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ABSTRACT

We define in an actor-like formalism a recursive parallel
interpreter for arithmetic INFIX grammars. The resulting
speed up and efficiency are then predicted via a probabi-

listic model based on stochastic grammars.

RESUME

Nous definissons, dans un langage d'acteurs, un algorithme
paralléle récursif pour 1'interprétation de grammaires arithmé-
tiques infix@es. L'accélération et 1'efficacité obtenues sont

étudiées au moyen d'un modéle de grammaire stochastique.



INTRODUCTION

The design of compilers (interpreters) for multiprocessing
environment has been considered under several complementary apsects.
One of them concerns the transformations of the sequencial structure
Scanning-Parsing-~ Semantics into a pipe line of three (sequencial)

procedures. ([BAE 77]).

Another set of problems consists of the.parallelization~of
each of these three procedures (see [FIS 80] for parsing and for code
generation and [BAC 82] for parsing). The presenﬁ paper is concerned
with the integration of there two complementary approaches in the case
of the interpretation of an elementary INFIX arithmetic grammar invol-
ving only purely synthetized semantics. In-the first part of the paper,
we use an actor—likeformalism for defining the general recursive struc-
ture of the interpreter. In the second one, we derive from this recursive
structure a set of fixed point equations for prediéing the average speed

up resulting form the parallelization.

However both the algorithmic structure and the performance
evaluatlon schema can be generalized to the parallellzatlon of compilers
(or interpreters) of other grammars provided their semantics remain

purely synthetized.

PART |

The parallelization we propose in the present paﬁer is based
on a "syntactic cutting" of the input string when in the former approaches
of [MIC 78] and [FIS 80], the authorsconsidered a "regular interval cutting"
and 2 "lexical cutting" respectively. The reason for this choice is that
a syntactic cutting allows more parallelism than a lexical ome (as proven
in [BAC 82]) and howéver, does not require such extended automata as in
[MIC 78] : the atomic tasks (actor's code) to be executed here will just

consist of subprocedures of the sequential interpreter.
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In the first section, we recall the definition and some
properties of the syntactic decomposition(cutting)of the derivation trees
(sentences) of our elementary arithmetic infix grammar. This decomp051tlon
determines from the parenthesis nesting of an arithmetic expression, a
cover of its derivation tree by a set of subtrees with known syntactic

properties.

The second section contains the definition of a recursive
interpreter based on this decomposition. Roughly speaking, for a given
arithmetic expression, this last will create one actor for each of the
subtrees in its derivation tree decomposition. Each created actor w111 be
in charge of local (i.e. concerning its own subtree only) parsing and semantic‘

tasks which involve synchronization with the other actors.




SECTION 1

l1.1. - THE ARITHMETiC INFIX GRAMMAR

1.1.1. - Notations

We shall use the following notation for a context free

grammar a : G = V X

x* Vpe P» S and shall denmote by L(a) the language

generated by a.’

1.1.2. - Arithmetic infix grammar

The terminals are underlined :

Vp = 4t =5 L 2 Yy (), 14,0

VN{- s, M (= 1,7)

P o (D) s + (M)
CICH DR S i 2
(3(3k,+)) Mz-*Mj:Mk]Mj:Mk 22 5 ko2
(4(35k,)) My > My x M | My /M EEEERE
(5(3,k)) ,MA - Mj x> M IR kyz 4
(6(5)) Mg = A, C5ss
7 Mg > (M)
®  wp-id

G is unambiguous.
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1.2. - PARENTHESIS SKELETON OF AN ARITHMETIC EXPRESSION

Let w e L(G) , wmay be written in a unique manner as :
W= dlY] d2y2 Yj-l dj Yj cee Y dm+]

4 -m*
where di € D= {()} and Yy € (VT D) .

Let pj be the position of dj in w, 1

A
e
TIA
B

Let ng be the nesting level of dj inw, 1l sn; < |w

. We define

-

85 as the triple :

6j = (dj,pj,nj) € D xIN xIN
We call parenthesis skeleton of w the sequence
a(w)é{ﬁp sv ey 6m+l}

We denote m+] as iﬁ(w) |-

1.3. - DECOMPOSITION OF THE DERIVATION TREES

We define a decomposition which ‘determines, for each derivation
tree %,a unique sequence of subtrees otl, i=1, n@ being all deriva-

tion trees in a known grammar G and such that the sequenceﬂ’i, i=1,neh)
determines completely J&




1.3.1. - Definition

. Let W = {S, M6}Ac Vy- Let # be a derivation tree in G .
Let 4, ..., An($0 be the sequence of all the nodes of’d”carrying a label

which belongs to W ; their order being defined by a preorder traversal of

ot.

We define the W-decomposition of N as the sequence

(J?, ...,J;(£)) where ﬁz, i=1,n@®), is the largest subtree of # rooted
by A; when considering all the nodes of & (but Ai) carrying labels in W

as terminals.

