Q ).

Now we define the continuous bilinear forms :

> 1R . as follows :

TAC,.) H-X H

> R 5 b(.,.) : VXU

W= W05 @ = (4;) € H, - A(Y,0) = f i %P 40 =AW, (4.24)

Where.Aijkl = Aijkl(x) are defined in (4'l)f(4°8)‘;

3

- p .
b(®, = - z e . dT + I J o) . R : 4,25
(@0 TeT [JT %i5,15 X i=1 {® Xy pJ (4.25)

-where'Ji T(@) are defined in (4.15). , ‘ 8

Proposition (4.5) : A(., ) and b(. ,.) defined. by (4.24) and (4 25) are continuous

on H X H and VX W respectlvely, i.e. 3 constants' M > O, m* > 0 such that

|ACY,9) | -
In*]I@IIV Ixlly, e v, we wo- 2D

A

IA
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Theorem (4.1) : (i) A(.,.) defined by (4.24) is H-elliptic, i.e.

2 .
3 a, > 0 such that ¥0 ¢ H, A(%,0) > 0, o] 0.0 (4.28)

(ii) 48 > O such that ¥X e W,

sup 28X sy oo O (4.29)
oV flofl, ’
Proof : (i) From (4.24) and (4.7), we have : ¥o = (¢ij) € Hy A(9,0) =

~and having the property :|| u]]z g S
. 9’

f
| A @ 055 6 )
o A
2 J OLZ ¢1J (x) ¢1j x) dx = 0“2 “@Il g,ﬂ .
Q .

(ii) The following proof is given in [25] .

Define ¢* = (udij) with U € Hé(Q) n HZ(Q) [21] as the solution
of the following Dirichlet problem on convex polygon § :.For any X € Wé’p(Q),
P> 2, ‘

-Ay = x in Q , ulr =0,

02

“Xllo Q for some ¢ > 0 ‘ , (4.30)
’ ) .

Then, from the Propbsition (4.4), o* € V, and from (4.25), ¥x € W,

¢

b(d*,x) = - ) = -
(@ ,%) . z . J (1 61])’13. dT J (Ap) X df
€ Ty T Q o
. 2 (4.31)
= “X “0,9’ '

. * _ _ * _
since Mnt(¢ ) =0 => Ji,T(® ) =0 .?ai’T e T, ¥T ¢ Th .

2 . 2 2 ’
sac flo 5= 2 x qeglil =2l el (4.32)

Te Th i,j=1,2

< - V28 ||><ﬂ('),Q (from (4.30)).



-1 -

Then, from (4.31) and (4.32), we have

LTCRY I TOUS . o
su > > Alx || with B = =
oev ||o |, 191y 0.8 i

" Now, for the problem (P ) defined in (3.3)-(3.5), we can construct the problem

Q) of the equlllbrlum method under consideration as follows :

Find (¥,A\) € V X'W such that

A(¥,0) + b(d,A) =0 Vo e v,
Q) |

b(¥,X) = = <f,x> WX e W, \

0,8

where A(.,.) and b(.,.) are defined by (4.24) and (4.25) respectively.

. Theorem (4.2) : The problem (Q has at most one solution.

Proof : Let'(Wl,Ai), (Tz,kz) € VXW be any two solutions of (Q). Then, ~

'(W*,A*) = (Tl— Y _Al—kz) e VXW satisfy the corresponding homogeneous

2’
system - '
A(Y,2) + b(@,0") =0 ¥ e V,
bY*,x) =0 ¥xe W
Then, b(¥*,A) = 0 => A" ,¥) =0<=> ¥ = 0

ln H by virtue of (4.28). Hence, b(@,k*) =0 ¥ ¢ X_<=5 kt=Q by (4.29),

Thus, Wl: Wz, Xl = AZ .

Since A(.,.) is not a priori V—elllptlc, the problem Q) is not well—posed 1n

general, i.e. the existence of solution of (Q) cannot be proved in general. .

But we have

Theorem (4.3) : If u be the solutlon of the problem (P. ) such that

2 4 ' ]
u € HO(Q) n H () and aijkl u,kl € H (Q) ¥i,j 1 2,

then (¥,A) = (Y,u) e VX W with ¥ = (¥,.

i1 <i,j < 2’ “pf;j = 255k Ml

_ is the solution of.the preblem Q).

(4.33)

(4.35)

- (4.35)
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Conversely, if (¥,A) e VX W be the solutlon of the problem (Q)
with ¥ = (w ), 1 <i,j <2, then A = u ¢ H (Q) is the solution of the
problem (PG) and

= a, A = a,, u ¥i,j=1,2. : ‘ (4.36)

wij ijkl “,kl ijkt “,kl
Proof : Let ue H ) n H () be the solution of (P ) with a, 15kl u € HZ(Q)
Hd
Vl,J =-1,2, 1i.e.
( Q 5 c B (@  (4.37
J aijkl u,ij V,kl'd = <f,vy 0,9 W e HO( ) . | (4.37)
o §2
Set A=u; U,. =a.. u.,., = a,, A € HZ(Q).

1] ijkl “,kl ijkl “,kl

Then, from the Proposition (4.4), ¥ « V. Now, for A € Hg(Q), ¥oeV,
r 3

= O ¢ .. X AT+ I 3. (D) A&, )]

T €T, J T Nl tiap T L.t

= - fﬂ ¢ij‘ A,ij -dQ (from (4.23)).

b(d,A)

Hence, for (¥,))

m

VXW and ¥¢ ¢ V, we have

Ry J 95560 A 4 G0 a0

2 o |
JQ Aijk1(¥) aijmn(x) A,mn(x) ¢kl(x) die

- j $..(x) A ..(x)dS

0 1] s 1] . :
0. (from (4.6)).

A(Y,0) + b(d,N)

[}

Thus, (¥,)) € VX W satisfies (4.33).

Again, we have : ¥y ¢ Hg(ﬂ);

. : {

- jﬂwij X,ij dg = - JQaijkl u,kl X,ij dQ
- <f,>(>0’Q (from (4. 37))

]

b(¥,x)

=> (4.34) holds for ¥ « v and ¥ € HS(Q)

Since H () is dense in W ’p(Q), p > 2, (by virtue of (2.2)) and b(¥,.) is conti-
nuous on W, (4.34) will also hold for all x € W, ’p(Q), p>2, i.e,
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(¥, 0) € V X W satisfies. (4.34). Consequently; Y, e v X W is a solution of

~ the problem (Q) and its uniqueness follows from the Theorem (4.2).

Conversely, let (¥,)) « V X W be the solution of the problem (Q)

. *
- . . . - . D )
with ¥ - (wij), 1 £1,j £ 2. Define ¢ (cj)dij)1 <ij<2 with ¢ € D(Q).
Then, ¢ ¢ V. Since (¥,)) € V X W 1is the solution of (Q), we have from

(4.33) : % e D (),

ACY, %) + b(2*%,2) = 0

=> IQ Aijkl l[)lJ (¢5k1)dﬂ - J (¢|5k1) ,kvl AdR = 0 ¥ eD ()
f . . 1

=> J (Aijkl lPlJ _5k1)¢ ae = J )\,i' d),i -d2 ¥ € HO (%)
Q 9]

since D () ,is' dense 1in H(l) (Q) .

. 2 . ! ] 2 . .
Since Aijkl \pij le e L), Q :ILS a convex polygon, A ¢ ?IO(Q) n H°(Q) [21] W:‘Lth |

AN =

A iy S - | (4.?8?ﬁ

~
~

Again, choosing . ¢ = (¢ é.ij)l < i.,j <o With ¢ € D(R), we have ¢ € V "V¢‘e D(Q)."

Then, for A ¢ HZ(Q) n H‘cl)(Q), ¥ ¢ D(), we have

~ { - : ~
b@0 = - I | @8, A dT = - J A&)A dg
J »1]
) T eTh JT . 0 .
= J o5 A ;40 = - AW,
Q
{ ~
=) Gypa Yy 8¢ 9
Q . , A
=> ¥ e i (@), J Ay o des - J A5 Vi3 60 40
- Q 8 '
= ¥ ¢ H (D), —»J (W 49 -+J .%% $ dr = -J (AN $ d9 (from (4.38))
Q. } |

~

=>~<yl'>\,-yo$ >O,I" =0 ¥ e« HI(Q)

1/2

.=>»lyl A= (a:x/an)'h, = 0, sinceylk ’Yo>\ € Hl/z(l'"), and H ) EYO(HI(Q)'.
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Then, A < B(®) 0 H-(®) with Y A =0 => X e HX(®). Now, for (¥,}) e V x W
with A € H%(Q), we are to prove (4.36), i.e. wij = aijkl A,kl gi,j = 1,2,
For this, we have $rom (4.33) : For (Y,)) e VX W with X e HO(Q)g

¥ = (¢ij) eV, JQAijkl wij ¢k1 dQ= jQ¢ij A,ij dQ (by (4.23))

=> f By Vg5 ) &g 42 = 0 Wy

Choose & = (4,0,0,0), ® = (0,6,9,0), and & = (0,0,0,0) with ¢ e D (Q). Then
¢ ,0 ,2¢ V and we get : ¥¢ ¢ p().

r .
| @i Vg5 A P04 =0, J(Aijzz Vij T A g0 de = 0,
, Q2
J[@ﬁlzihj—x,m)+ Ai501 V33 7 A 30 @ = 0
Q
_ . _ - 2
<=> ¥k,1 =1,2, Aijkl wij A,kl = 0, since ¥k,1 = 1,2, Aijkl wij A,kl € F €9))]
~and D(N) is dense in LZ(Q).
= A T A Vi Vel = 1,2 (4.39)
=> ¥m,n = 1,2, a xl X,kl = a Aijkl wij = wmn by virtue of (4.8), and

(4.36) is thus established.
It remains to show that A eHS(Q) satisfying (4.36) is the solution of the
problem'(PG). For this, we have from (4.34), (4.36) and (4.23) : ¥y ¢ Hg(Q),

b(‘y’X) == J Wij X,ide - <f,X>

9]

0,0

¥y e Hé(Q)

(
= e Mk X3 90 = <Eg g
Q

with A ¢ Hg(Q)

=> )\ =4u € Hg(ﬂ) is the solution of the problem (PG) by the Theorem

3.1).
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(resp. A.

