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ABSTRACT

TPries are a data structure commonly used to represent sels of
binary data. They also constitute a convenient way of modelling a
number of algorithms ta factorise polynomials, to implement com-
munication protocols or to access files on disk. We present here a
systematic method for analysing, in the average case, irie parame-
ters through generating functions and conclude with several appli-

cations.
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Résuamé: Les arbres digitaux {ou tmes) sont a la base de structures de données
utthd‘-S pour repre\enter des ensemble de données binaires. IIs sont également
a la base de modctles intervenant dans la factorisation de polynomes,
l'1mplementat10n de protocoles de communication ou l'accés direct a des

- fichiers rangés sur disque. Nous présentons ici un ensemble systemathue de

méthodes permettant d'obtenir les valeurs moyennes de nombreux paramétres

. de ces arbres avec applications & 'analyse d'algorithmes.

Abstract: Tries are a data structure commonly used to represent sets of binary
data. They also constitute o convenient way of maodelling a number of algo-
rithms to foctorise polynomials, to implement communication protocols or .o
access files on disk. We present here o systematic method for analysing, in the

auerage case, trie parameters through generat'mg Junctions and concluds with

several applications.



1. INTRODUCTION

Digital Searching methods comprise a variety of techniques used for sorting
or retrieving data by taking advantage of their binary representations. In many
cases, these techniques constitute an attractive alternative to comparison-
based methods that relie on the existence of an ordering on the universe of data
to be processed.

The trie structure is probably the most well-known amongst digital struc-
tures. It is a tree representation of sets of digital (e.g. binary) <equen~es< that
has been introduced by de la Briandais and Fredkin [9] T and bears ana'cgies to
binary search trees {11,15,17,80,1, 19] Operations like insert, delete, query,
union, intersection... can be performed efficiently on this representation of
sets. Tries also appear as a structure underlying Fadiz Fzchange Sort (a digital
analogue of Quicksort, [11]p. 131).

Tries have been proposed as an efficient way of maintaining indezes for
externally stored files. When combined with hashing techniques (to ensure a uni-
form distribution of elements on which tries are built) they lead to dynamic
hashing schemes like the Dynamic Hashing Method of [12] or Extendible Hashing
[2].

Another use of tries is for multi-dimensional searching; the problem there
is to retrieve records with several fislds when only some of these fields are
specified in a query. Under the form of k-d-tries (multi-dimensional tries) they
constitute an elegant solution to the problem of Partial Match or Secondary Key
retrieval. This variety of tries has been described by Rivest [18] who assigns
their origin to Mc Creight. Used in conjunction with ideas taken from dynamic
hashing techniques they lead to the so-called Grid-File algorithms [14] that have
been proposed as a physical access method for files. -

As a representation of binary sequences, tries are also of frequent
occurrence in several applications. As an example, Huffman’s algorithm may be
viewed as a progressive construction of a trie. Situations where they appear to
be a convenient model are for instance polynomial factorisation [8], communica-
tion protocols [3] or some simulation algorithms [7]. In many such cases,
rather intricate parameters of binary sequences have simple forr ions when
expressed in terms of tries.

Our objective here is to describe a general set-up in which - .stical ana-

- lyses on tries can be conveniently performed. We show how tr ..rive in a con-

cise and synthetic way generating functions for average values of a large
number of parameters of interest in the context of the analysis of alge::thms. In

"this manner, we are able to present in.a systematic manner (anu sometimes

extend) a number of analyses otherwise often obtained at some computational
effort, and show that they can be reduced to a few simple paradig: s

The name trie was coined by Fredkin apparently from a combination of tree and refrieval.




Y

.3

Our methodology consists in first establishing a few basic and easy to prove
lemmas; these lemmas, given in Sections 2,3, relate under various probabilistic
models some structural definitions of trie parameters to functional equations of
some sort over generating functions of average values for which general resolu-

“tion methods are also available. We thus have an algebra of parameters on tries

which is mapped on an algebra of generating functions. In this way; the process
of analysis is reduced to finding expressions for parameters of interest as com-
binations of a few buiding blocks for which mapping lemmas are available, and
obtaining generating function expressions (whence expressions for average
values) becomes an almost mechanical process. Most notably, the recourse to
recurrences on average values which constitutes the basic technique usually
employed is completely eliminated. This permits to analyzé in a simple way
rather complex parameters of tries. The usefulness of this approach is demon-
strated on several examples in Sections 4,5.

We do not address here the problem of the asymptotic evaluation of trie
parameters (cf [11],p.131), but occasionally mention some of the estimates to
make clear the implications of the analyses. The key method there consists in
using Mellin transform techniques and some systematisation of its use is also
possible.

1.1. Trie Representations of sets

Assume we want to represent data from a universe of binary strings, some- -
times called records or keys, of a fixed length s=0:

Be) = {0;1§° .
A subset w€B®) decomposes into two subsets w/ 0, w/ 1 of BS~Y defined by:
w0 = fweBE N |ouew)
w/1 = fweBE D |1vew .

The definition of a trie is based on this decomposition.

Definition: 7o a subset wCB®), we associate a tree trie (») as follows:
(1) If |w|=0, then trie (w) is the empty tree.’
() If |w|=1, then trie (w) is a tree formed with a unigque leaf labelled w.

(3) If |w|=R, then trie(w) is obtained by appending a root to the recursively
defined subtrees trie (0 /0) and trie (v /1).

As an example, the trie associated to:

TWe let |&| denote the number of elements (cardinality) of @
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w=fabc,de,f}]
with
@=01011, b=01101, ¢ =10110, d=11000, e‘=11011. f=11110
is displayed in Figure 1.

0 _ C:h1o0

Figure 1: A trie constructed on 6 binary sequences of length 5.

The way of constructing the trie is clear from the definition: we recursively
partition the set to be represented according to bits of highest weight until
groups of cardinality at most one, represented by their remaining bits, have
been individuated.

There is accordingly a simple way to recover the original set from the tree:
simply read off all branches from the root to leaves, interpreting a left going
edge as a 0 and a right going edge as a 1, appending for each branch the binary
string stored at the leaf. For instance, in the above tree, going left-right-right
(i.e. reading 011), we find leaf B that contains the information 01, and this
corresponds to the key 6=01101.