“ 1.3.2. - Example

Figure |



1.3.3. - Some syntactic properties

Let G be the following C.F. unambiguous grammar (the

terminals are underlined)

= Qg ton 5 Lo G G, 10

;AN={§,MJ.,J=1,7,J#6}

. J ={§->_(_Ml)_;M]->Mj, 3= L7, 5465 M M
M2->Mj_._t-_Mk,j22,k>2,j#6,k#6,
Myt Mg M, K> My M M 22
M3->Mj:{Mk,j23,k>3,j#6,k#6,
M3->34_61/Mk,k>3,t43->mj*;_16,j23,

Y

My > Mg xx M, k24, Mo Mook Mo, S > 4

s M

s > Mg my > i)

Ms»ij,j=5,7;M ;

The fellowing properties are satisfied :

-~

i) For each i = 1, n(®, St is a derivation tree in G.

: v v ¥
.. "1 i n
ii) s ——»BI —432 'T'J(Bn-l ——»53n = &
v,
wherejai_] — consists in replacing the leftmost leaf
of the l:ree.%i__1 belonging to W (that is Ai) by the
subtree "A,"if &, = §
i i
Q. Q.
i i
Let W, be the sentence of ‘%i considered as a derivation
tree in G. The two properties above show that the knowledge of the
sequence w., i=1, n is sufficient for building up H: it is possible
to determine cf; from W, by a persing in G (1) and then to build up F ron

the sequence 9?-1, i=1,n @ as indicated by (ii).



1.3.4. - How to build subsentences from nesting

Let w ¢ L(G) and #its derivation tree in G. For.n < ri,
e{l,... 0w} we denote as (d ,d ) (resp [d ,d 1) the substring
Yn dn+l Yn+el * ¢ dr-l Yr -] (resp dn 'n dn+] r-l ﬁr-l}dr’) of
w = d] Y) 42 cee Yp dm+l'

Let Ly (resp. ri) be the leftmost (resp. rightmost) succes-—
sor of A, ind, i =1, n(@®. Since £; and 1. € D,Bji, ji € {1yeou,|@(w) ]}
'

such that ¢, =d, , r, = d.,.
i 3 i Ji

Let oy be the substring of w rooted by A We have
G, = [dj s dj,J . Leta‘b(a ) be the sequence :

1 .
1 1

ﬂ(ai) ={5J.i, 6ji+1’ Gji}

Let LA be the sentence associated tOeﬁ’. considered as a

derivation tree in G. Wy is determined by al,.ﬂ (cxl) as follows :

-Let £,, ..., £ be the sub-sequence of the integers
1 q !

i
{3;+1, 32, .., j{-1}such that nlk =n, 4 1.
i

.f t t . . = . N

it is empty vs aJ
If it is not tw. = 1(a.)

. ] 3

where : . ‘
m(e,) = (d; ,d) ) M (d, ,d, ) M ... M (d ,d.,).

S O R - A ML I A A B

1.3.5. - Example
This is the continuation of 1.3.2

¢; = (id + (id + id) + id * (id-id))
7r(o;1)= (14 +/M6 + id « M6) = W,

a, = (id + id)

(!2 Wz .



SECTION 2

2.1. - DESCRIPTION LANGUAGE : COMMUNICATING ACTORS [McQ 79]

In our model, an actor A consists of some code and one initializa-
tion port Py- The code of an actor is an internal sequential program that
executes when an initialization message arrives on the. port P,. (We shall
only consider cases where an actor receives only one initialization message

during its whole life).
The code of an actor of typé A specifies :

1) What initialization message to wait for on port PO :

XP <arg : u, cont : (actor, port)>
0
means that A waits for the arrival on port PO of a message
containing an argument of type u and a continuation couple (ac-
tor, pert), for imnitializing its execution. We shall omit the
argument if this onme is not necessary.

2) What operations to perform on the .data.

3) What new actors to create

say Al""An of type A, B],...Bm of type B...

4) What new ports to create on A :

Plyens,P

K’

5) What synchronization messages to wait for on the created ports

., <arg : u>
)P rg : u
means that A waits for a message containing an argument of type u

to arrive on pert P. for continuing its execution.



6) What messagesto send :
Initialization messages
[ (B“],Po) - <}',(A,P 1) >]

means that A sends the initialization message <y,(A,P1)> tc the

£
port PO of Bl'

Continuation messages :

[(X,Q ) <« <y>]

means that A sends the cuhtinuaticn'message'-sy» to the port Q
of X when assuming that the continuation.couple in the initiali-

zation message of & was (X,Q).