.glven by : A ? = W, ) with W
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Remark-{4.3) : If the 'change in curvature' tenéor (u .J) is to be determined,

then it can be easily done by using the formula (4. 39), i.e. VL,J =1,2,u ., = -

}\,;J Al_]kl (‘Ukl ?

where the components of the tensor ¥ = (wij) 1 €£1i,j £ 2 are 'bending and
twisting momentsf.; Aijkl are defined by (4.1)-(4.8). .

ijk1 @8 follows 2 a) )} =ay,, =13 2a,, =2, =
a2112‘= 3991 = 1/2, a. ijk1 Q otherwise, which satisfy the assumptions (Al?- 1
(a2) [9] , we get the blharmonic operator A = AA . From (4.1) and (4.2), the

corresponding matrices [A(x)] and [A-l(x)] are given by ¥x € § ,

Exémple 4.1) : Choos1ng a,

1 0 0 . 1 0 0
(Ax)] =]0 .1 0 s A leod - 0 1 0 such
o 0 2 Lo o 1/2 \
that Alel = ijkl ¥1,3,k,1 = 1,2, and the bilinear form A(.,.) in (Q) is
given by : ' '
: f | _ ‘ o
A(Y,0) = J lplj ¢1J ‘dQ bA'd = (lPlj), ¢ = (¢ij) € _I_'I_ ’
R

b(.,.) is defined by (4.25), since it is ihdependent of the choice Of'aijkl

). Then, the solution (¥,A) € V X W of the problem Q) in
ijkl -

this partlcular case :

, S
[ .
J "’ij ¢ij an- Tz . [J <pij’ij A dT + izl J.l’T(<I>)->\(a.1’T)] - 0
Q € T '
¥ e V,
o .. ; 2 (OXC oF £
- I X dT + J ACH == <f,y> ¥X e W,
‘TeT JT 13'13 ' i=1 0,8 ,

which’is the equilibrium formulatibn for.the biharmonic equation [11], [25] is
lel K1 = u,1J ¥i,j = 1,2, where
u € H () n H (Q) is the solutlon of the problem (P ) correspondlng to the

b1harmon1c equatlon
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1f u denotes the deflection of the plate, then wij = Uy are
. b
components of the change in curvature tensor, but not the 'actual' bending

and twisting moments in the plate (see Example (4.3) and Remark (4.4)).

Example (4.2) : For the bending problems of clamped orthotropic plate with

variable (or constant) thickness [9] ,[191,[22] we have

agiiy = D10 %2z T f22n T D, =V, Dy 5 211 = 2121 T f2112 T Pi221 Dy s

a.. = (0 otherwise, :
“1jkl : . ‘
and qonsequently, (4.41)

M= (D u g+ VD ug) i * A0 u o) 12

# Uy Dy u g+ Dy U o) gy

_ 3 _ . .
where D.l = Ei h~/(12(}1 Vlvz)) > 0, (i 1,2) 3

= 3 =

D, = Gh’/12 >0, H=D; Vv, ¥ 2 D,

t

G = E1 EZ/(E1+ (1+ ZVI)EZ) > 0,

Ey VY, = E2 Vs E.l and vy being Young's moduli and Poisson's coefficients
respectively,
thickness function h € Co(ﬁ) such that

0 <‘ho < h(xl,xz) < by V(x),x,) € Q. '

Then, from (4.1), the matrix [A(x) Jis as follows : ¥x € {2 ;

D, (x) vznl(x)' 0
[AG)T = | vDy(x) Dy 0 —tac) It .

0 0 4Dt(x)

From (4.41) ,it is obvious that 34 5k1 satiSfy the assumption (Al). For (A2), we

= (E: by - a,
hive ¥E (gll,gzz,gi%,gZI) e R w1thv§12 Eo1 3 o, 0 such that ¥x € &,
Vg = (gll’gzzﬁglz) GIR',
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Remark (4.3) : If the 'change in curvature' tensor (u ..) is to be determined,

. k4 .
then it can be easily done by using the formula (4.39), i.e. ¥i,; = 1,2, u‘ij =
. . ’

Aij T lel Vg 0 . | . (4.40)
where the components of the tensor ¥ = (wij) 1 <1,j £ 2 are 'bending and

twisting moments' 3 Aijkl are defined by (4.1)—(4.8).

Example (4.1) : Choosing a, iK1 as follgws : ag - 89999 = I 81510 = 2191 =

3112 = 3201 = 1/2 a, iK1 = 0 otherwise, which satisfy the assumptions (Al)-

(A2) [9] , we get the blharmonic operator A = AA . From (4.1) énd (4.2), the

corresponding matrices [A(x)] and [A—](x)] are giver by ¥x € Q ,

1 0 0] - "1 0 0
a1 =lo 1. ol ; twi- o 1 0 such
0o 0o 2 | | o o 1/2

that Alel ijkl Vl,J?k,l = I,Zf and the bilinear form A(.,.) in (Q) is
given by : '

ro ,
Q- ‘ '

b(.,.) is defined by (4.25), since it is independent of the choice of a. Jkl
(resp. A, Jkl) Then, the solution (W A) e VxW of the problem (Q) in
this particular case :

[ d- = [ A dT .g J (@) A( )] !0

.. 0., - ce . + . a, =
J le ¢lJ TeT J ¢1J,xJ‘ i=1 ;,T 1, T
Qo h T .
¥oe V,
- TEZT [ JT Lplj,l_] X dT +i£1 Ji,T(W)X(ai,T)] = - <f’X>0 0 ¥X € W,
h .

;which is the equilibrium formulation for the biharmonic equation [11], [25] is
;given by : A = u, W (w ) with w Jkl Kl = u,ij ¥i,j = 1,2, where
u € H () n H () is the- solutlon of ‘the problem (P ) correspondlng to the

'blharmonlc equation.



- 16 -

If u denotes the deflection of the plate, then wij =y ij
’
components of the change in curvature tensor, but not the 'actual' bending

are

and twisting moments in the plate (see Example (4.3) and Remark (4.4)).

¢

"Example (4.2) : For the bending problems of clamped orthotropic plate with

variable (or constant) thickness [9] ,[191,[22] we have,

555 = D5 3 @100 T 3211 T V1 D2 T Vo Dy s a0 T30 T 212 T %1221 T P
aijk1—= 0 otherwise, |
and consequently, : (4.41)

Mu 2 (D u )+ VD)) + 4D U o)

+ (v, Dpu Dy u ) oo

_ 3 - . )

where Di = Ei h™/(12(1 vlvz)) > 0, (i=1,2) ;
D =6h’/12>0, H=D v, +2D_,

1 72

G = El Ez/(El+ (1+ ZVI)EZ) > 0,

E; v, = Ey Vs E; and vy being Young's moduli and Poisson's coefficients
respectively, A
thickness function h ¢ Co(ﬁ) such that

-0 < ho < h(xl,xz) < hl V(xl,xz) e Q.

Then, from (4.1), the matrix [A(x)Jis as follows : ¥x ¢ § ,

Dl(x) szl(x) 0
(A7 = [ vD,) D, 0 =[aG 1" .

0 0 4Dt(x)

From (4.41) it is obvious that a..
ijkl

have ¥¢ = (€]1,€22,5{2,€21) ¢ RY with €12 = 521, 3 o > 0 such that ¥x € &,

satisfy the assumption (Al). For (A2), we

VE = (E)1,8,,,8)) ¢ R,
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= =T 2 2 , 2
aijkl(x) 845 &g = ELA®IE =D () &1t D, £, * 4D () E],

+

2V) Dy )y &y

\'

' 2 . 2
o el 2y = o N82s

" where o = min {1nf (D v, D) (x) ; inf (D -V, D )(x) :
, 0 1 2
xefl st
inf 2 D &)} > o0 9l

xef)

Thus, ¥x € ), [A(x)] is positive definite and its inverse [A-;(x)] is given

by : (4 D,D )(x) (=4v, DD )(X) 0

1

—— | -4y, D)) G DPIGE 0
A |

A ) 1=

0 0 , DIDZ(I-Vlvé)(X)-;

whe?e ]A(x)] = det[A(xX)] = (4 D D D (1 V V ))(x) ¥x ¢ ! such that from (4.2)
and (4.5), we have : A.... = & D D /[A(.)] (1 # i), A = A

1122 = A211 =
= 4v,D\D /|A(.)| (see Remark (4. z)), D, (1=vv,) /|ACL) |

1212 = 42112 = Ay =D

1Jk14 0 otherw1se.