1.2. Opérations on tries

The recursive construction of a trie, usually represented in the form of a
linked structure, closely mimics the definition given above, Once trie(w) has
been constructed, we can perform various operations[11, 15}

' query: to determine whether w is in o, follow a branch taking directions
corresponding to the successive letters of w until a leaf is encountered,
then compare with the remaining bits,
insert; same as query; when a leaf is encountered, split it to obtain the new
trie.

delete: a dual of the insertion procedure.

union-intersaction: when sets are represented as tries, these operations
can be implemented by means of the recursive definitions:

union (¢,9) = 0.union (¢ /0,80) U 1. union (¢ /1,8/1)
inter (¥,9) = 0.inter (¢ /0,8/0) U L. inter(y/1,8/1),

with adequate initial conditions.
The costs of these operations are largely determined by the number of pointer.
chains followed (or bits inspected). They usually admit inductive qeﬁnitiom of a
simple form over the tree structure. A prototype is the size of the trie
representation measured in the number of its internal nodes, which satisfies:?

in(w) = if |w|<1 then 0 else 1+in(w/ 0)+in(w/ 1),
or equivalently '
in (Q) = 1+1'.'n(co/ 0)+'m(m/ 1)—5|u|,0—6|u!,1'

together with the initial condition in{w)=0if |w|<1.

Our purpose in what follows is to describe a method for obtaining estimates
of average values of such parameters when the number of elements in the set is
a fixed integer n.

1.3. Trie Indexes

In order to save storage (reduce the number of pointers used), Sussenguth
[21], followed by Knuth [11,ex. 6.3.20] proposed using a sequenti . storage dis-
cipline whenever reaching a subfile of b or less keys. The corresponding tree
which we shall call a b-frie thus consists of:

t It is clear that such inductive definitions may be expressed either in terms of the left-
subtree /right-subtree decomposition of trees or in terms of the equivalent decomposition of
gets w into /0 and w/1.
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(i) askeleton tree formed with the internal nodes
(ii) leaves containing between 0 and b records.

This idea may be used to access files on some secondary storage device.
The skeleton tree then becomes the index or directory and small subfiles are
stored in pages, with b being the page capacity determined by physical charac-
teristics of the device (in practice b ranges between a few tens and a few hun-
dreds). When used in conjunction with hashing, the resulting algorithm is exactly
Larson's Dynamic Hashing method.

Finally if the index is itself too large to fit in core, it may be paged as an
array that represents its embedding into a perfect tree. This algorithm consti-
tutes the Extendible Hashing method.

Naturally, the operations described in Section 1.2 are easily adapted to
such representations of files. Notice, for instance, that a query with Dynamic
Hashing requires only one disk probe, Extendible Hashing which can be used
even for very large files requiring only two accesses. These strategies thus
guarantee an almost direct access to external files, whence their practical

interest.

2. THE UNIFORM MODEL

Our objective is to obtain estimates of expected values of a number of
parameters on tries (size, path length, height, ...) as a function of the number n
of elements on which the trie is built. In order to do so, we must first make pre-
cise what our probabilistic assumptions are. Following [11,15], we retain two
models.

1. The finite key model: Keys are to be of some fixed length s (s a non-
negative integer). All sets of n elements are assumed to be equally likely.
Since the number of these is: '

b = [37:

the probability of each set is thus (5,&)7%,
R. The infinite key model’ it is also occasionally called the Bernoulli model.
"~ Keys are assumed to be infinitely long strings of zeros and ones i.e. [rom
the universe:

B*) = §0,1]" :

Alternatively, keys can be conceived of as real numbers over the real inter-
val{0;1] (the correspondence between B*™) and the real interval is bijective
except for a set of measure 0). The infinite key model assumes that n keys
are drawn uniformly and independently over the interval [0;1].
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We consider parameters (also called valuations ) on sets of strings. These are
here usually parameters of the trie representation of sets.

Notations: let v(w) be a parameter of sets wCB#), s<wo (or éf trie(w) ). We
define the quantities: .
v = Y v(w) ifs<m,
wcH®)
jo]=n
v = E[v(w) | ocB*), |w]=n]T.
.In qther words, v,{®) represents the cumulated value of parameier v over ail n-
subsets of B®), and 'U,S"") is the expectation of random variable v on a random n-
subset of B™). (Notice that one can prove that any parameter that is polynomi-

ally bounded in the size of the trie has a finite expectation under the infinite key
model).

Notation: We define the ordinary generating function of the v,®) as:
&) ()= i uiSlzn
. n=0
and the exponential generating function of the u{™ as:
' n
’U(“)(x) = 2 'U'E“") 2_

]
n=0 n:

In the sequel, we adhere to the convention of denoting pafameters, correspond-
ing cumulated values, expectations and generating functions by the same group
of letters, as we have done above. We also make some use of the classical nota-
Lion:

[z"]f (=)

to represent the coefficient of z® in the Taylor expansion of f (x).

2.1. The Finite Model

In the finite model, the universe of keys is the set B®), The universe of sets
is thus ‘

PO = {cBO)] |

and the finite model consists in assuming a uniform distribution on the elements
of P{s) of cardinality .

Y Here E [ X] denotes the expectation of the random variable X.
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The definitions of additive and multiplicative valuations on tries can be
translated directly into recurrence equations over generating functions as the
following lemma shows:

Lemma 1 [ The additive-multiplicative translation lemma, finite model]: To the
Jollowing schemas defining valuations on tries

a(w) = Ab(w) ()

a(w) = b(w)+c(w) (ii)

a(w) =b(w/ 0).cl{w/1), (iii)
there corresponds the following relations on generating functions: ‘

a®)(z) = Ao ©)(z) (i)

a®)(z) = b (z)+c ) (x) ' (it)

a®)(z) = bEV(z).cE-(z). (iii)

Proof: Relations (i) and (ii) follow from the linearity of generating functions and
expectations. Relation (iii) can be established without using recurrences by writ-

ng:

2Oz = T al)(w)zle (2.1)
weP(?)
= 3 b(w/0)z!9/%¢ (w/ 1)z 1] ' (2.2)
wepl?)
= ¥ blw)z'® ¥ c(w)z | (2.3)
wpePla-1) wy epls-1) ‘
= b (z)cE1(z). | (2.4)

Note that the transition from (2.2) to (2.3) results from the standard isomor-
phisms:

BE) ~ (041 BED
P(s) ~ Ple-Dxpls-1) ™

Lemma 2: [The translation lemma for initial valuations; finite model]: The
valuations:

a(w) =1 (i)

b(w) = 6,,_,‘5, A (’L’L)
¢(w) = |w] (iii)

(6 denotes the Kronecker symbol) hove corresponding generating functions:
a(z) = (1+z)? : - 6)

b(s)(z) = Z;]gp (’L’L)
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cb)z) = 2%z (1+z)% ! ‘ o (i)

The above correspondences have a number of direct implications. For instance,
if:

a({w) = b(w/ 0) ' (2.5)
which we may rewrite (using 1, to denote the valuation identically equal to 1) as
a(w) = b(w/ 0). 10, .
we get: ' _
a®)(z) = (1+2) .66 V(z) . (2.8).

An important pattern in analyses is relative to parameters that are recursively
defined .over the tree structure. By (2.6), if a parameter v satisfies the induc-
tive definition: ’

v(w) = v(w/ 0)+u(w/ 1)+w(w) , " (2.7)
then: _

v6)(z) = 2(1+z )P Wl (z)+wii(z) (2.8)
Equations of the form (2.7) are solved by iterating (or unwinding) the

recurrence, and one has trivially:

Lemma 3: [The iteration lemma for the finite model] The solution to the
recurrence; , ' :

. V) (z) = o5 (z )Nz )+, (2)
where o8 are known and vO(z)=8(z) has the explicit solution:
v®(z) = Ng(=). [] a(=)].
j=0 k=j+1

Application of this lemma to the special case of (2.8) results in the solution:

v®)(z) = e Iwi(z)(142)2 2
1=y

2.2. The Infinite Model

Our treatment of the infinite model closely follows what-we have done in the

preceding section. The universe of keys is now the set:

B

and the universe of sets is:
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P = focB™) | o finite] .

The basic property here is that for a random set  of n elements, the probabil-
ity that the size of w/ 0 be equal to ¥ and the size of w/ 1 be equal ton~k is sim-
ply the Bernoulli probability:

ﬁnk - [ ]

Lemma 4: [The additive-multiplicative translation lemma; infinite model]: If
valuations on tries satisfy the relabions:

We have;

a(w) = A (w) 3 (%)

a(w) = b(w)+c(w) (ii)

a(w) =b(w/0).c{w/1), (iit)
then the corresponding generating functions are related by:

e (z) = 2 ®)(z) ‘ (%)

a®)(z) = bENz)+c)(z) , (i)

aN(z) = b(")(;—).c(“’)(%-) , (iii)

Proof: Again (i) and (ii) are trivial. Relation (iii) is proven by:
atN(z) = Z ayﬁ“"” =) ﬁn.kbkcn——k%
n.k>.0
7y ne
- n?aobnl ny! Eeoc"z !
= b EY o=y T
b (DY c(E)

The product form comes from the fact that when v is a random n-subset of B™),
then if w/ 0 is conditioned to be of cardinality k, it is a random k-subset of

B, =

Lemma 5 [The translation lemma for initial valuations, infinite model]: The
valuations: :

a(w) =1 | (i)
b(@) =8uip ’ (i)
c(w) = |o] (i)

have corresponding generating functions:

aFNz)=e* | (”-)
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b)(z) = 5’};’;_ : (i)
c@)(z) = ze* | i)

We again have the important spécial cases corresponding to (2.5),(2.7). If
a(w) = b(w/0)
then ’
a™Nz) = e"zb("’)(gﬁ ; (2.9)

similarly, if v(w) is a recursively defined parameter:
v(w) = v(w/0)+u(w/ 1)+w(w)
then .
v (z) = 29"211(”)(-;-)+w(“)(z) : ' (2.10)

- Equations of the form (2.10) may be solved by iteration, and we have in analogy
to Lemma 3: ' !

Lemma 8 [ The iteration lemma, infinite ca.se].: Let o(z) and B(z) be two entire
Sunctions such that a(0)=c and 8{z)=0(z?%) as £ 0. The difference equation:
7 @) = a(z)f ()+8(z)
where f is the unknown function and «, g satisfy the "contraction condition":
c27%<1,
with the initial conditions on f (2:)
FO=5(0)=r0= - =s40)=0

has a unique entire solulion given by:

1@ = TIACEATa(Z T,

j=0 E=0

Proof: Iterating the basic equation, one gets:

1 (2) = B@)+alz)f ()

t

Blz)+a(z)B( I +a(z)a( )7 (D

The initial conditions together with the contraction condition ensure the conver-

gence of the infinite sum that one obtains in the limit. "
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We have again an important special case corresponding to (2.10) where two
equivalent expressions can be derived.

Lemma 7 [Jteration Lemma for the infinite model,; special case] The differance
equation: . '

1 (=) = ce*/3f (£)+B(z)

admits provided the initial condition and the contraction conditions of Lemma 6

are saotisfied the solution:

21
fe) = BoipZy ¥ @
§=0 2!
Alternatively, the Taylor ezpansion of f (z):
Jfz)= ngcfn %T'
can be obtained as: ‘
Jn= g[:] T—%- where By = k![z*]e *p(z) . (i)

Proof: Part (i) is a direct application of Lemma 6. For part (i), we set
[ (x)=e®f(z); f (z) satisfies:

1) =cf ($)+81z). | (2.11)

Identifying coefficients of z" in (2.11) gives the relation f,=c2™ f,+8,. Relation
(ii) then follows since the coeflicients of f (z) are convolutions of those of f ()

bye®*. ®

Notice that in applications, the initial condition on f(z) can be by-passed by
subtracting from f adequate combinations of functions of the form: z™e?*.
The reader may compare this approach to the treatment of recurrences

occurring in the analysis of trie parameters via the use of binomial transforms
in [11,ex. 5.2.2.38-38].