2.2. - THE INTERPRETER

2.2.1, = Preliminary remarks

We shall define 3.different"types of communicating actors
Scanning actors, Memory actors and Interpretation actors. The imput of
the Scanning actor consist of a well formed zrithmetic expression (ie,
we shall not consider error recovery problems); This actor is in char-
ge of scanning the input text, creating one memory actor for each of
the identifiers encountered in the expression, calculéting the paren-
thesissﬂesting"function and creating one interpretation actor which

it initializes by the aréument (w,éZXw)) (1.2). We shall not detail the

code of this Scanning actor (the only non-trivial element of this. actor,
i.e. the code for the determlnatlon of the nestlng function is detailed

in [BAC 82] sectlon 3 2 ) "The Memory actor related to the 1dent1f1er ,id. regre-
; :

- sents a memerv locatlon acceSSLble bv each of the created 1nterpretatlon
L
actors. Its code is as follows (dending as k one 1nterpretatlon actor and

as7rone OI its ¢ rts)
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ACTOR Mj

X < cont (X,I) > ;
PO
L(X,0) <« idj] ;

END ACTOR

2.2.2. - The initialization argument of an interpretation actor

‘ Consider the set T = {ai (w) for w varying in L(G) and i
varying from ! to n(w)}. For ay (w) in T, defineaﬂ(a (w)) as in 1.3.4.
The argument of the lnltlahzatlon message of an :.nterpretatlon actor is

a couple (y,.ﬁ (y)) where y ¢ T'. For such a couple say :

*
7
5 dj 'Yj dj"'l . e 'Yj'_l djy di € D, 'Yi € (‘T D)
(6j 5j+1 "'éj' 6; € D xIN xIN
we shall use the foliowiﬁg notations : 21,.. .,,QD where £, ¢ K will be :
- e(the empty sequence) if j' = j+1,

- the subsequence of the {j, j+l, ..., j'} with the pro-

perty n, = nj+I otherwise

we shall also rewrite vy as :

%y if 3 o= el




- ]1 -

IR R Ty Ty Ty fak-1 *ak-1 Pax 2k Foked
d22 » 822 d£ Bﬁ : dj
PPU P p 2ped
where for 1<k < p, 8 e V. and B, , B, e(V -D)* otherwise.
£2k T R £ A A i

1 2k+1

2.2.3 The interpretation actor

Roughly speaking this actor creates one interpretation actor
for each subtree (in the decomposition of the ﬂerivation tree)
but the first. Our actor is in charge of parsing the first
subttee and evaluating it as soon as the relevant information
is communicated by the other actors. These local parsing and

semantic tasks are detaildd in APPENDIX |
ACTOR A
XPO'< arg : (Y,;ZQ(Y)); Cont (X,m)> ;
IF j'> j + 1 THEN .
FOR k*;J TO p

Y, +d, B, - d,
R TR TR Eope
CREATE ACTOR 4 ;

CREATE PORT B, ;

[ (aPe)e= (v, Dy N3

END FOR
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B, M B, dii
p-l
PARSE y IN G ;
FOR k « 1 10 p

EXECUTE ¥ as long as M6 K is not needed ;
b

dp, <arg i % eIR> ;
"k

END FOR ;
ELSE PARSE v IN G ;
EXECUTE v ;
x <« RESULT ;
[(X,m) <= ()] ;
END ACTOR

Assume the actor SCANNER sends to A the following initia-

lization message :
[(w,&(w)) ; (SCANNER, Q )3 , w ¢ L(G)

Then, the properties given in 1.3 show that the real number sent back by A

to the port Q of the "SCANNER" is the value of the arithmetic expression w.

2.2.4, - Example
Assume that the actor SCANNER sends to A the message :

[(w,d (%)), (SCANNER, Q )]
where :
we ((id) + /(id2+id3) +id, » (id,-id))
* (V(idy+idg) + Y (idg+id, ) +/ (id) +id},)))

The actor A creates two new actors, say A]and Ay, in charge

of interpreting (Yl,-ﬁ(yl')) and (Yz,,ﬁ (yé)) respectively,with :

8 (id) +/ (id,+idy) + id, = (idg-idg)

~—
=
—
[0

np>

(V (idy+idg) +/ (idg+id ) +/ (id) +id},))

<
N
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- -~

Then A builds y = (M6 | 6 2) and parses Y in G as
b
indicated in the appendix. From this, the following semantic tasks

are generated :

)pl <arg H x1> H
<arg Xy>

%,

& €% =X, ;

RESULT 4—3] ;

Once-initialized by the message <(yl,.ﬂ(yl)), (A’P,l)>’ Al creates two new

actors say Ay 15 A, in charge of interpreting :
s 14

np>

(id2 + id3)

ne>

(ids - id6)

. respectively. Then it bu:.lds y] = (1d +fM6 + 164 * M) parses Y] in G

and generateexhefollowmg semantic tasks :

[ (M],po) <« <AR> ]

KR; <arg @ i¢;> ;
kp]'_<arg : x> H
) SQRT (xl) ;‘
zq * id] +122 ;
L(,,P) =< AR >
AR;< arg ida > 5
>‘P2 < arg X, > s
z,-* id& X, ;
2y v 2; * 2z H
RESULT < z, ;

We give in figure 2 the decomposition of the derivation tree
of w and in figure 3 the creation and synchronization diagram of the

actors created by the generator in order to interpret w.