Consequently, Aijkl € Co(ﬁ) ¥i,j,;k,1 = 1,2, and satisfy (4.6)-(4.8). Thus, for
the orthotropic case, the problem (Q) is given by :

| 1
JQ |AG) |

L4 D 2Pe¥i®nn T 49,0 D (b 19g5* Vyoby )

¥ 4 DyD¥ypdyy * 4 DDy 1V V)Y 01,1 4

-t ot J-?ij,ij AodT + I p(® Ay )I= 0 ¥ e v,
T ETh 1=1]
T -3 r .
Tt J Vij,i5 X 4T D3 ) x(ay ) = - | X e e W,
Ter, U i=1 B |

the solution (¥,)\) € VX W of which is characterized by : A = u is the deflection-

, . - < s ' -,
gwij) vlth_wij 3k u,kl (i,] 1,2), wij ? being the

of Ehe bent plate, V¥ iik
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'actual' bending and twisting moments in the pl

wzz = D (v u 11+ u 22) are the bendlng moments

ate, i.e. l1’11 Dy(u jp* vy u 59,

in x- and Xy~ directions, the

,twistlng moment belng w12 = w21 2 Dt u - Then, the change in curvature
b

tensor (u ij) is determined by (4.40) i.e. u
b4

u =u

J12 7 %21 T A0 Y-

Example (4.3) : By putting E1 = E2 = E, vy = v,

in all formulae for the orthotropic case in the

formulae for the isotropic case are obtained,ﬁ
bent plate, 'wll = D(u’11+ Vu’zz), wzz =D(V u

being bending moments in X~ and X, dlrectlons

pectively. Then, the change in curvature tensor

Remark (4.4) : In the equilibrium method of [11

the deflection A = u and the components (u 5 )
are obtained. To determine the 'actual' bendlng

further computation is necessary using the form

,11

= A Vi Y00 T Ao Vi
(4.42)

= V and consequently, D1 = D2 =D

Example (4.2), the corresponding
= u being the deflection of the

1T 8220 iy = ¥y = DUV

and the twisting moment res- -
(u ..) is given by (4.42).
»1]

12

1, [25], for the isotropic case,
of the change in curvature tensor
and twisting moments (w )1 <i,5< 2
ulae given in the Example (4.3).

Remark (4.5) : The anisotropic case [9],[22] can be dealt w1th exactly in the

same way as for the orthotropic case in the Example (4.2).

5. FINITE ELEMENT APPROXIMATION :

Let {Ai} be the barycentric coordinat

{ai T } of a triangle T « T,» oT being the boun
’

sible triangulation introduced earlier. Let P (
trictions to T of all polynomials in X, and X,
k 2 2 define the set of all "bubble functions"
Bs1 (D = {a:q ¢ Lo (D qIBT =0} = {qiq =)
is the set of all bubble functions of Pk+l(T)'
Remark (5.1) : If we would have let k = 0,1 in
Bk+l(T) =@ for k = 0,1.

es with respect to the vertices
dary of T, T, being the admis-
T) be the linear space of res-
and of degree < k. Then, for

of P (T, i.e.

k+1

1AA3 Ps P € P, (D} | (5.1)

the definition of Bk+1(T)’ then

©
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Proposition (5.1) : For k > 2, Bk+1(T) defined by (5.1) is a Iinearnép&ce
with-dim Bk+l(T) dim Pk 2( ). '

For k 2 | we deflne the space of polynomxals Pk 1 = Pl(T) + Bk+I(T) (5.2)
. such that for k I, P (T) =P (T), ' ' : (5.3)

for k = 2, P (T) = P (T) + {A1A2A3 a} ‘ | (5.4)

with oo ¢ R .

Now, we introduce the follbWing finite dimensional spaces : For k = 1,

Iy =00y < ¥ 0= O3 <5 < 20 bpijly € 2D ¥T e} o (5.3)
= . 0 5 * - ’ .

W= X e °@, plr € i (D ¥ ¢ Tp» Xy lp= 0} | | (5.6)

such that

- I - -

y_hczcg, whcwcHO(Q). | (5.7)

Proposition (5.2) : (i) For k = 1,

- dim Wh total number of interior vertices in 0
(ii) For k > 2,

total number of interior vertices in Q +

dim W

(dim P, _)x Number of trianglesin ) .,

k-2

' Now, we can construct the equilibrium f1n1te element problem (Qh) correspondlng

to the continuous problem (Q) as follows : Flnd'(W Xh) € —h X Wh such that

A(Wh,Qh) + b(@h,k V@h eV (5.8)

) =0 Vi
(Qh) h h

b(Wh,Xh) = - <f,xh> 0,2 Vxh € wh, (5.9
where A(.,.) and b(.,.) are defined by (4.24) andv(4‘25) respectivély.

We make the following important assumption (external ellipticity condition or

Babuska-Brezzi condition [13] )

N 56, %) |
(a3) : 4 B, > 0 such that sup 2 Bl x|l ¥y, € W/
B . 6 I Xp n €Y

: he Xh h it .

Bl beihg independent of h,
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Remark (5.2) : It will be shown later that for a specific choice of degrees

of freedom for tensor-valued functions i.n‘y_'h (see Proposition (5.3)), the

assumption (A3) holds (see Proposition (5.4)).

Theorem (5.1) : Under the assumption (A3), the equilibrium finite element

problem (Qh) has a unique solution.

Proof : Since (Qh) is defined on finite dimensional spaces Xh’ Wh, it is

sufficient to prove that .if ﬁph,Xh)e v, x W be a solution of the correspon-

ding homogeneous system :

ACY,0) +b(9,0) =0 ¥ &e V. - (5.10)

b(wh:Xh) =0 VXh € Wh’ . (5.11)

then Wh =0, Ah = 0.

In fact,'from (5.11), b(Wh,Kh) =0 => A(Wh,Wh) = 0 <=> Wh = 0 (by virtue of
(4.28)).

Then, from (5.10), b(_ibh,)\h) =0 ¥¢ e Vv & >\h = 0, which follows from
(a3y. ‘

Since the existence and uniqueness of the solution of the problem (Qh) have been
established under the assumption (A3), now we shall show that (A3) holds, if

we introduce the degrees of freedom for functions in V, in a specific manner.

AN

Let Sh be the set of sides in the triangulation T, such that Tz ¢ S

h h

(I <1< 3) are the three sides of a triangle T e T, -
¥T € Th define the following linear space YT as follows

h ' %7 @nigdi<i,5 <22 Phiz T Snors 9ngg © B ¥ o= L2

(5.12)

where Pk(T) is the linear space of restrictions to T ¢ T, of all polynomials

h
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of degree < k in variables x, and x,, k > 1.

1 2?
Then, dim V,, = 3(k+2) (k+1)/2. o
Consider the set I, of linearly independent linear functionals oni_X_l.T defined
by : For @h = (¢hij) € XT o

.l‘ * . ° . )
I, =1 J Mn(®h)q ds, q e.P(Ti), 1 <1i<3; J_Knéﬁh)q ds, q € Pk_l(fz), |

T *
T. i T,
i- . . _ , i :
1 <1< 3, J ¢hij b,ij p dT, beBk+l(T), P € PI(T)} , (5.14)

Card(Z;) = 3(k+1) + 3k + 3k(k=1)/2 = 3(k+2) (k+1)/2 = dim ¥, (5.15)
Lemma (5.1) : For .1 <k < 3, ZT defined by (5.14) is ZT—uni301vent.
Proof : For | < k £ 3, the proof of the X.-unisoivence of ZT can be found in
[12]. '

In [12] it has also been stated that for k > 3, there is no proof
for the XT-uniSOIVence of ZT. But recently the following result has been
obtained : ' '
Lemma (5.2) : For k > 6, ZT defined by (5.14) is .not XT—ﬁnisblvent. .
Proof : It is sufficient to show that for k > 6, 3 @; = (¢;ij) # 0 in XT such
that '

* * . ‘
J*Mn(éh)q ds = 0, q ¢ Pk(Ti)’ 1 <1<3; (5.16)
T.
i
. Q)* * < , '

J;Kn('h)q ds =0, q ¢ Pk—l(Ti)’ 1 <1 <3 ; (5517)

T \

J ¢hij b,ij pdT=0, be Bk+l(T)’ P € Pl(T). (5.18)

The proof is given in three steps.
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Step 1 : For .k =2 6, the following auxiliary set Z; of linearly independent linear

. * *
functionals on XT defined by : V@h = (¢hij) € XT’

-r .
* * N *
L = { J* Mn(Qh)q ds, q ¢ Pk(Ti)’ 1 <iz<3; J* Kn(®h)q ds,
T, .
1 1
* . * * ’
T

) bdT, b € Bk+2(T) } (5.19)

+

* *
J 12,1 * %h22,2

T

is not !T—unisolvent.

k(k+1) + k(k+1)
2 2

3(k+1) + 3k + k(k+1) ‘ (5.20)

3(k+1) + 3k + 3(k-1)k/2 = dim XT .