Notice, as a final remark in this section, the following relation between the
finite and the infinite models [7}:

(“) =N (B) _Z__
v\ (z) = limv (23)

§+o

which is clear on the coefficients and explains many of the analogies between
the two models.
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3. ALTERNATIVE MODELS

The way taken in Section 2 which allows for a systematic franslation
mechanism from parameter definitions to generating functions may be
extended to a diversity of models. Since the proof techniques in each case differ
only little from what we have encountered, we -only briefly sketch here the kind
of results that can be attained.

3.1. Multiway Tries

In many applications, one may wish to take advantage of the decomposition
of records into characters or bytes instead of bits. The resulting trees have
then a branching degree corresponding to the cardinality of the alphabet which
is an integer m, m=2.

The definition of multiway tries mimics closely that of binary tries; if the
alphabet is assimilated to the integer interval [1..m ], we consider the sets:
ME) =[1.m] M= =[1.m].
and tries are now defined recursively via the decomposition:
| o= 1.(/ 1)UL/ 2 - Um. (w/m), -
for any wcM®), with o/ FCMED, Sum and product rules remain valid as before
(with m-ary products if a valuation is a product of m valuations on subtrees).

In the finite case, the generating function describing the universe of all sub-
sets of M) becomes:

N ozl = (14z)° : (3.1)
wcH(®) '
In particular, if
v(w) = wlw/1), ' (3.2)
we have: .
- 0)@) = weDE)((14zymtmet
= w(s—l)(z)(1+x)M’—?~”‘ : (3.3)

In the infinite case, for instance, (3.2) leads to
y(w)(z) :w(w)(;%a(ew/m )m—l '

z(l*-'ln—)

- ('”) L R N
w( e (3.4
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3.2. Biased Bits

To model more closely some applications, as for instance when tries are
built out of textual data, one also considers non-uniform probability distribu-
tions on bits or characters of strings. We shall study here the infinite model
only. Starting with the binary case, the model assumes that bits of keys are
taken independently from some discrete distribution:

Pr{0-bit) =p; Pr(l-bit)=g=1-p . (3.5)

In other terms, for u€B), we have:

L kE n-k
Pr{fumwe - wlo) = [ (pFg"7F .

(] |o denotes the number of zeros in u).

Additive properties of generating functions still hold. The main difference
lies in multiplicative valuations, for which:

v(w) = wlw/0)t{w/ 1) " (3.6)
translates into:

v z) = wN(pz).t &) (gx) . -~ (3.7)

This biased model also extends easily to m-ary tries, as we have been con-
sidering in Section 3.1. If the probability distribution on an m-ary alphabet is
. (@1pa. - pm) With),p;=1, then

V(&) = w0/ 1)wg(0/ 2) - (0 m) (3.8)
translates into:
vz) = wf) (p1z) Wl (par). - Wi pz) | (3.9)

3.3. Allowing Repetitions

The definition of tries associated to sets of binary _or other_sequences can
also be extended to multisets where elements may appear repeated sever @
times. In order to do so, we only need to allow leaves to contain several-eler .. .ts
that are identical. In practice the situation occurs for instance when construct-
ing tries on a single field of composite records. Although records are usually all
distinct, some values of a specified field are likely to occur several times (maay
people live in New-York City!).

Our universe of "files”" has now become in the binary case the family Q*) of
all multisets over B®) which, using notations from formal language theory may
be rewritten as:

Q) = I‘(] )a’ (3.10)
aEM? .
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with:
‘ a’ = pratal+adt . (3.11)
Taking as a measure of the size |.] of a multiset the number of its elements

counted with their multiplicities, the generating function that describes the
universe of multisets Q) is found to be: . :

weQls) 1-z
Notice in passing the formal analogy between definitions (3.10),(3.11) and equa-
tion (3.12). 4

Equation (3.12) is also consistent with the obvious counting result:

2°4+n -1

card{weQ®) | |w|=n}= n

(3.13)

Surn and product rules again apply and it is only in subtree valuations that the
form (3.12) of the "universal” polynomial has to be taken into account.

For instance, if
| v{w) = w(w/0),

then under this model:

fu(s)(z) = w(s"l)(z)(l—z)_.(zs_l) E

3.4. Several Sets

Sat-theoretic operations 'like union , intersection, ... take ‘as arguments
several sets. In order to analyse them in the average case, wWe should therefore
enter the sizes of the arguments as parameters. Restricting here the discussion
to the case of two sets, we consider valuations of the form:

v P(“)X_P(SUR,
The cumulated values of v:

v¥h= ¥ vlem)
¢ners)
{€l=m |n|=n

can be attained through the bivariate generating functions:
ve)(zy) = ka.’nz"‘y” = ) 'U(E-T})zmy‘"l '

m.n ¢n epl®)

As we shall see in Section ‘4.2, a relation like:
v(¢m) = w(&/ 0n/0)
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translates into:
vz ,y) = (1+z)2 7 (1+y ) " wb Nz y) .

Proof techniques are highly simplified if one uses the way taken in Section 2.1.
This permits us in particular to give a detailed analysis of trie union and trie
intersection.

. 3.5. The Poisson Model

The Poisson model has been used to obtain expressions that are someuwmes
easier to handle than corresponding expressions under the Bernoulli (infinite
key) model. A typical example is the treatment of directory size in Extendible
Hashing [2] that will be discussed in Section 4.3,

Under this model, the number N of elements on which a trie is constructed
is a Poisson distributed.random variable with average n {n being a parameter).
The keys themselves are uniformly distributed over the real interval [0;1]. We
have:

Lemma B: If o parameter v has under the Bernoulli model for n keys an
ezpected value v{®), then under a Poisson model of parameter v, its expectation
sotisfies: '

v =% e"’——ﬂZﬁ &) = e v N(y) |
k=0 ’

Lemma 8 is a trivial consequence of the form of the Poisson probability distribu-
tion. It shows that the values at positive real points of generating functions
under the Bernoulli model are directly related to the Poisson erpectations. Thus
Lemmas 4,5 translate verbatim into schemes that permit to determine from the
shape of valuations the expected values of trie parameters under the Poisson
model.