Figure 2

a derivation tree in G.

aﬁi considered as

ce of

1

We denote as w. the senten
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evaluate
6%3
A] ] A 1
w2 ] parse w,
] : -
1,2 1 parse w, ev luateé%z
/DN PA )
1
Al _ parse w, Py \_,____—~31L.____,,
gé ' ‘ eva luate Jg'z
>
Ay o —
S8 % parse w,  eva luate.?6
A 4
- 72,2 : parse v, 'evaluatle ﬂ}
. : |-
2,3 & parse w, | gvalupte
< 81 #
>
| S
|
: evaluate
) \ A 5
AZ 4 - )‘p |
build w, parse w. ] A 2
3 > ’ ! P2 P3
I
I
|
|
i
— A ? e—_ ____4;
build w, ' parse w Py | - Py
. | evaluate .9?1
INIT B(w)

Figure 3 . I(w)



PART II
SECTION 1

1.1- INTRODUCTION

In order to get quantitative informations on the execution time
of the interpreter defined in the previous section, we shall first specify
the execution time of elementary parsing and semantic tasks to be proces=-
sed by an interpretation actor in function of its input. From this we
derive recursive equations for the interpretation time of an arithmetic
expression. We are then faced with the following difficulty (which was
already pointed out in [BAC 82] for parsing) : the speed up and efficiency
very much depends upon the input sentence : a "balanced" sentence will
allow a high speed up when for certain non-balanced cases, one could get
a larger execution time than with the sequential interpreter. Toovercome
this difficulty, we propose to average this speed-up over all possible
sentences. The most natural probabilistic schema to be used in C.F.
grammars is a stochastic grammar model [GON 78] . Roughly speaking, this
consists of attributing weights (obtained by frequency measurements) to the
multiple prbductions of each given nonterminal and of applying the rewrite

rules, following these frequencies and independently of the context

From this probabilistic model, we get the distribution function
of the executing times of both parallel parsing and semantic phases as so-
lutions of tractable fixed point equations. From this, we determine then
average measures of speed up of both phases in comparison with their sequen-
tial version. We also derive an equation for the number of computing ressources
which are needed. Lastly, we derive a fixed point equation for the distribu-
tion of an upperbound of the interpretation time which in turn provides lower
bounds.for the speed up and the efficiency of the parallei interpreter as

a whole.

It is worth mentioning that the performance prediction of such
asynchronous processes has received little attention in the modelling
literature and that the analytic model presented in this second part
(which contains as a particular case the performanceavaluationof recursive

Fork-Join structures) can be used within more general contexts.
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1. 2. — THE BRANCHING PROCESS MODEL

We shall sort the elements of V as follows : S,M],..., M7;:.,:,

e e ¥ gt s * e 7

senting the probabilities of each of the possible productions related

the non—terminals with multiple productioms :

1 .
Mo (py) s 3= 2,7, § p. = |

J .
2 . 2 2 2
L, @ ' = . = 1. (We shall denote P. + P,
I'Lz . (pj,k’r) J 2,7, j,%;,r PJ,k’r ( 2 J,k,s J,k,g
. as P° )
J»k
k = 3,7
r =8,9 ( + and - respectively)
‘ 3 3. 3
: - j = 3,7 I = ]. (We shall denote P} + P
My s Oy, 3 C sk Pkr 3 3,107 3 ,k, 11
- as PT )
1k
k = 4,7
r = 10,11 (* and / respectively)
4 . . 4
M, : P =5,7 I P = |
4 ( J,k) J > j’k J,k
kK= 4,7
L5, 5 _
M5 (lej 5,7 , £ Pj = ]
\
The grammar ‘G and the set of probabilities - -above define

a multitype branching process [HAR 631 with [V] = 17 types. This
process is completely'caracterized by the following generating func-
tions determined from the production rules of the 8 non-terminals(

Denoting as s. Js,| £ 1, the complex variable related to the j-th

17 1
element of V):
S
£,(8) = 515,485
> 1
f.(s) == I . S,
() 52,7 73 %3
fz(g) = z z p2 S.8, 8
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Let (no,..., nlv} _ l) be the total number of types
S,M],..., M7, * s~ s..., id respectively, in a sample path of our
branching process. When the Frobenius condition is satisfied, the
functional equation :
i 16+ .
2 W) = s £ (W@),..,W 0@ L 1= 0,16
has a unique solution (WOK;),;.. W16(E)) where the W'(s)'s are

. . . . 17
generating fuuctions of non defective random variables on (W) '.
nj

n n . . .
Furthermore, the generating function E [soo s, 1é6] 1s given:

by Wo(s). (see [HAR '63] ).