3(k+1) + 3k +

S8ince for k = 6, Card(Z;)

A

Z defined by (5.19) is not- VT-unlsolvent,and hence, for k 2= 6, there exists

a nonzero = (¢h .) € V (i.e. 4 ® = (¢h1J) #0 in ¥V, ) such that
J M (@ qds =0, qe¢ Pk(T;), 1 <iz<3, (5.21)
T
! L * .
j*Kn(Qh)q ds = 0, q ¢ Pk—l(Ti)f 1 i< 3, (5.22)
T. '
1
f( * + 6  YbdT =0, be B . (T | (5.23)
J ®ni1,1 * %n21,2 - € Biyp (M S
! .
(@ + o7 )bdT = 0, b e B . (5.24)
J ni2,1 * %n22,2 =0, beB M. ‘
T
Step 2 : For k = 6, for any nonzero @; = (¢§ij) € !T satisfying (5.21)-(5.24),
*
M (2) =0 on 0T, _ | (5.25)
X . .. =01in T. (5.26)

Since Mn(QEIT*) € Pk(T;)’ 1 <i < 3, from (5.21), the result (5.25) immediately
follows, if wé choose q = Mn(¢;|T;9,_l S‘i < 3.
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*

% - (1
Now, we prove (5.26) @h = (¢h.j) E.XT => (¢h11 Pt ¢h21 2) € P _ 1( ).

Then, choosing b = Al 9 3(¢hll Pt ¢h21 2) € Bk 2(T), we get from. (5. 23).

* .
| f(¢hll 1 ¥ %1, b MAghy T = 0.<=> gfy |+ Gy 5 = 0 in T, (3.27)
T
since Ai >0 in %, 1 <i <3, ' ' ‘ | i
‘Similarly, we get from (5.24) : ¢h12 Pt ¢h22 2 =0 in T. (5 28).
Now, dlfferentlatlng both sides of (5 27) and (5.28) with respect to X, ‘and Xy
-respectlvely and then adding, we get . , ‘ v
=0 in T, (5.29)

%ni, ij

Step 3 : For k > 6, any nonzero @h (¢hlJ) € -T satlsfylng (5. 21) (5 24) will

also satisfy'(5.16)—(5.18), i.e. for k > 6, ZT defined by (5.14) is not VT-unlsoIVént.

‘For k 26, (¢h1J) € V satlsfylng (5. 21) (5.24) satisfies (5. 16) and
(5. 17) So, it remains to show that such a nonzero @ = (¢hl e V will also

satlsfy (5.18). For this, we write the left hand 51de of (5.18) as follows :

o o, -~ .
For b ¢ B (T), a eR, i =0,1,2, »JT ¢hij b,ij(oc0 + o X azxz)d? 5.30)
o o = * p * -
* % . ¢hij bij 9T+ oy J ¢hlJ by X1 9T + o JT nij P,i5 ¥2 9T
Now, for k = 6, if each of.the-three'integrals on the right hand side of
(5.30) vanishes, then for k > 6, any nonzero @ = (¢hlJ) € yT satisfying
(5.21)~(5.24) will also satisfy (5.18). Hence, 1t is sufficient to prove that
for k > 6, for nonzero @ = (¢hlJ) ¢ Vp satisfying (5.21)-(5.24), we haye :
* . ’ . . N '
j ¢hij b,ij dT = 0, b ¢ Bk+l(T), _ . (5731)
T , .
J ¢hij b,ij xldT =0, be Bk+l(T)’ _ (5.32)
T ‘ , .
(6. b dT = 0, b ¢ B . (5.33
| %nig P15 ¥29T =0, b e B (D). | (5.33)
T . .

\

From the Green's formula (Corollary (4.1)), we have : ¥ @h = (¢hij) with

¢hiJ' = v¢;hji 3 Pm(T)., mz 1, ¥b ¢ VBk*](T), k >2,
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| 3b
| Onij P13 4T 7 | ®hiz,ig D977 I M ()75 ds. (5.34)
T T dT
First of all, we will prove (5. 31). In fact, for k 2 6, for any nonzero @E =
(¢h13) € Vo satisfying (5.21)-(5.24), we have (5. 25)=(5.26) . Then, the

equality (5.31) follows from (5.34) (5.25) and (5.26).

. * * .. -
Now, we prove (5.32). Since X, ¢hij = X ¢hji € Pm(T) ¥i, j = 1,2, m = k+l,
from (5.34) we have : for k 2 6,

@F.. x)b ., dT = | (x; ¢4 b dT + (M ((x,05,.0) 22 d

| @iy *0P, 45 X by557 )45 J¥a (G350 30 @2

T T AT

h = (¢hlJ) € VT satlsfylng (5.21)-(5.24) , we

\ have : M ((x ¢h J)) =X, ¢h13 n, nJ 0 by virtue of (5. 25) Hence, for

Since for k = 6, for nonzero

> 6 for nonzero @ (¢h .)€ YT satisfying (5.21)-(5.24), we have from
(5.26) and (5.23) '

* ' f * * * *
J(¢hij xb g0 4T = JLOge ) it G021 @ 0p01) 21+ 1 %n22) 22757
T T
* - * * _
= 053,157 * 2] G ? Pha1,2) BT =0
T T

Similarly, (5.33) is proved. Thus, we have proved that for k = 6, 4 a nonzero
* * . .

@h = (¢hij) € XT such that (5.16)=(5.18) hold, 1.e. for k 2 6, ZT defined

by (5.14) is not.yT—unisolvent.

Proposition (5.3) : For ] < k < 3, the degrees of freedom (Z1) for tensor-

valued functions @h = (¢

hlJ)e V can be defined by the values of :

. % . . ' ¥
(1 = J Mn(®h)q ds, q € Pk(Ti), 1 s1i<3; j Kn(Qh)q ds, q € Pk_l(Ti), 259
™ % e

i . i 1 £1< 3,
j ¢hij(k1k2k3p),ij qdT, p e Py _,(D, q ¢ P, (D).
T .

Proof : The resuit follows from the Lemma (5.1).
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Remark (5.3) : From the Lemma (5.2), it follows that

in (5.35) do not deflne degrees of freedom for funct1ons ®

k = 4,5 the problem is still open i.e.

in (5.35) define degrees of freedom for functlons @

Define
Z(f) {@ 2eV, b(2,X) = = <£,x g ¥ e W
b
: (5.
2=12(0) = {2:0 ¢V, b(d,X) =0 ¥ e W ;
Eh(f) ={®h :@h € Xh’ b(@h,xh) = - <f’Xh>0,Q Vxh € WH} , S (5.
Z, = 2,(0) = {¢h 0, € Yy, b(@h,xh) =0 ¥, ¢ wh} , - G
Z and Eh being subspaces of X and !h (< V) respectively.
We can rewrite (4 25) as follows
¥ € V, VX €W, , ' ‘ :
b(®,x) = - T J ¢i. i3 X dT - 2 B(a,d) x @)y (5.
T €T J»13 . aeN ' :
h T oh !

where Noh is the set of interiof vertices of T, in §

Lemma (5.3) :

h

1t ¢ = (¢hij) € Z,, then

O in each T ¢ T

%nij,ij = h

B(a,@h).= 0 at each vertex a e N

oh’

where B(a,@h) is defined in (5.39).

Proof : The following proof is given in [25].

Let

=>; %

T € Th

We pfovevfirSt (5.40).

assume k 2

as follows :

(¢h13

) € Zh. Then, Vxhesw b(@h,xh) =0

N

oh

J'¢hij,ij Xp 4T =
T _ a

Let (Z1) be the degrees of freedom of @h

for k 2 6, (£1) defined

h’ but for

it is still not known whether (Zl)

€ _\_{ or not,

.

¢ V, defined in (5.35).

(5.

(5.

'E  B(a,9))x (@) = 0

For k = 1, the (5.40) is trivially satisfied. Now,

2. For any fixed T ¢ Th, for any @ (¢hlJ) € —h’ choose Xh

36)"

37)

38)‘f |

39)

40)

41)
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(-]
q)hij,ij X1A2A3 { in T = 1nt(T).

Xl = o (5)

Then, Xh € W and V@h € -Z-h ,
2

b(@h,xh) = - J(¢h1_],1_]) A >\2>\3 dT = 0. => (bhij,ij =0 in each T € Th
T

Now, we prove (5.41). Let a € N be an interior vertex of Th and k = 1. Then,

3 at least one function ;{h € Wh such that

- B(a,@h) for x = a
xh(X) =
for x e N = {a} .

. ~ 2 ‘
Then, V<I> € _Z_ b(@h,xh) = - (B(a,@h)) = Q0 => B(a,@h) =0 V@h € Eh .

Although -?—h ¢ Z in general, but in this particular case of

conétruction of _\_I_h, —Z~h cZ.1In fact, we have

Lemma (5.4) : Let (Z1) be the degrees of freedom of @h € -Y-h defined by (5.35).
Then, the inclusion Z,c Z holds. ’
Proof : Let (Dh € Eh' Then, from (5.40), (5.41), b(@h,x) =0 ¥ eW =.><I>h€ Z.

Now, we define the linear operator _Iihez (_Y_,y_h) as follows [11] , [25] :
¥0 € V, H<I> € V. such that ’

—h —h

[ M (0= I, ®)qds =0, q ¢ Pk(T*), e 5, 1 Sk s3 (5.43)
* .