4. APPLICATIONS TO DIGITAL SEARCH

4.1. Simple Operations on Tries

We analyse here the storage efficiency of tries (and of some of their vari-
ants), as well as the time cost of a basic search. Our aim in this section is to
provide a uniform framework for a number of results that are to be found in
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[11]. (See in particular Sect. 5.2.2 and ex. 5.2.2.36-38; Sect 6.3 and ex.
6.3.20,31-34) |

Multiway Tries

" Our first analysis is relative to the storage occupation of multiway tries. In
the case of an alphabet of cardinality m, assimilated to the integer interval
[1..m], the determinant parameter is the number of internal nodes of the trie.
This parameter admits, as we have seen, the inductive definition:

in(w) = in(w/ 1)+1‘:ﬂ(m/ R)+ -+ +in(w/ m)+1-8|u1.0~6u)a (4.1)

for wCB®), with s>1 or s=w, For wcB?, we have in (©)=0.
In the finite case, we find from Section 3.1 the recurrence relation:

in6)(z) = (1+z)™ ~1—mSz + m(1+:4r:)""L”"_lf.i,w..(s “Nz) (4.2)
for s=1, with in(®(z)=0.In the infinite case, we get a difference equation:

z{1- ——)

inNz) =me ('”)(v—)+e ~1-z, (4.3)

Equation (4.2) is readily solved by unwinding the recurrence, and we obtain:

g . .
n®)(z) = 2ms’J(1+z)ms“m’[(1+x)m’-—-l—m’x] . (4.4)

. j=1 .
Taking Taylor coefficients of formula (4.4), we obtain the explicit form of the
total number of nodes in all tries formed with n distinct keys of length s over an
m-ary alphabet.

g Pt

=

Solving under the inﬁnite model is even simpler. By the methods of Section
2, we find for the exponential generating function of expected values of the
number of internal nodes of tries the relation:
z(1--19 21—t
in(z) = Yimklere ™~ BT mE, (4.5)
. k=0 m
Takmg again Taylor coeflicients in (4 5), we find for the expectauon of in under
the infinite key model the form:
in® = B m[1~(1- =y - L1 L] (4.6)

k/ k/
k20 m m

Path length in multiway tries can be analysed in very similar terms. From
the definition:.

pl(w) = pl{w/ )+pl{w/2)+ - +pl{w/ m)+ 0| —6ju1. (4.7)
we find the equations corresponding to the finite and infinite models:
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ple)z) = mplE 0 (z)(1+z)™ - ymsz[(14z)m"1-1] - (4.8) ’
pl™)(z) = m.ez(l—%’pl(”)(fﬁ+z(e‘—l) : (4.9)

Solutions may be obtained as before, and summarising these analyses, we find

[11]:

Theorem A: The expectalion of the number of nodes in an m-ary lrie con-
structed with n keys is:

j=

in {*) = k{1 f1_-L yn_ T o 1 yna1
1 mF{l-(1 1
O kgo [ ( mkl k \ k/ ]

1] jmS-mJ
e

pl=) = nZ‘ [1- 1——-——"~l]

The expected value of path length is:

plfs) = ms

In particular, the expected cost, measured in the number of bit inspections, of a

pos‘i.t'i,ue search is
1 (s) 1 (=)
" l ' __pl )
n

Binary Representations of Multiway Tries

In the case of multiway tries, the asymptotic analysis of the number of

nodes reveals that storing a file of n eler'nents necessitates about Tg';%'—zﬂ

- pointers, which may be quite expensive when m is large (many such pointers
toward the low levels in the tree are likely to be null). For that reason, it may
prove necessary to use a binary representation of tries, where each node s
linked to its leftmost son and to its immediate right brother. The price Lo pe
paid is an increased time cost, since access to subtrees is now done in a sequen-
tial way. Such a representation is displayed in Figure 2.
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Figure 2: The binary tree encoding of a trie associated to the file
{HAVE, HEAR,HERS, HILL HITS, KILL, KITS}.

There are several conceivable implementations of this structure. In the one
shown in Figure 2, an internal node of the original trie necessitates two pointers
while external nodes only use one pointer. The problem of tHe storage occupa-
tion of this structure is thus solved by our previous analyses. We propose here to
analyse the cost of a positive search under the infinite model.

Let bp (w)be the total number of pointers traversed when searching all keys
in the binary tree representation of frie (w). An inductive definition of this quan-
tity is obtained by observing that the cost of accessing the subtree correspond-
ing to &/ k is equal to 1 plus the number of non-empty subsets w/ j, for 0<j<k.

Hence:!
: m k-1 . )
bp (©) = le+k§31 [opla/ k) + |w/k | _Zox(,lw/.v |=1) ] (4.10)
= . J= : .

From there, the translation to generating functions is immediate, and,.for the

infinite model, we have:

za-d .z_ =z
bp ™) (z) =:::(e’—1)+meﬂl wbp(m)(%—)+ m—(m’—_—l)--(e”‘-—1)%12""(2”‘)”‘“2

, n—1 z-1y (- ‘

t We let X(P) denote the function whose value is 0 if P is false and 1 if P is true

4
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Solving, we obtain:

Theorem B: 7he auerage number of pointers of a binary tree representation of a
multiway trie of n elements is:

Rin{=\+n .
The auerage number of pointers followed in a positive search is %bp,{’”), where:

w m+1 -1 1 A _(q__L \n-
B e A=

Patricia Trees

Patricia Trees are a compact representation of tries due to R. Morrison in
which one-way branching is avoided by means of skip fields. Our deseription fol-
lows [11,pp.497-498]. We propose here to analyse under the infinite model the
cost of both positive and negative queries.