ese S

1.3. DISTRIBUTION FUNCTION OF THE NUMBER OF CREATED ACTORS

The total number of interpretation actors created for
interpreting a sample arithmetic expression (ie the sentence pro-
duced by a sample path of our branching process) is N = ng + 1, so
that the generating function of nyb(z), is equal to zw6(z) when
denoting as wi(z) the function Wl(i,l,l,l,l,z,l,..., 1, |z]s 1.
For'determinipg Ye (2) ., one can reduce (1) to the following fune-

tional eqdation with unknowns (yz(z),..., y6(z))

6
1
y6(z) = z(P7 + I P. (2))
j=2
5 6 4 5 4
¥5(2) = P3 + I PY_ y.(z) + 3 p° v, (z) +
5 7 3,7 7,k "k
j=s 0 IS
6 6 i
v 2 I P, y.(2).y, (2)
(2) j=5 k=4 oK 71Tk
v.(z) = Pl _ 4 E p v.(2z) + ? pl v, (2) +
i 7,7 jui 3,7 73 KEi+] 7,k “k
i=2,4
6 6 5
+ I I P, v:(z). v, (2)
j=l k=ie) JoK 7] k

The successive eliminations of ys(z), y&(z)..., y2(z) in (2) yield
for Y¢(2) a polynomial functional equation of degree 4.
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EXAMPLE

Assume the derivations in non-terminals are equiprobable

in the following sense :pe [0,1] and

—

(1 =p) , P

1 )
P7 = j = D/S s ] = 2,6
5 5 .
2= -0), P; = /2, 3 =5,6
4 4 4 ' 4 ' )
ij = qJ rk' s q7 = r7 = ]. -0 Qj = 0/2 s J = 536
4
(3) : k= p/3, i = 4,6
i _ i i i i_ iz Y o 4 g
ij Qj rk s q7 r7 ] P qj D/(7 1), 3 i,6
r; = p/(6-1i), j = i+1, 6

" parameter (we shall

pE€ [0,1] is a "tuning
see later on that there exists a bijective mapping QO «—E (L] where
E[L] is the average length of the arithmetic expression so that scaling

with respect to p is equivalent to scaling with respect to this average

length). In this case, we get by elimination :

. |
(B yg ()7 a,00) + 3 (27 (A300) + 2B,(0)) + ¥, ()7 (&, )+2B())

+ y6(2) (Al(o) + 251(0)) + z Bo(z) =0

where the Ai's (B,"s) are known polvnomials.in the variable p given
in Appendix 2. Differenciating equation(4) , one

gets the following expression :

2 (o - 1)

E [N] =. i=2
120 - 178p +.45é2 - 23p

3

The polynomial P(p) 2 120 - 178p 4'4502 - 2303 has two
complex roots and one real positive root Prax = 0.7641,.. which

is the maximum value pf p for which the Frobenius condition is sa-
‘tisfied (Appendix 3).



1.4. EXECUTION TIME OF THE PARSING PHASE

1.4.) Assumptions and notations

We shall _assume communication tlmes between actors to be -
zZero. For Y L(G), we shall denote asa.(Y“ the time required for
par51ng'Y1n G (It is shown in [BAC 82] that this time is equa1
to b + cn. (Y)where b and ¢ are positive lntegers and- n (y) is the
total number of operators (+,-,...,Y ) in y). Let ¥ ¢ T (see 2.2.2
for this not;tion). We assume that once initialized, an actor re-
quiresin6(;)d units of time to create itsr%(;) son actors, where
d is a2 positive integer (ong actor is created each d units of time
from initialization). Lastly, we shall denote as B(y) the parsing
time of Y, that is the time between the initialization of an inter-
pretation actor by the message (Y”QD(Y)) and the end of the latest

parsing task among all the actors created for this input (see fig. 3).

i.4.2 A fixed point equation for the distribution departing time

Using-the notations of 2.&.3;, we get the following

recursion :

(5) B(y) =ng(y)d + max(a(y), max . (B(Y) - d(ng (‘Y)-J))
j=bhn 6 (¥)
so that for w € L(G), B(w) is determined from the couples
(ne(wi77 i=l, n{w) (see 1.3.3 for these notations). Using classical
independence properties in branching processes, we get from (5) the

following fixed point equation for 7 (n)98f Prob [B(w)< n, w € L(G)] :

e

(6) I@) = I afn,k) I TI(@ -4d.i)
k<M 1=]

where a(n,k) denotes Prob [bftn'e(Y)S n - dk, né(Y) = k,ve L(G)]
Let n6(w) (ne(w)) denote the total number of Mg (operators) in the

derivation tree of w. From (5), we get the upperbound :



- 21 -

B (w) < dn (W) + b(ng(w) + 1) -+"cne(w) :

- proving hence that 7 is the law of a proper random variable whenever the

Frobenius condition is satisfied by the branching process related to G.