J*K —_I_[h<1>)q ds = 0, qéPk_l'(T ), T € Sh’ 1 £k <3 (5.44)

T N

J(¢ (I 9) )(>\1 A3 P). ,ij @ dT = 0, p € P (D q € P (D), (5.45)

T

1 <i,js2,2<ks3

Lemma (5.5) [25] : Let [[_h 2 VY be the linear operator defined by (5.43)-
(5.45) . Then, ¥ ¢ V, b(d- Eh(b’xh) =0 Wy € W - (5.46)
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Proof : Fromv(4.14) and (4.25), Vxh € Wh, ¥oe V, b(d- Ehé’xh) =

’ ' 3¢ X '
h )
-7 -] - - __ -
| [JT@ L0, X5 4T I | M T 02 - K (e e)x Jds]
, _ i=17 %
Te Th T.
- 1
= T*E < J . Kn(CD— II_hCD)Xh ds = 0, since
h T .
* : - NAp % .
Xth € P (D < B (D ¥T e Ty = E}TlT‘E Pi(T), 1 =i <3,
O ) i .

(Xhl']_),ij = ()\1)\2)\3p),ij with p € Pk_Z(T)

h

f :
-5 - = . - . .
JT @ g_h<1>)ij Xp, i dT = 0 ¥%¥beV, ¥T ¢ T " 3 | ‘

, 9X
o h
JT: Mn(®~-gh®) T ds =0 ¥ eV, ¥T ¢ T} 3

and last integral vanishes by virtue of the continuity of Kn(<I>- th)») at the

interelement boundaries of Tpo continuity of Xy, and Xth = 0.

Lemma (5.6) [11],[25]: Let {Th} be a regular family [12] of triaﬁgulations of Q

and Eh ‘Zf(!,yh) be defined by (5.43)-(5.45). Then, 43 c* > 0, independent of
h,'éuch that ' '

| mell = c'lell ¥ e V. . : ' (5.47)
v v '

Moreover, ¥ ¢ (HkH(Q))4 nv, 4 CT > 0 independent of h, such that

for 1 <k £ 3

* hk+1-9;

e - ‘g_hq>|| < c1 |o| 0 < 2 < k+l. (5.48)
. i Q2

Q k+1,Q"

7

Proposition (5.4) : For regular family {Th} of triangulations of Q and for

degrees of freedom (Z1) defined in (5.35), the assumption (A3) holds.

! ~h
by (5.43)-(5.45). Then, from (4.29) and (5.47)», we have Vxhe Wh,

Proof : Corresponding to (Z1) defined. in (5.35) let I ef/ (X,y_'h) be defined

| B ,x) | b, 2,x,) |

Sup ——— 2 Sup —————
o e ¥y H@Phllv 9eV HEI‘;PHV

. lb@,xh)’l‘ncbnyz N

oy ldly llmal, ¢t MO
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from which the result follows with 8 = g/C*> 0 .

Corresponding to (£1) we constructed Eh € o'('»(y_,_‘_l_h) to prove that (A3) holds,
which, in turn, assures the existence and uniqueness of the solution of the
equilibrium finite element problem (Qh)' ,

But, conversely, we have

Proposition (5.5) [13] : If the assumption (A3) holds, then 4 an operator
Hh e,;f (X,y_h) satisfying :

b(@—EhQ,Xh) =0 ¥o eV, Vxh € Wh,

*
lmefl = LBLH o|| , m* and B, being positive constants in (4.27) and (A3)
Y 1 v . '
= - respectively. ,
Moreover, we have the following interesting result which we do not need for

our subsequent analysis

Proposition (5.6) : Let {Th} be a regular family of triangulations of . Let -
(Z1) be the degrees of freedom of <I>h € Xh defined by (5.35). Then, 3 an ope- .
rator T[;tl e L (W,Wh) such that x

b@,xT) =0 ¥ e W, | (5.49)

*)

HIIthw < C;HX || for some C, >0, ¥ e W. . (5-59);
W .

Proof : Let (Z1) be the degrees of freedom of @h-e —Yh corresponding to a
regular family {Th} of triangulations. Then, from the Lemma (5.4), we have

_Z_h c Z, and the result follows from the Proposition 3 in [13].

6. ERROR ESTIMATES : Define

— . 0.5 !
X, = {xh t X, e C°@), xh[T € P (T) ¥T ¢ Th} < W,. 6.1)
Then, for k = 1, we have from (5.3) and (5.6), X =W (6.2).
Let By ¢ | Xh be defined by : :
¥X °@ . = < 3 < . .
eWecC @, gy, xeXh and (ghx) (ai,T) X(ai,T)’ 1 €153, ¥T € Th (6.3)

-
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?emark'(6.l) T ¥y € W, gpX is the standard Lagrange interpolant of X at

the vertices of triangles T e Tp.

groposition (6.1) : V@ ¥x ¢ W,

h’

Proof : Since (x- ghX)(a ) =0 ¥i=1,2,3, ¥T €T

b ,x - g0l s |l®hH Ix - epxligq” - (6.4)
where 8 EVi (W,Xh) Ais defined b-y (6.3).

b’ the résult,follows

~from the application of the Cauchy-Schwarz 1nequa11ty to (4.25).

_Theorem (6.1) : For 0 < h < 1, let {Th} be a regular family of trianguiétioﬂé“bﬂ

of O . Then,. d constants Cl; CZ > 0, independentvof.h,}suCh_that

|| ¥ <c v - Eh"“ o ¢ N ‘ . (6.5)

\l’h“ OQQ

. 1..I.
‘where (W,A)-élz b W’(Wh’kh) € Yh X Wh ‘are the solutions of the,ﬁroblems Q) ..
and (Q;) -respectively, : :
Iy ef(X:Xh), 8h € L W,X,) gre defined by (5.22)=(5.24) and
(6.1)-(6.3) respectively.

a

Proof : From the Lemma (5 3), ¥0 ¢ V, b (o~ ~h®’xh) =0 VXh € Wh.

Then’ b(‘}" I_I_hqj’xh) =0 Vxh € wh => b(]_'[h‘lf ’Xh) = b(Y’Xh) = = <f )')(h>

Woe W, = LY e 2,(5) (by (5.16)). | o ©.7)

Since ?h € Zh(f), W, € Eh(f), Yoo Oh € Zy =¥, - e Z

by virtue of the inglusion Z, < Z proved in the Lemma (5.2).‘Then,

.bCYh*®h,lx—‘xh) =0 ¥ @h € Eh(f), ¥ W, N&h e W, -

Hence, b(¥, 2 h,k A =0 V@h € Zh(f) = b, - LY, gixh) = 0 _ (6.8)

by (6.7).
Agaln, from (4.33), (5.8) and (6.8) we have AC¥4?hJ¥h IIHP) +

b - TL¥, A% )—A@%hﬁ -gw)so. - ~ . (6.9)

Then, from (4 26), (4. 28) and (6. 9), we have

-
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' 2
o ¥, - ¥llg o < Ay -Lyy - I
= AWS VY - Y- ALY - LYY
= AM- LYY -ILY) < M| v- Iyl 0,9“ Y- ghw“ 0.0
=>[ ¥, - I, ¥| sElv-myl - (6.10)
ho=hlo,e T, ~n*llg,0 :

Now, from (6.10) and the inequality gy - Wub’ﬁ <|| W—EhW“ 0.9 +;[Whjghwﬂ.o,g ,
the result (6.5) follows with C1 = (I+M/q£ > Q.
Now, we prove (6.6). From (4.33) and (5.8) we have : V@h eV

b(2,,4,~0) = A(¥-¥,,0.)

=> b(®,A ~g A + b(@h,ghx4x) = A(Y-Y,,0,) Vo, eV

v, (6.11)

where & 655 (W,Xh) is defined by (6.1)—(6.3).

Then, since for 1PN qL(V v ) defined by (5.22)-(5.24) correspondlng to (Zl) in
(5.12)-(5.14), the (A3) holds, we have from (6.11)

|b@, 2,8, M) |

Bl“ Ah-ghA][O’Q < Sup

Ppely  loyl
h~ —h h v
. A=Y .o )I |b(<I> sA=F )|
< Sup 1—1——]fl—ll— + Sup || h! h
¢ eV ||® o eV ¢ |
h™ —h h v h™ —h h v
< M ||y - ¢l 0.0 * A - gl 0, by virtue of (6.4))
1 .
»> IIAh - gl 0,0 ° (M/Bl)|[w—wh 'b,Q + ‘B}'“A - g Al 0.0 (6.12)
Now, from (6.12) and the inequality | A= A f[ 0,0 ° < | a- ghKH 0,9 +l|A ghAH 0,0 °

the result (6.6) follows with 02 = max {1l + El y M/Bl}

The final result is given by :



. C

_31_

Theorem (6 2) : For 0 < B < 1, and let Xh’ Wh be the finite dimensional

’vector spaces defined by (5.5)-(5.6) corresponding to a regular family {T }

of triangulations of Q and the degrees of freedom (£1) defined by (5. 12)—
(5 14).