The access cost of a leaf in a Patricia tree is therefore exactly the number
of binary nodes traversed in the corresponding trie. Thus the cost of a positive
query in a tree of n elements is l-’(;imes the "path length through binary

nodes” in the underlymg trie. This modLﬁed path length is defined by the recur-
SLOIl

(w/0)+ppl w/1)+]w/0l+]w/1| if|w/0]. |w/1]#0
pol{w) = {ppl(w/0) ifjew/ 1]=0
L{w/ 1) if|w/ 0] =0

* This definition can be trivially rephrased as an additive-multiplicative combina-
tion of standard wvaluations. From there, we obtain the equation (terms
correspond to those of the above definition):

Z;pl(“")(x) = 2(28/2_1)m(w)(.§_) + 223/‘23_(22/2__1) + zml(m)(%_) . (4.12)
which, after simplification gives: |

2pLNz) = 26/ Fppl Dtz (e”—e*/2) . (+.3)

The case of a negative search leads to a difference equation of a new type.
Let pns (v) denote the expected cost of a random (i.2. negative with probability
1) search in the Patricia tree built on . This cost, again measured in the
number of pointers followed, has the definition:

¥pns (w/ 0)+ Y% pns(w/ 1)+1 1f[a>/0} [w/ 1]#0
pns (w) = (w/ 0) iflew/1]=0
(/1) if |/ 0|=0
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This definition can be translated as before into: - '
pns®(z) = (e”z—l)pns(“’)(gé-i-(e‘/z—l)zi-zp'ns(‘”)(%—) .
= (1+e’/2)pns(“’)(§-)+(e’/2—1)2 . ' (4.14)

This equation can be solved by the iteration method described in Section 2:

prs®(z) = ¥ (e #1146 7).
k=0 j=0 .

which using the identity:

(1+)(14gDHgY -+ (rg Y = YL

yields the explicit form:

prsz) = 0 1725 (1%).  (4a15)

b1 k
1+e % .

To extract the Taylor coefficients of pns™)(z) from (4.15), our route now follows
that of Knuth [11,ex. 6.3.34.a]. We notice that for a Taylor series:

f(=z)= nzzllfnx" .

" one obtains by expanding then aggregating the coefficients of z™:

2f< an

ka1 nx1

Thus, from the standard definition of the Bernoulli numbers:

E Bn 11 ___(211{-1_1) = tanh(-—) = el '

e (n+1)! e+l

we can expand the factor of (1—e®) in (4.15). The coeflicients of the function pns
are finally obtained by multiplying the expansion so obtained by the expansion
of (1-e*). We have thus proved [11]:

Theorem C: The expected costs of a positive and a negative searchin e Patricia
tree withn keys are: :

1op (=)
;Pln 1
: B
(=) = —————3+2 [ Erl
" b§1k+1 _E—1
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4.2. Set Theoretic Operations on Tries

Union and intersection can be efficiently performed on trie representations
of sets. As we saw in section 1.2, the algorithms are based on a simultaneous
traversal of tries. We propose here to give a precise analysis of frie infersection.
Qur results improve on Trabb Pardo's [15] who only had an approximate
analysis.

The parameters of the analysis are the cardinalities m,n of both sets . whose
intersection is to be computed and the cardinality of their intersection k. This
way of proceeding follows Trabb Pardo’s approach and is motivated by the fact
that random sets tend to have very small intersections. Thus taking also the size
of the intersection into account yields more informative results.

Our statistical model thus assumes all pairs of sets:
Khe = ((&m) | €ncB®), [¢|=m |, |nl=n, |€Nn]|=k }

to be equally likely. By considering I}, = UIS) &, i.e. summing our expressions
k

over k, our results give the analysis of trie intersection performed on random
sets of cardinalities m,n. '

The intersection algorithm is obtained from the recursive definition of
intersection: ‘
inter(¢m) = O.inter(£/ 0/ 0) U linter(§/1n/1).

with the initial conditions:
if |¢/=0or |n|=0 thenreport the empty set as intersection;
if |£|=1 then search for ¢ in 7,
if |m|=1 then search for  in £.

The cost of the intersection will be taken here to be the number of nodes
traversed simultaneously in both tries. Extension to more complex cost meas-
ures is also possible by our methods. This cost admits an inductive definition
that closely reflects the structure of the procedure:

ti(¢n) = 1+ti(€/ 0/ 0)+ti(6/ 10/ 1)~x(|¢|<L or |n]<1) .

The first problem we encounter is to determine the number of input.
configurations, i.e. the quantity

I,.ﬂf}l,t=card (Ir(rf,)n,k) .
Let us define the function: .

Yz yt)y= ¥ zllylghtml,
¢ncBe)

we have:
I8) o = [zmyntk ]ISz y t) .
To determine the quantity /s)(z,y,t), we apply the techniques of Sections 2,3.
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We write: _
I(‘)(z,y,t)= 2 zl£/O|+]¢/1:y|'n/o|+m/utlE/Onn/OHH/mw/ll

- gmcE®)
=Y gl ol tin 6Nl 16nm)
EoMg-E1m CHE D)
=[Nz y ).
Since we have the ihitial value:

IOz y t) = (1+z+y +tzy)

we get: o
I)z y t) = (1+z +y+txy)2’ - (4.18)
The same process can be applied to multiplicative valuations over subtrees. If
v(£n) =w(é/0m/0) - (4.17)
we find: v .
vz, y t) = (1+z+y+txy)25‘1w(sf1)(z,y,t) : (4.18)

Applying this paradigm (4.17)~(4.18) to the equation defining i, we have:
£z, y t) = (1+z+y+izy)P " 56V y 1)

+{1+z +y +tzy ¥ -X6)Nz .y ), (4.19)
where ' , ' .
XNz yt)= 3 x 18l Inlg 16Ol (4.20)
mCBE) : C
182 e

Determinihg- Xs)(z y,t) is routinely obtained by considering all possible cases,
and we find;

XNz y,t) = 25(1+x+y +tzy)[(1+x)2’—1+(1+y)2’—1_1] |
—(Bs_1)[(1+x)23+(1+y)2s—1-252:y] . (4_21)

Whence sohﬁng by means of Lemma 3 the explicit form;

ti)(zy t) = (2°—1)(1+z +y +tzy )P — izs-f 1+z+y+tz~y)2"2"Xﬁ)( z,9,t). (4.29)
=1

There now remains the task of extracting coeflicients of the polynomials that
appear in equatlon (4.22). To that purpose, we define:

Ingilay] = [zmynt* |(142)X(1 4z +y +Ezy )7 (4.23)
Tmnk[B7] = [Pyt [ (1+y )P (14z +y +zy )T .