1.4.3 Calculation of the function ¢ ( n,k)

Let K(x,y), |x] <1, [y] <1 be the joint generating function
E [an(Y)yné(?), ¥ € L(G)] in the multitype branching process defined by G

and the probabilities (3.2), The generating fumction

A& T o (np N

n20 k=0

%] <1, |y| s1

is related to K(X,y) by :

xb c _d
A (x,y) = = K(x ,x.y)

Thus, it is sufficient to determine K(x,y) to get the a(nm,k)'s. From (1) re-.

written in G, we obtain :

7
(7)  Kx,y) = I pﬁ g, (x,y)

-~

g (x,5) =y
| 7 s 4 5
(8) gs(x,y) = (x j?_;6 P85 (x,y)) / (I - x p3) . ®
77, T,
g, (x,¥) = x jgs s Ps k gj(x,y)gk(x,y)/ (1 - x(jgspj’b £ (x,¥))
7 7 : 7 L
g ny) = (35,1 Lo pyy g ag G/ - x (G s (uy))

‘for i = 3,2
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1.4 .4 Example (continuation of 1.3)

From (8) we get

B(x,p) + y A(x,p)
D(X, O) -y C(X,O)

K(x,y)

where

A(x,p) = 24p - x (1092(1 - p))

B(x,0) = 120(1 - 2) - x.2p (L = p) (29 - 11p) + x°p°(1 = p)°
C(x,0) = x p°(36 - xp (1 =)
D(x,p) = 120 - xp (154 - 94p) + x2p*(p - 1) (2p - 13)

Since D(x,p) > C(x,p) for pe[O;U , xe [0,1], we get the following

\

expression for a(n,k)
b c
) (= 2y s k=0
D(x7)
a(n,k) =

xb+dkcn-1(

[
= ) (3(xScES) + 4xS)DES)

[x"2 (
1-x)d"" (%)

otherwise
where [x™ (B(x)) denotes the coefficient of x° in the expansion of B(x).

1.5 EXECUTION TIME OF TEE SEMANTIC PHASE

1.5.1 Assumptions and notations

We shall assume that both the execution of an elementary arithmetic

operation and the emission of a message require one unit of time. Hence

the number of time units for an actors to get the value of an identifier is 2.
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The aim of the present section is to_aﬁalyze the semantic
phase alone. For this, Qe shall assume that the semantic phases of
" all the created actors begin simultaneously (at time B(w)). Under
this assumption, for Y €T and p € IN, let SpCY) be the number.of
time units needed for completing all the semantic work related to Pe

assuming that this work is delayed for p-units of time. (see fig.A).‘

1.5.2 Recursive equations for the interpretation time

-~

For v ¢ T, Iet'; be defined as in (2.2.3) and o be the reduced deri-
vation tree of ; in 6 (see appendix 1). Let p bé a node ofgy{ and n be a po-
sitive integer. ¢(n,p) ¢ IN will denote the number of time units needed for
the interpretation actor to complete all the semantic tasks related to the
subtree rooted by p  (ie to execute.thelarithmetic operation related to node
g if p is an bperator or to dispose of p's value if p ¢ {id,Mé}, when assumi-
ng that the interpretation acter has completed all the semantic tasks to be
executed before those in the suﬁtree rooted by p»iﬁ (n-1) units of time.
From the sorting of‘sémantiq tasks described 'in appendix 1, we get the fol-
loq;ng recursion for1ﬁ where r and £ denote the right and left sons of p in
Qﬁf(if any) o
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! ; j A
A] :- parse w, evaluate®t2'
(K\
p S |
A2 I parse w, | evaluate@%a
H
: |
c . - Apy | S
A.Zbuild w parse w evaluateeﬁ
2 3 3 | 3

_Aa
p build w parse w, l evaluatew(l

B(w) S (w)

____L.'Vl.,fv_’.
A
B
A
‘V

Fig 4
Fig 5
A 4 parse w, eva]uateQFL2
RED v
“+
arse w 5
Ay P 4 eva uatec'cz,4
4. . J
AzébbUlld Vg parse w, evahmteéz3
‘ Y . r .
build v, Pparse w » evahwtea%l
B(w)

- e
| — = Pe——— - b — = - ra

Jiw)



1 + ¢ (n,r) ifp=v -

(11) L+ ¥ (0,2 + 9(n+p(n,0),r) if p e {+;-,%,/,%*)

+ .

. k(S(Yj) - n) vO if p= M6,j'

S(Y) =1+ ¥(1,7o0t (V).
Using now in (l1) the independence properties in the branching process

. model, we get the fixed point equation (12) hereafter for v(k) = Prob
[S(w) =k, w e L(G)], ke IN: :

~J

1
v(k+1l) = I . q.(0,k) , v(O) =0
(k+1) 582 Py 4400, ) (0)
where . qj (n,m) denotes Prob [S(y) = m ! root (cJZZ) is of type j

and the evaluation of Y begins at B(w) + n+l J. We get the following

recursion : ¥n,m ¢ IN

q7(n’m) = l(m=2) ;

n
= { Z X \
q6(n,m) 1(m>0)\)\?+m> + 1(m=0)s=0 Vis) ;
- 5 .
q.(n,m) =1 z p: q.(n,m~1)1{ ;
an§ 27 (m>0) [j=5,7, I