If the solution u € H Q) of the problem (P ) belongs to Hk+3(Q) n HZ(Q),
k+1

l Sk <3 ‘such that a HYH ) vi,j = 152, ‘then J constants C
Sijml ,ml 3
gnd C4 > 0, 1ndependent_of h, such that
- vl < ooy BNl g (s K S3) s L (61d)
0,0 573 kel (1S K 2200 : T
BT 2 ‘ | o
10 =2l gg 5 R UMy * 9] ppy g ) LS K 23, (6.14)

where (¥;1) e VX W is the‘solution of the problem (Q) with A = u, Yy =-(wij)’
1 <1i,j £2, le 1Jm1 ,ml ¥i,j = 1,2 3 (Wh,kh) € Yh X-Wh is tﬁe equi-

11br1um finite element solution of (Qh)

Proof For lgkg3let u € H (Q) n H () be the solution of the problem (P )

with a, 1jml u 1€ Hk+1(Q) ¥i,j = l 2. Then, the solution (¥, k) e VX W of ,
. ’
the- problem (Q) will have the regularity defined by @
Y= u e HY3@ nEO@, ¥ = W) € oyt 1sks 3, (615
: e o _ ) gkt '
since ¥i,] = 1,2f wij ?ijml A,ml a.ljml u,ml Q) by
- virtue of (4.36).
: , k+l
Then, from (5.48), we have‘:l\W—HhWHo’Q s Cl lWlk+1 Q 1<ks3, (6.16)

and the result (6.13) follows from (6.5) with C3 = C1 C1 > 0

Now, we prove (6.14). Since (ghk)l € P (T) ¥T € Th X € (Q) n HZ(Q), 1< kg 3,
' . 2

we have the classical result [12: || k ghXHO q = Cg h ‘A‘Z; Q, | (6.17)

Gy > 0.

Then,_from (6.6), (6.16) and (6f13)? the result (6.14) follows with

” = max {Czcsf 0203} > 0.
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7. °  Numerical Experiments ‘ - 't

For the purbose of COﬁputatiQn it will be much more
convenient [11] to relax the constraint of 'continuit;' of Mn,pnf
and Kn across_intefelement 5oundaries of Th in the definition
of the admissible space V,(5.5) of the equilibrium finite .
element problem (Qh) (5.8)=(5.9) by introducing suitable Lagrange
multipliers and to construct an associated newldisc:éte prqbiem
(Qﬁ) equivalent to (Qh)\in certain sense. fheno‘computations
for numerical éxperiments on problems of interest can be easily
carried out using this new scheme.(Qi)_instead of the scheme (Qh).
Hence:, before dealing with the numerical experiments involving‘
:cometations: we are going to construct this new disc;ete
pbob\em (Qﬁ)-and establish the relation between the problems
;t(Qg) and (Qh)- For this,co;responding to T+ we introduce the
finite dimensi?nal spaces M, s Mzh'as.follows; For fixed k2 1,

M = (M plhlL € P(L) L esp, | =0},

(7-1)
o _ ,
€ Pkfl:rJ) WL € SO, pzhlr, =01},

Mon = hpt Mol 0

where Sg is the set of interior sides L of T, i<e.
o
Lesg =LY TyL ¢S
Now, corresponding to Th' we define the finite dimensional

product space gh of Lagrange multipliers and XE as follows;

M= lppe 0y = gy wieh by € e By € M)
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_[Eﬁ §* - (¢ﬁij)

1<i,j

<, s ST o1 ¢

?;;i_j I'T € Pk(m) ¥T eTh} | ) (7-2)

yit‘n vy g vk -

Define the bilinear form c{e s ); VE x M > R as follows;

s

v, - ‘¢mj) € Vi By = (Hpe Hpp) € My o

" ‘ - > ' ‘
e(Byr by) o in SBT"[ulh Mp (O} Ingeny, = By K (85 Jas,

where n, is the unit normal exterior to T ;n; is one of the
two unit vectors normal to L € Spr L Cor 3

> > . o) . - y »
npenp= £ 1 5for L€ S C s, withL=T; n Ty1 k5

. - > > e T
aTi.nL = =( nTj- nL)’ nTi and nT ?elggsﬁgézl‘r;gfwc_ls exterior to T; and
_ : e

N Then, the new discrete problem (Qﬁ) is defined as follows;

Find (Y* )\ﬁ ph) € X Wy x M. suqh that

h

awf, B + Bl Ag) + (Bt up) =0 B e

| (7.4)
(g BBy Ty) = =<8 K > g Ty, € N (75)
clgheup) =0 VEpe Mo e

,vibe)re the bilinear forms A(gn')o ble¢e )s clerse) are defined -
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by (4.24),(4.25) and (7.3) respectively.’ , .
Lemma (741): (1) §* € v} . c(Pre B,) =0 uuh e M <= >§£“’h

. ) (707)
where V. is defined by (5.5). '

~h :
(11) (o) = 0 VB e Vb >y, =0 €M (7.8)

Theorem (7-1): Let (A3) hold. ‘Thens if' (P Afe ) € VE xWoi -
be a solution of the problem _(Qg)o Tﬁ = ‘I’h"e_,\_lhl lfl = xh € wh '
such that (‘i"{ll )\E)'e V)W, is the unique'- solution of (Qh_)." ‘
Proofs Let (‘I’go _XE; ;_{_ﬁ)e Vﬁxw XMy be a solution of (Qﬁ)."
Thens (7.4)-(7.6) hold. From (7.6) and (7-7)¢ B e Vo

'_‘. . - R . But from (7.7). ﬁh € Yy ->,>c(§h.u )=0

. _ . ' . L]
uzhewh. b(¥fe ) = =-<% 0> orp 2
iees(¥¥, Af) €V, x W is a solution of (Q) and its uniqueness

. ) ) ' ’ 3 o= o - *
follows ffom tbe Theorem (5. l)A w%th ‘l’%‘l ‘Ph €V A ¥ )\;he Wh

Theorem (7«2 )s Let (A3) holde Thens the problem (Qg) has a
unique solution. ’

Proof; Since .(Qlfl) is a finite dimensional prob-lemp for the proéf
of the existence and uniqueness of solution of (Qf)s it is

sufficient to prove that the corresponding homogeneous problem; -

g Bp) + DBy Af) + (B g =0 MR ey (799
B(T¥ 'xh) =0 ¥ €W . - - (7710)
c¥f B, ) =0 WK, €M ., S | (7.11)

has Only trivial solution ¥ = O € Vi oA = O € Wy

k¥ = 0e M. In fact, from (7.7) and (7-'11)} v € v, and
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é(ﬁh'lih)' = 0 Vﬁh € th Vy_g- 3 Tﬁeno for Y£€ _V_ho

’ §h) + b(@h':);g) =0 'VEhG‘Xh.o, o "(‘7?"12_), o

| By A) = 0 ¥ AL, euy N S EP R

= Y =0¢€ V. xg} =0 €W, is the unique (trlvn.al) solution of

(7.12) (7-13) by the Theorém (5.1) Hence. from (7-9):

- C(ﬁh: u¥l) =0 Vﬁ'ﬁ —> -Eh = 0€M by virtue of (7-8)-

Equivalence of (Q¥) and (Qh)<

From the Theorems. (7.1) and (7.2) it is obvious that the

. 'twe problems ( ) and (Q ) are equivalent in the sense that the
%

- first two components Y*' )'?1 of the’ solution (W%‘lo l*o u*)e erxw x Ivlh

of the problem (Qﬁ) define the unique solutlon (Y*okh) eV xwh
of the problem (Qh)- Hences instead of the scheme (Qh?; the ne_wv
scherﬁe () can be used and will be much more ~.c‘o_ﬁveriient for
numericai computations. 'sinee it will‘be' muAch easier

(i) to construct basis functions in y_ﬁﬂian in zho

- (ii) to develop more efficient computer codes for the solution of

~ algebraic system of equations of the scheme (Q]t‘) than of the ‘
- scheme (Qh).

Both (1) and (ii) result fmm the relaxatlon of the
- continuity requirements of the space 2% (545).

. Beduc»tion of (’Qg) into Matrix Form;,

For the computatlonal purposes, it is necessary to reduce -
the problem (Q{l) to matrix forms and the procedure for such . a.
reductlon will be outlined here. Let N1.N2,N3 be the dimensions
i jiN2 N3
and {§ }i—l (g Jj 3 {aie ]c o be the bases of spaces Vf‘: neMy

respectlvely- Then the components of the solutlon (YE:AR: &h)e
x W b4 M.h can be represented as follows-. :
N3

h

‘5

‘v
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where (aloﬂ tece s 1)6 R l: (Bloﬂzeuocﬁﬁz) €R 20 (Yll'qu-"-'IYN311}..;ERr]3,

.Now: define the matrices fA]:[Bjo [C] and the vector F as followss

[A] = (a )NlXN]. Wlth a = A(ﬁm § Jo 1 \"mc n< Nll

gith bij o(Prigd)e 1S 1< NL, 1S3 SN2

(] = (245 1502

: [:C] = (Giz )Iql};[NB with Cib C(‘lﬁi)/»_k&)l 1<i<Nl, l<g f <N3
(7.15)

L e nd
F = (F lelooolF ) with FJ = e <fa% >0, 9 <j gNZI

where A(.:-)o b(-o-)o c{es. ) are defined by (4.24). (4.25):(7,3)

respectivelye. _

Thens the problem (* ) can be written in the matrlx form as followc
Nl+h112 +N3

Find (a.f:Y ) €R such that

] B[]

5]t [o] [o] B | = E . (7;716)
l* ) ) \v ] |e o

ia
\
oo {O

where [a].[B]: [c] and B are defined by (7-15). [B]® (resp [c]®)
is the transpose of [B] (resps [eh, a = (alaazoo--pa l) ’
B = (B1eF, recssfrpy) e, Y = (Ylowzp;;;oyﬁ3)to The coefficient
matrix in (7.16) is symmetrics but not positive definite. Hence;
for the solution of (7.16), the Cholesky or modified Cholesky
" method of decomp051tlon or the standard Frontal method can not be
directly applied in general. But the matrix EA] is symmetric and
pdsitive-defipite; By assuming basis functions of y& independently
in each triangle T E Th as shown in the sequel. [A] can be given
a block diagonal structure: ieces

S by 1 B (7:17)

where the triangles of T, have been globally ordered by humbering

NT
them as'TysTyseee ¢TIy with 511 T, =00 Ty LS Ty for i ¥ je NT

. being the total number 0of triangles in T [AT ] is the contri-

"bution only of the i-th triangle T 1‘< < wh.