' Expanding first in £ then in z and y the polynomials of (4.23), we immediately

find:
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Inmila] = ) [7’ e (4.23)

Jnmrl8 = Q) )1 (4.24)

The quantities [, q.x[a.y] generalise the L) .. In particular, from (4.23), we
have: -

IS s = Inn b [0.25] = T nk[0,2°] = [i][?;:’,g]["‘;:? . (425)

a fact which could have been deducted by diréct reasoning.
Using (4.23),(4. 24) in (4 22) we finally obtain:

Theorem D: The cumulated cost of the trie intersection algorithm applied to two
sets of cardinalities m and n whose intersection has cardinality k is:

5,8 = (25=1) & [0.2°]
s g (4 3
~25 3§ ham e (& 1,25 —RF 4+ 1]+ d g [P 1,25 27 +1]
=1 ' _
I nk (0.2 —& +1]+(2j _1)[m -1n-1k (0,28 —‘2"] {

#3025 29) { Iy [R5, 2%~ [+ (25,25 ~20 =L [ 0,25 2] ] .
J=1 . )

The expected cost, assuming a uniform distribution over I,(,f?,, ks

—Ltifs) .

Il 02"

One could analyse in a similar way the cost of trie union as well as take into
account the cost of other operations (pointer traversals, bit inspections, -
tests...).

4.3. Trie Indexes

'

We propose Lo analyse here the main parameters of trie indexes, when the
keys are infinite.
We shall first evaluate the number of pages necessary to store recor:. of
the file; this quantity satisfies the recurrence:
page (v) = page (w/ 0)+page (w/ 1)-x(|w|<b) .

with the initial conditions: page (w)=1if |w|<b. This is an additive valuation on
tries. It is amenable to the techniques previously described, and we find for the
corresponding generating function the difference equation:

page™)(z) = Ze’/zpage(“)(g—)—i-e’—eb (z), . (4.26)
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Where
z!
F-ST

Equation (4. 26) does not sat1sfy the contraction condmon of Lemma 6. However, -

eb(ﬁﬂ) =

. the auxiliary function ¥(x) = page’ )(:c:)—e‘c does. Function ¥ is deﬁned by a vari-

ant of equation (4.26):

Yz) = 2e”’2'¢1(32:—-)+e”—eb (z),

‘which can be solved by iteration leading to an explicit form of page ™:

@age(w)(z)’= e® + sze’(“z_k)(ezz—k—eb (z27*)) : ‘(4,27)

from which Taylor coefficients can be extracted.
The distribution of page occupation may be analysed in a similar manner.

.Let page, (w)denote the number of pages containing r elements. This quantity

can be defined by:
pagep(w) = [page, (w/ 0)+pagep(w/ 1)]x [e2]>b)+8)u1p - © (4.28) .

Under this form, equation {4.28) does not fit directly into the schemes we have
previously introduced. It can however be brought under the standard form of an
additive-multiplicative valuation if we rewrite it as: '

page, (@) = pagey(w/ 0)+pagey (w/ 1) ' (4.29)
+x(|w|=p)-x(lw/0|=p) x(|e/ 1 |<b~p)~x{|e/ 1|=p).x(|/ 0|<b—p)
From (4.29) follows the equation:
page( "Nz ) = 2e*/ *puge, (=) Z )+——.21 ;I: "'P(g—)' (4.30)

This equation can be solved as before and one finds:

- Theorem E: The expectet number o f pages in a binary trie indez, when the page
capacity is b is given by: .

page” = 1+ . - | (4.31)
—-0 t

__ Laynor, .. _fr) Lypgi— Layn-s
2{1-(1- S0 B a-Zom
The expected number of pages containing p elements is: '

) L) s 1 .
pagess) = 6pp + t;’] 22(1 Pk [(1—2'7“"’— : (4.32)

(1- fn ](217) k+1 P~ "Q;?](;T)b_’(l——zrlﬁ-)n"’ ] .
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We now proceed with the evaluation of the depth of b-tries which is related
to the size of the implementation of the index in extendible hashing.To that pur-
pose, we introduce the characteristic variables p{~)(w), defined by:

wwm%

These quantities are purely multiplicative valuations that satisfy:

PENw) = pé (wr O)pé} (w0 1) . (4.33)
Furthermore, the ezpectation pf3) of p{=)(w) over all w of cardinality n is exactly
the probability for an n-set of strings to have an associated trie of height at
most k. :

Thus these probabilities, under the Bernoulli model, have generating func-
tions that satisfy:

1 if the height of w is at most k

0 otherwise .

i) z) = pf wg : . o (4.34)

= pf” <xz*’°>2"= e (z2 ).

With the general relations between the Bernoulli and Poisson models that have
been given in Lemma 7, we thus find the values of these probabilities under the
Poisson model to be: .

pEn) =e™e, (nZ"k)Zk. (4.35)

From (4.34), (4.35), we have access to the expected height of b-tries, and we
find:

Theorem ¥ The average depth of a b-trie is under the Bernoulli model:
def) = ¥, (1-nl[z"Jey (z274)%),
k=0

and under the Poisson ﬁadel of parameter n.:

dell = Y (1~e ey ((n2*)%).
k>0

, The asymptotic analysis of the results of Theorems E,F recveals that the
expected number of pages fluctuates around

LI
b.loge ’

which corresponds to a load factor of the pages close to log2 [11,12,2]. The

depth of a b-trie under either the Bernoulli or the Poisson model satisfies:
n = (14 %—)k)ggn +0(1) .

In Extendible Hashing, the trie is embedded in a perfect tree, and represented
as an array; the size of this array is exactly 2 raised to a power which is the

¥
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height of the trie. It has been analysed under both models by [8, 18] who show
that it has a non-linear growth and fluctuates around:

1

'y 1
[(p+a)] ® ey 1y Ty

log?

b. mSCE[JANEOUS APPLICATIONS

5.1. Multidimensional Search

Multi-dimensional tries or k—d-tries (in dimension k) are used to store and
retrieve records from a k-dimensional universe. Throughout this section, we
assume that each field is an infinitely long binary string. The universe of records
is then simply: '

(B

There is a very natural mapping from (B*))* to B"™). To an element @ c(B™)¥,
2 = (uluR ... ulkl) we associate the string:
v =sh(a) = ufluf?l - ufluffEl g el [ty ol el

In other words, wis obtained from 2 by regularly shuffling the bits of the com-
ponents of @. '

Given a finite set we(B™)*, the trie built on sh(w) is by definition the k —d-
trie associated to w.