= v o & - -
% = 1,0 [j‘as,7 kB4, 7 s20,m-1P3,k 93 (B 8) g (nrs,mos ”]

S . i 3
9w = Lo @51,7 kEi+1,7 ‘sEo,m-1 Py, &5 (®8) g (mrs,mms 1)]

i=2,3

Notice that when the Frobenius condition is satisfied by G, v is the
distribution function of a2 proper random variable on IN, This is proven by

the following inequality (obtained from (11) and (S‘(Yi)-n)vo < S(Yi))

S(w)ys1 + ne(w) + 2.0, (w) + ng(w)

+ ' -
- For a € Z, b€ 2, avb denotes max(a,b).
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1.5.4 Example (continuation)

We get the following five first probabilities :
V(0) = V(1) = v(2) = 0

v(3)

]
p—
I
O

v(4) = 2 (1-p) p/>

vTS) =a(l=p) 02(36p2+19p-}39)/300

1..5.5 A fixed point equation for the distribution of an upper bound of -the

interpretation time

In this section, we consider that for y ¢ ', the semantic work
related to each actor begins only when both the parsing of Yy itz comple-

ted and the data to be providedby its son actors are all available.

This modification (exemplified .in fig 5) clearly provides an
overestimate for the interpretation time I(Y) (see fig.3).

Let J(Y) be this overestimate. One gets

i=1,n, (Y

(13) J<~.r>~=[ max  S(8.+I(v;)) v <dn6<§>+a<§>>] + g ()
. . 6: . . o .

~ -~

Where g(Y) = ng (y)y + 2n7(\') + 1 denotes the number of time units

needed for executing the semantic of Y in the case considered in this sectiom.

Let n(n) B € I&Idenote Prob [J(w) £ n, w ¢ L(G)].We get from (13):
/

n-b-cf~d—k k
(14)  n(n) = I z ©B(,k,35). T m(n-j-di)
- k20,220 §=0 i=]

m
where 1 is zero if m< 0 and
j=0
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Where B(L,k,3) = Prob [n (V) = k, no(Y) = £,2n.(y) = j - (1+9),
Y € L(G) I.The proof of the finiteness of J(w) (under the Frobenius condition

for G) is similar to those of 1.4.2 and 1.5.3. Notice furthermore that

B(x,y,2) = L B(L, K, §)xTy e
k>0, £20, 20

is related to K(x,y,e) 2 g [xna(Y), yn6(Y),zn7(Y),Y € L(G) Iby :
- _ i )
B(x,y,2) = & K(xe,y,8°)

and that K(x,y,2) is obtained exaétly as in (7) and (8) in which the first

line of (8) is replaced Ey g7(x,y,e) = 8,

1.5.6 Example (continuation )

_ ZzNz(x,y) + Z'Nl(x,y) + No(x,y)
(15) K(x,y,2) =

22D (x,y) + 2 D, (x,y) + D (x,v)
2 1 o
Where

D,(x,y) = x° 2" (1-p)7]

D, (x,5) = x° [£2(1-0) (yo+11) T-x [94o(1-p)]
bo(x,y> = % [-12p (3yp+5)] + 120

Mo(x,y) = x0 00 (1-0)7 1~ w[220 (1-p)7

N, (x,y) = n [-p(1-p) (10py+36)] + 120(1-p)
Ny(x,y) = 24py.

1.6 SPEED UP AND EFFICIENCY

From the results in [BAC 821 and those of the previous sections, we
get integess a,B8,Y and ¢ such that the sequential interpretation (based on

the same precedence function method) time ofw.e L(G) is given by :
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(16). L (w) =0+ B né(w) +yn7(w) +6ne(w)

Hence E [Z(w),w € L(G) J is obtained from E [n6(w),w e L(G) 7,
E [n7 (w),w € L(G)] and E[ne(w),we L(G)] which are in turn derived from (1)

using standard techniques. In our example for instance :

5
BT, (p=1) + v(1-p) (p3+zlozf14p+lzo) + 6(pP-pr8)120

120-178p+45p2~230°

E[Z(w)]= o +

— ———— -

Siinilarly , deroting as L(w) the number of symbols in w (its:
length), we get
L(w) = 2 + 2M6 + M7+ My
. 2 : 2
so that 2 % E-1)+(1-p) (p3+21p +14p+120)+(P"-0+8)12p

"
(e8]
+

120 - 1780 + 450° - 23p°

Proving hence that E[L] is an increasing function of P for p(pmax.

(see figure 6).