»
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Hence. [AT 1,1 < i <NT, can be inverted immediately
aftcr its constructlon at the i-th elecment level. [AT } being
71
symmetric, positive—definite and of order 3(k+2 )(k+1)/2. Thus
, - - -1
SR IR e Y N R L
: 4
' 1 : NT

e

where only the biock diagonal matrices of [A]"l are shown: can be

easily constructed with the help of [AT ]-l )l € i € ¥?- Theno
N ' 1
from the first equation in (7.16), we get

o =-[al"t [8)g - [a]7Y [cly o - (7.18)

and for B and Y o wa have

Wl (E\=[2 |, (7.19)
8 ) ‘ | |

where

[1ta11 ] [s1%[a]~ [c] o
[K] = ’ ' ' (720)
[cIal ] [I*a]) [e]

is symmetric and pOSlulve~deflnltC.'

Nows (7.19) can be solved easmly by the (modlfled) metnoq of
Cholesky decomposition or the Frontal method for E: « Finallyo
a 1s,detcrm1ned froin (7-18)-

Remark (7+1): Preconditioned Conjugate gradient methods or other iteration
techniques may be used for the solution of (7.16). Then: the

.- inversion of [AT Je 1 € i< NT at the element level will not be

necessarye There are other tecnnlqucs too for solving (7-16)0
But in the numerical experiments to. be dealt with here., the above-
mentloned procedure (7.17)-(7.20) will be followed.

Construction of Basis Functlons-

Now, we shall indicate brﬂefly Lhe procedures for construc-
]Nl { ) 8 ( E} lin ¢ W ‘o
_ i=1 ’L =1 v%

Mh introduced in (7914) so that the standard finite element com-

tion-of basis functions (ﬁl

putational procedures can be conveniently carrled out on computerse.
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i) Basis Functions in Vf: Since tensor-valued functions in W are

not required to satisfy any continuity requirementls at the inter-
element boundaries or vertices of T,,» these can be'qssumed indepen=
dently in each triangle T € T, and consequently, the construction
of basis functions in \_Ir‘ gets very much simplified as shown below-
Consider any triangle Tj' 1 S j<NT. For fixed k 21, let

te: 3N . N =aim P (T,) = (k+2)(k+1)/2+ be a basis in P(T.}s
. TJ. i=1 k75 _ )
1< j< NT. Define for 1<i < Na
i )
¢ in TJ ¢+ 1 <j<NT
. . . j -
¢N( J—l )+l = | ' ( T2 1)
- o} outside Tj - -

Now, define for 1< j < NxNT,

PO (¢3,o.o,o). §3(J"1)+2 (0, ¢J.¢J.o), §3(J'“+3 =(0,0:0065

{(7.22)

Then. fﬁl ]Nl defines a basis in \l with N1 = 3NxNT.
i=1l ' :

Remark (7.2): For such a choice of basis functions in Vﬁ as in
(7.22)s the matrix [a] will have a block diagonal structure (7217 )

allowing inversion of [A Jo 1 < i < NT at the element leveld
i

ii) Basis Functions in Wh: For X = 1, the degrees of freedom

2, for the restrictions of functions’)(,h ewh to each triangle
1.7 .

¢ 4 . _ 3

T ®Ty, are given by. Z' —[%(ai T)} 1 ¢ Where [al T ] i=] 8%
the three vertices of the triangle T» suc"l that %i = )Li (7.23)
(i 1¢2+3) are canonical bas:Ls functions in P*(T) = (T)

satlsfylng the property; %T T) lJe 1 s ir j < 3o _
[Ai] f=1 belng the- barycentrlc coordn.nates of a point in T € Tpe

1

'aZl_T

' a
aa'T 1l,T

For k = 1» consider all the interior vertices and order them



»

wy

o

| fuzictiozis ’X.h €W to each T € Ty, 'ar'egzzg o =§‘¢h( ay,plel £

L5
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] Yon and introduce the degrees of freedom }‘_, [’1’1( ai)] Yon
i=1 ' '

as[a

and construct canonical basis functions ['Ll] oh in Wh associated,

. S i=1 -
with each interior vertex a; e 1 < i< K oh such that

(1) 'x,i(aj)yr. 8¢ 1<i¢ j s 'Noh ‘ |
= o =>ail _~23 _
(11) 8y Seyp forTen, > =23 =2 s1<i<n,
h | 1< _1 3.

dimwh=Nl=Nohfork=l.

For k = 2+ the degrees of freedom 2 for the restrictions of

2

3

where L ay T]- and { bT] are the vertices and barycentre of T
i= -

respectlvely: such that

A (1=92 2 ), ZT = A 2 (1922 1), fz T = A3(1-9x112).' (7.24)

Z‘»} = 27l11213 are canom.al bas:.s ‘unctlons in P*(T) =P (T)

@Al or3 P (T) satlsfylng the propertys

. i .
'x,T(aJ.‘T) = 8;5 e 1 < 1, j <‘3c’lT(bT) =0, 1<i<X 3,

P 4 L C o
Zplbp) = 1. 7, (a; ,p) =0, 1<i <3,
N

Thens considering the set of (ai] O.h of interior vertices of TH
i=1 2

‘and the set of barycentres [b-)m_[" of triangles Tlszoo:o--:pTNTo

i=1

%h(b Je 1 S j <SNT), we can define canonlcal basis

+NT i S e

8 h “in W, 1n a similar way as shown above for k—l with
{1 11-1 | h

Nl h + NT = dim Wh

oah(bT’)}'
. 2

and :mtroduc:mg the degrees of freedom Z = { Zh(a Je 1 < :!_.\ eh'-' -



- 40 -

111) Basis Functions in M_ ; Consider the interior sides L of

g

h' ieee Lessh with NS = number of interior sides of Ty, = oard(s )e
Thene for fixed k = 1, divide each L € Sh into (k+2) (resp.{k+l))
equal parts by means of (k+1) (resp- k) distinct points

'{q{L il (resp. [qJIJ )Von each L to introduce the degreeé of

freedom ZL (resp. T L ) for'ulh € Pk(L) (resp. ”2h € Pk_l(L)>on

each L € Sﬁ as followss

1 2 |

=] L j=1
v | L
Hence, for fixed k = ls }:1= u_ s, g2 = U _ 52
LES™ L LeES L
Lesy, . h -
will define the deo.f. for functlons in M and M2h a55001ated
with the interior nodes . U qiL}k+l ’ (qJ ] res-
L€Sh j=1 L€ h
pectively, and -
cara(z!) = caral U _ (@ y*' ) = = aim My o
. o 1h
I, €S 1L
h - j=1
card(s?) = caral U _(q] }k )= M2 = @im M, .
_ . o} 2h

Now, for fixed k 2 1, ¥ fixed L € Sg consider the systems of

functlonsfuJ )k+l :fu%l}k belonging to My, and Mzh respec-
j 1 j=1

tively and satisfying the following conditions;

wd | epq(ry,ud | =0 wi*drn, xe 9 1< ;<K
L 'Y Tk Ll T = *h

i

j ' j - ‘ ‘ (o} < + <
HzL IL € Pk—l(L)' PzL ‘L* =0 YL* *: L, L*€ Sh e 1 \.J ke

i iy L e o
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Then VL € Sgl Yk 1, Supp p,J =L ¥j = 1le2see00k+1ls Supp “gL = L
Vj = 1'2'..'.".’(’ Consider [ulL]k+1 . U O[p%L}k' o. '
Nows globally order the two sets U o { u{L] k+tl  ang U o[qiak"'l

: . Lesy - j=1 L€s, j=1
by renumbering as [uJ]HMl {q—::’L]NVIl respectively such that

' J"l j=1
Si,rni‘.larlyo we get two sets gl_obally ordered and rehumbered as
{ pi) N2 ]NMZ i sk

[ from U {p . resp-'-
i=1 25 Les) 275 Leo 21)

-ectivély with the property p; (q‘%) = E’ij ¢ 1 <1, 3 <-NMZ- Theﬁ-

[ pl}imi {ﬂJ]NMi define canonical b_asés in Mlh' M2h with resbect
= j= : S ,

to th}e degrees of vfreedom,zl and 22 respectively.