The use of k —d-tries should be clear. To retrieve a record when all its fields
are known, follow a path in the tree guided by the bits of fields in a manner con-
sistent with the definition of the shuffle function.

The interest of k —d-tries is to allow partial match retrieval to be performed
often with reasonable efficiency. To retrieve a record with some of its fields
specified, again follow a path in the tree guided by the bits specified in the
query. For bits corresponding to unspecified fields, proceed with a search in
both subtrees. This method is described in [1B]. A partial match search is thus a
succession of one-way and two-way branching dependent upon the specification
pattern of the query.

Definition: A specification pattern is a word of length k over the alphabet §{S,*}.
To any partial match query there corresponds a unique specification pattern
obtained by associating an "'S" to a specified field, and a"*" to on unspecified
field in the query.
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Our purpose here is only to illustrate by means of an example extracted
from [5] how previously discussed methods may be used to analyse the cost of
partial match queries in k —d-tries. One has:

Theorem G: 7he ezpected cost, measured in the number of internal nodes
traversed, of a partial match query on u file of size n, represented as a & —d-trie
with specification pattern mis: '
—1 .
Can = 'E (6,82 - 6, 3, F*)7;,(n)]
1=0 j=0

where §;=1 if m;="S", ;=2 if m;=""*", and:

: 1 n 1 -
Tj.l(n) = 1"(1—2*1'14 )n_zl;j+l (1- ok + »t,

Jor j.U not both 0; 7 o(n)=0.

Proof: Let c,(&) denote the expected cost of a random search (i.e. specified
fields according to m in the query are drawn uniformly) in the fized tree trie(w).
Letting w¢!>,7<¥> . - . denote the successive left circular shifts of the word 7, in
particular n<k¥>=p<0>=g g<¥k+1>=p<1> ... From the structure of the recursive
search procedure, we find the recurrence:

d; . 4;
"<j>(w) - 2 ﬂ<j+1>\w/ 0)+ "—C“q+1>\w/ 1)'*'1 6'@] 0_6“‘,] 1 (51)

which is a direct reflection of the cyclical changes of the dlscmmmatmg fields in
a k —d-trie.

Equations (5.1) translate into a set of difference equations for correspond-
ing generating functions:

Cpen() = 85¢ qun( Dt ~1-z, j=0- - k-1. (5.2)

The system of k equations {5.2) reduces by successive elimination of
€ <13 Cocz>, -« * With ¢, as(z)=eq(z) to:

cnlz) = Zk‘sc,,(-gk—)+a,,(z) , (5.3)

where s is the number of specified attributes in the query and a,(z) is a combi-
nation of exponential functions.

System (5.3) is then solved by iteration as explained in Section 2, and
Theorem G is then proved. ®

The result of the asymptotic analysis of our previous estimates is that the
average cost of a partial match query with s out of k attributes specified in a file
of size n is
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This result is to be compared to the corresponding cost of a search in a k~d-
tree (the multidimensional analogue of binary search trees) which is:

' _8 s
o(nl k—:-m(k—))

for a non-zero function 9( %—) These analyses are presented in detail in [5]. They

give support to Nievergelt’ s claim [13] that in many situations digital structures
tend to be more efficient than comparison based structures.

5.2. Biased Tries and Polynomial Factorisation

Tries constructed from a biased distribution may be analysed by the
methods of Section 3.2. Additive parameters are no difficulty, especially if one
uses methods of Lemma 7 (ii). See e.g. [11, ex. 5.5.2.53].

A generating function of a rather surprising form occurs in the analysis of
the expected height of biased tries. Defining as in Section 4.3 the quantities py, ;
to be the probability that a simple trie built on a binary alphabet has height at
most k, we readily find from Section 3.2 and decomposition (4.33) the relation
on the exponential generating function of the p, ,:

P (2) = Pe—1{PT).Pr—1(gz) | (5.4)

which, combined to the initial condition: A :
Polz) = 1+z
shows that
-
pe(z) = [J(14+pigk)ul,
j=0

Whence:

Theorem H: The probability for a biased trie formed with n strings to have
height at most k is:

m [z T[(Lpigr 1)),
j=0

In [8], the authors use a saddle point argument to show that the corresponding
expected height is of order; '

2logn
log (p*+¢*)™"
This result is useful in the analysis of some refinements of Berlekamp's polyno-
mial factorisation algorithms based on the construction of idempotents.
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6. CONCLUSIONS

It should be clear by now that a large number of statistics on binary
sequences can be analysed rather simply by the methods which we have previ-
ously develdped. Other applications that we do not have space to describe here
include the Probabilistic Counting algorithm of [4] or the analysis by [6] of the
von Neumann-Knuth-Yao algorithm for generating an exponentially distributed
variate. :

More generally, consideration of general relationships between structural
definitions of algorithms or combinatorial parameters and the corresponding
equations satisfied by generating functions seems worthy of attention in the field
of analysis of algorithms. It extends the approach of some recent works in com-
binatorial analysis by Foata and Schutzenberger, Rota, Jackson and Goulden
[10]. That it is not restricted to tries will only be illustrated by means of a few
simple examples.

Assume two valuations on binary trees are related by:
' v(T) =w(left(T)) .

We can then set up various translation lemmas for corresponding generating
functions of average values under several statistical models of tree formation.
We cite: -

(i): in the case of binary tries (as we have been considering), for exponential
generating functions:

v(a) = 2w (L)

(ii): in the case of binary search trees, for ordinary generating functions:

v(z) ={w(t)l“_—t;

(iii): in the case of digital trees [Kn73], for exponential generating functions:

z
t
= [et/2,( Eygt
v(z) {e 2w(2)dt,
(iv): in the case of planar binary trees, for generating functions of cumulated
values:
v(z) = _1_-_—_%:_4_2_’“(2) .

Thus, for entire classes of valuations we can characterise the systems of
functional equations that arise. This characterisation calls for:

»

Y
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