We define now the speed up of the parallel interpreter as

(17) A E[Z(w),weLl(G) ]

E[I(w),wel(G) ]

and its efficiency as

Ay s
(18) e = E[N(w),we L(G) ]




Let E,C,ﬁ Be the respective first moments (which we khow to exist under
the Frobenius condition) of the distributions T,V and n (given by equations
(6), (12) and (14)) . Since J(w) < I(w) and J(w) < B(w) + S(w), we get the

lowerbound ':

E[.Z(w),we L(G)]
A oA (F49) |

s2

*

Providing also a lowerbound for e.. -

Some of the computations of the present section have been made

using the macsyma programm for symbolic calculation.
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APPENDIX I

Parsing

-~

-Consider for v € L(G), the reduced derlvatlon tree of v, build as
follows Lromcji the derivation tree of‘yln G

-~
" 141 " "

-Replace ineSZ{the subtree /,\ by Mj .
( M,)

J—
—~For each MJ, j=2,5 1ne&{ delete the son being an operator

(ie eo'* {+ =%/, % /}) and replace MJ by this operator.

-For each M7 ingjf, delete its son and repiace M7 by id. For instance,
the direct derivation tree of vy, = (id. + /M + did,* M, ) in exam-
. : 1 1 6,1 4 6,2

ple 2.3.4 dis :

o+

4/////////

/' \ / \

1dl V\\ id4 M6,2

Me, 1

For § ¢ 0, let assoc (6) be + 1 if € ¢ {**,V},~1 otherwise and prio
(8) be 1 if € ¢ {+,-}, 2 1f 6 ¢ {»,/}, 3if6=**and41f8=/ I (6, ...eq)

is the seouence of the operation in Y(ln our example, q=4, G =+ 8 /,u3—+ 8 =*)

let prec (6, ) L5 s assoc (8, ) + 2% (l+q)* prio (E , for i= l,q Thls funcglon
allows to calculate the reduced derivation tree of Y as follows (see [Fis 80]

for a proof)

For lsi<q let SR(i) = {6 ,1<3<q such that Zk,1<k<3 satisfying prec
(6 ) < prec (€, )} (the largest set of consecutive operators on the right of

61 with a precedence greater than Gi s).

-1f SR(i)l

in v,

@, the right son of Gi is the first terminal on its right

L}

-If SR(i) = @ the right son of Gi is the Gj in SR(i) with the smallest

pPrecedence, say R(i)
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A symmetrical relation exists between a set SL(i) and the left son of
ei. In our example prec (ei) = 9, prec (62) = 42, prec (63) = 7, prec (84)=l6

which yields the direct derivation tree here above.
2 Semantic

The evaluation task related to node Gj of the reduced derivation tree

is generated as follows

IF - - LEFTSON (RIGHTSON) Gi is idj (idk) THEN [(MjPG)‘—- <A,Rj5j
( [(MR,PO)<-—— <Aka>J) H kRi< arg : idj> (kRk<a:g : idf )

ELSEIF  LEFTSON (RIGHTSON) Gi is M '(M6’k) THEN'AP <'arg : xje R>

6,
3 3 ,

(ka <arg : x, € R >) Li denotes xj(ri denptes.xk).
ELSE LEFTSON (RIGHTSON) Gi is ej(ek) THEN Qi denotes zi'(ri deno-
tes zk).

ENDIF ;

In order to sort these tasks, we shall use the following order, depar-
ting from the root : evaluate 6i's left subtree (if any) ; evaluate Si's
right subtree (if any) ; evaluate note ei. This order can be determined during

the parsing phase from the calculation of SR and SL.: The rank of the ope-

© rator with minimal precedence function will be zero and, if the rank of Gi

is known
-The rank of the operator GR(i) if any will be ei‘s rank plus one.

-The rank of the operator eL(i) if any will be_Gi's rank plus |SR(i)|

plus onmne.

The proposed sorting corresponds to a decreasing rank order.
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APPENDIX 2

Let Q(p) = 03-1502+26p-24. We have : )

]

4,(0) = 360°(p%-p+36)

Ay (p) = 120 (p°-220% 412207911 p%+1422p-1224)
B,(8) = 720° (5p7-5p+12)

AZ{Q) = 0% Qp) (P -40p*+25707-1874p2+2808 p-2304)

B,(0) = 120> (13p°-2320"+677 p>-1394 p2+1224 p-576)

A1(°) = -Q(o)z. (2p4-1593+1o7p2—154p+120)

B,(0) = 2p Q(0) (11p°-224p"+7030°-1498p%+11520-288)

2

B,(0) = Q(p)? (0>-23p%+580-120) (p-1)

APPENDIX 3

J,{)
In the example 3.2.2, the Frobenius condition is satisfied if anc

only if p ¢ (0,pmax).

To check this, it is enough to verify that the greatest positive
characteristic root of the matrix mij_ of, /Bs(l,... 1) i=6, j=1,6 is

less than omne, or equivalently that the character1sticp01yn0mlal

Cx) = x(—gd (x=) (x-2) x-5) = £ () (x+5) (e

has no positive root greater than ! whenever p<p max. One checks nu-
merically that for: o-o max-this condition is satisfied whence it is not sa-

tisfied for p=p max . To complete the proof, remark that each of the me(o)

is an increasing function of p.
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