Supp ui =1L € Slo1 with qi € L, 1 <i< M1,

Supp p% =Le sh with q% € L, 1< 5 M2 .

and pl = (pl,0) 1< i <1,
w2 o, wlic 1 s

define a basis in Mh w:.th N3 = NMl + NM2 = dim _b_ih

" In (1) (111) we have already outllned the usual finite
element procedure of constructlon of basis functions in V*o WT
My, ¥T € Ty where VT € Ty VE (resp-W_L),n_s the set of restrlctions
of functions in V¥ (resp. W, ) to T, Myp being the set of restric-
tions of functions in Mh to 'bl‘.'while constructing basis functions
in V* h Mye But for the purpose of computatlons: it is éuffl-
c:Lent to construct bas:x.s functions in % ¢ W"o MaT for the

reference triangle T-
A
with boundary BT exactly in the same way as done for thc generlc

tr:.angle T € T,+ keeping in mind that for T 11 = x . 1 x2:

. - - N . —- - . »
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~

13 = 1—5?1-x .[A. ]1 =1 being the barycentrlc coordinates for T.
Then, introducing invertible affine mappings

PT; 6 ——> T, F;]' sz —_— '.,I“ ¥T € Ty anci using their well known
'properties {121, one gets basis functiocns in y_;, Whe y%T'v generic
triangle T € T

h
'.Izlk

'82(00190)

8>

A 0 — }f —p— 1
o:_’. (O)O) 1) LZ ai ( 1)0)0)

A R‘I ’ A :
For example. the basis functions [351} Nl %fll N of ’ff 1N 4n
=1

£ =1
% ,wa . Ma,l\\ . where §1 = 3(%+2 )(k+1) /2, N2 = 3+k(k=1)/2"
A
N3 = 3(k+l) + 3k, are given by.
A A a2 ~ . A .
OT = L, U L, U Ly + L; is @eZfined by A, =0, 1551573,
A

: A
For k =1, N1 = 9, 1'_32 =3, N3 = 643 = 9,
A
I. §1
o

]
]
>
i

A 4 ’
(1,0,0/0)s ¥ = (£,,0,0,0), 3 (X,70+0,0),

"
]

AL : A . :
(0e1.1,0), ES (O:J?ll)?lPO)l ggs = (O:£2l£210) (7.25)

A N
7 = (0:,0/0,1), _ﬁe = (010000}?1)0 f = (O'OcOJJI(\z )e
‘ A A . .
1.7t =%, . 151 <. (7-26)
. - A ‘ A : o S ' ~
A (3x,-1/0) on 1, - {{2-2x,0) on L, ,
III '/Ll 2 /32 2 -
o A A Y = : » o ‘a
- ‘(0,0) on LZULs. $/ - (0,0) on LZUL3 b
( . 0) A ' ‘th N
r3 2-3%,+0) on L, )‘ ag (.z.xl-loO) on L, » ’
A = A A , /.L- - . A A ,

(0,0) | on LlU L, (0,0) on L, U Ly
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3 2

A A . A N
(3%y=1+0) on L, » (2=3%,+0) on L
AS . l 3 .\o h6 l s
- = A U ~ 4 B = A A 4
(OoO)_ on L2 _Ll (0:0) ‘on L2 U Ll
. ;A A
(Cel)on L : o (0s1) on L
(OJO) on LZ'U' L3 - {(0+0) on L3 U Ll
(0,1) , L,
. on
AQ ’ 3 ) . .
- = A A (7.27)
(0.,0) on Ll U L2

Following the procedures developed in this section for the

solutiqn of the new scheme (Q]"f‘) ( instead of the schenme (Qh))'
numerical experiments have been carried out on the following
problems. the final results of which will be presented here.

I. BIHARMONIC (STOKES) PROBLEM (Example (4e1)):

Au =AMu = £ in Q. u_lr = (Bu/an)llvr = 0,
batag R = (0,1)x(0.,1), Q= QU = {0:1]}({001]:
£(x 0%, )= 24(x§(x1-1)2 + xo(x,=1)%) + 8(6x3 =6x; +1)x

2 . : . . .
(6x2 - 6x2+1) U(xllxz) € Q [ll].

The exact solution of the‘probla'n isg u(xl:xz): xixg(xl-l)z(xz-l) )

o o b . N R ﬁ , - (70228)

The vesuwlty of the numerital exprument ove 3ivem vn the Table 7.1 -
'II. BENDING PROBLEMS OF CLAMPED ELASTIC PLATES:

i) ISOTROPIC CASE (Example (4.2)): thickness h = conste,
Auw =DAu = £ in Q , ulp = (Bu/bn)lr Os '

n

Data; R = (=1/2:1/2)x(-3/4.3/4): @ [-1/2:1/2)xi-3/4,3/4],
f = q = CODStob’l vV = 0-34‘ D =Eh3/(12(1-\’2))0
The Timoshenko solution [28]of the problem gives:
u(0,0) = a, q/Dj cbii(o,O) = ;SiT ali = 1.2)¢

¢1201/200) = Hyp af  $,,(003/4) = Yr a5 (7.29)

vhere the values of ape PBy,o Yip (1= 1(2‘) are those given
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alonqwith with the results of numerical experiment for the

isotropic case in Tanle T7e2.

(ii) ORTHOTROPIC CASE (Example (4.3)); thickness h = conste’s

AU Z DyU 4333 +2H U 9955 + Dyu 5oy = £ in Q.

Data; @ = (=1/2+ 1/2)x(=3/4,3/4)s § = [—l/2:1/2]xL~3/4:3/4]:
- £ = g = constes, h = 0.01, E, = 0. 21x10° .
E2 = O.l6x106o G = Og42x105 " (all are to be taken
in proper units of measurement), v, = 0.07.E =E_V.¢

2 1V2 21
The Szilard's solution [27] of the problem gives;

u(O‘oO) = ag qs (bii(OlO) = ﬁiS g (1 =1.2)e 4)11(1/2'.0): YlSQI

¢22(Oo3/4) = st qe (7-30)

where the valves of age Bls' Yis (i = 1+2) are those
given alongwith the reSults of the numerical experiments
£or the orthotropic case in the Table 7.3.

Remark (7.3): Although the results of Szilard (7-30) given in
the Table (7.3) are themselves not very accurate, these have been
included here just for the sake of some comparison of the results
of the numerical experimente

In all the numerical experiments and in the preparation of
Tables (7.1)=(%.3), the following strategies have becn adopted for
1he sake of 51mp11c1ty dn computations.

(1) Q has been triangulated into dsosceles triangles as shown in
the Flgs. 7-1 and 7.2

(ii) The basis functions given in (7.25)=(7.27) for k = 1 have
been used alongwith usual finite element procedures of
computation.

(iii) The extyapolated values of ¢hii (i = 1)2) at the nodes
a% ='(xio xg) given in the Tables (7.1)=(7.3) have been
determined»simply-by taking the arithmetic mean of the _
3

values ¢hii| (ai) for all T containing the common node ape
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(iv) The global matrix [K] in (7.20) has been constructed by
- assembling the element matrices [KT] ¥T € Th-as dene in the
~ standard finite elcment computations after applying (7.17)
and (7.18) at the element levels -

(v)

The equation (7.19) has-been solved by the Cholesky method .
"~ of decomposition.
(vi) Only the points of @ at which 'u and 'q’hi (i = 1,2)

attain optlmal values have been con51dered in the Tables
(7.1)~(743)e

For the sake of simplicity we have made .
(i = 1,2) at the nodal p01nts a% = (xioxg)
by'taking the arithmetic mean of ¢hil' (ah) with % €T as stated

.But one may apply better and more sophisticated

Remark (7.4):
the extrapolation of ¢

hii
in (iii).
methods to obtain 1mproved results of extrapolatlon (see pages
283-284 of [29]).

TABLE (7.1); BIHARMONIC(STOKES) PROBLEM

-

$hit = ¥t = Up,is (1= 10200 € = = () + %4500
k=1

WDI= INo of " 1. (151 03k, | (1/201/2) (0r1/2)] © (1/241/2)
ND2 {unknowns|Uh'1/2¢1/201% ), (1720 *h11! 1 Pnt /2

2 25 0. 005327 -0. 07873 0. 07473 0.'1575

4 129 0. 003662 ~0. 06652 0. 10991 0.'1330
EXA%T}SOLUTION 0. 003906 -0. 0625 0. 125 0.125

7-28) o .
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TABLE (7.2); CLAMPED ISOTROPIC PLATE PROBLEM

u, (0,0) = ah a/De U ,,(0,0) = BI o4 = 12, "’hu(l/z'o)’ Yih @
bppa(0r3/4) = Yopa s |

ND1{ND2}No of% | I | I T
- . Junknowns | qh i ﬁ1‘h | Bz’h ) Ylh . Y 2h
4| 6| 201 104002256} =0.04181]~0.02230{0. 06950| 0.04894

TIMOSHENKO 0:00220 {=0.0368 {=0.0203 |0.0757 | 0.0570
SOLUTION (7+29) ((ap)  |(Byp) (Bopd |(Yyp. 2 | &Y,0p)

TABLE (7.3): CLAMPED ORTHOTROPIC PLATE PROBLEM

‘-

,;-.uh(o,o) ,.qh qr q,nii(o,o) = ﬁlh ald = 1,2). ¢h11(1/2:0) = ¥1h qs

B 0 >2(°;3/4) =Yon

ND1 ND2.N0 ofx ,.o . ] .
[44 (o] A (o] .. (o]
{unknowns| “h Bin Fon in 1 2h

4|6 | 201 Jo. 1342 |-0.04122 |-b.01072 | 0.07197 | 0.04224

Y

SZILARD'S 10,1529 |-0.04443 |-0.01761 | 0.08618 | 0.02018
. s s . s

*No of unknowns in Tables 7.1-7.3 do not include those elimimated at ti
element level.
«All numerical values in Tables (7-1)-(7.3) are to be understood

in proper units of measurementes
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