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ABSTRACT

We show that, as transition systems, Petri nets may be
expressed by terms of a calculus of processes which is a variant of
Milner's SCCS. We then prove that the class of labelled nets forms a
subcalculus, thus an algebra, with juztaposition, adding condition

and labelling as primitive operations.

RESUME

On montre que, en tant que systémes de transition, les
réseaux de Petri peuvent etre exprimés par des termes d'un calcul

de processus qui est une variante de SCCS de Milner. On prouve

ensuite que la classe des réseaux étiquetés forme un sous-calecul,
donc une algébre dont les opérations primitives sont la juxtaposi-

tion, les ajouts de place et les étiquetages.

H! ! D PAPIER RECUPERE ET RECYCLE
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1 - INTRODUCTION

In the last few years several mathematical models of concurrent and com-
municating systems have emerged. One of the best known is that of Petri nets,
which gave rise to a considerable amount of theoretical developments (see for
example [11,2,3]). In some sense a Petrinetisa dynamic pictorial description of
a non deterministic asynchronous concurrent system. This graphical aspect
involves a slight defect : it is not clear how to recognize "subgames” in the pic-
ture, which is given as a whole, and reset the components. In other words, we
may need some syntax to build nets. Previous efforts in this direction can be
found in [4,5].

We aim here at proposing such a syntax, in the framework of a more recent
abstract model, that of Milner’s algebraic calculi of processes ([7,9,10]). These
models consist first of all of a free algebra of terms, with as primitive operations
parallel composition, synchronization or deéynchronization mechanisms, and so
on : whence the algebraic character. Second there are actions labelled transi-
tion relations between terms. These relations are structurally defined, that is
the behaviour of a compound term is a function of the beha&iour of its com-
ponents. Finally an equivalence relation on terms is given which is a congruence
and respects the transitions abilities. Thus we have equational laws, whence a
calculus, and each term denotes a process: a transition system on equivalence
classes. Thus the calculus provideé this way a syntax for some universe of

processes.

Milner already showed that the static (pictorial) aspect of nets can be
modeled in a calculus, that of (free) flow algebra [6]. Concerning dynamics, one
of his most fruitful ideas was to realize that the set of actions should be thought
of as an algebraic structure also [9.10]. Specifically, actior:s will form an abelian
monoid : to perform simultaneously two actions one performs their product.

Moreover, some actions may have an inverse, in order to handle a rudimentary



form of communication.

We set a relationship between Petri's and Milner's mathematical models of
processes. The calculus we will use, called MEIJE (cf [1]), lies on an "asynchro-
nous” (not in the technical sense of asynchrony in [10]) parallel composition,
together with some syncbronization primitives. We present it briefly in the
second section. In fact, this calculus is just an equivalent formulation of the
"finitary” version of Milner's synchronous calculus (see [1,8]). In the third sec-
tion we show that, as far as they denote transition systems, Petri nets can be
exactly expressed as terms of this calculus. The crﬁcial tool here rests in the
monoid of actions, formalizing notions of simultaneity and communication. In
the fourth section we present the labelled nets as an algebra, build with juxtapo-
sition, adding conditions and labelling as primitive operations. We discuss the

semantical aspects of our propositions in the conclusion.

2 - THE MEIJE CALCULUS A

First we describe the monoid of actions which is the basis of our calculus.
This monoid M is the product of two others :
(1) the free abelian monoid generated by some given countable set A of atomic
actions. Thus, loosely speaking, this monoid is that of instantaneous events,
which do not interact with each other.
(2) The free abelian group generated by some given countable set S of signals.
Each of the element of S, say s, is a synchronization or communication action,

endowed with an inverse s ; the simultaneous occurrence s.s of these actions

establishes a communication, or a handshake, which is a private act, only show-
ing the unit action 1.

The product of ¢ € M and b € IM will be denoted by a.b and the unit by 1. If
B is a subset of A U S we shall denote by IM\B the substructure of M generated
by (4 U S)-B.

Now let X be a countable set of variables, which will serve as identifiers in
order to define recursivé processes. The syntax for the terms of the MEIJE cal-
culus ([1]) is given by the following :

(i) Ois aterm (inaction), and a variable is a term ;
(ii) guard or action : if a € M and p is a term, then a:p is a term ;
(iii) morphism : if ¢ is an endomorphism of M and p is a term, then <g>p is a

term ;
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(iv) restriction:ifa € S andp is a term then p\a is a term ;

(v) recursive definition : if zy, ....,Tn are variables and py, . . . . Pn 8r€ terms,
then for 1 £ £ n (z; where =Py .- -, Tp=Pn) is a term.
These are, with slight lexical variations (but the same semantics, see below),

among CCS’s or SCCS’s primitives.
This is not the case of the following :

(vi) asynchronous parallel composition : if p and g are terms, then (p [ g) is a

term ;
(vii) triggering :ifa € S andp isa term, then a => p is a term ;
(viii)ticking : if a € S and p is a term, then a * p is a term.
Free and bound occurrences of variables are defined in the usual way, and

we denote by

[Q1/zl- e Qn/xn]p

the term we get by substituting the g;'s to the z;'s at their free occurences in p

(renaming bound variables of p if necessary).

a
The transitions relations - (where a € M) between terms are are the least

ones satisfying the following rules :

a
(R1) aip »p
e #(a)
(R2) ifp - p' then <p>p —= <p>p’
a
(R3) ifp - p' and & € M\« (that is neither a nor X appears as an irreduci-
a
ble factor of a) then p\a - p'\«t
(R4) if, for isjsn, g;={zjwhere T4 =Py Tn = pn) and

a a
[91/Z1.-+Gn/Zn 1P = P theng; 2> p.

There are three rules defining the semantics of the parallel composition, accord-

ing to the idea that the components are independant :
e a :
(R5) ifp »p' then(p llq) ~» (@ Il @)
. a ] abd
(R8) ifp »p andg » ¢ then (@ llg) —> @ lI¢")

b )
(R7) ifg > ¢ then(plig)» (@ llq)
Finally for the synchronization primitives of MEIJE :



a a.a
(R8) ifp »p thena=>p - p'
aa

Q
(R9) ifp »p' thena*p —» a* p.

a
Thus ¢ - ¢' iff this transition has a proof following these rules. For example,
the transition graph of the term p = ((a=>(a:b:0) || a=>(c:0)) [| O\« is
®
.,,/.,((b 0 a => (c:0)) [|0)\a » (@ [| a => (c:0)) || O\a
P
((a => (a:5:0) || 0) || O)\a

With each action a we associate a clock on a

hg Zdef (:c where z = G:I)

a b
and it is easily seen that h, » h, (and moreover h, - p implies b =a and

P = hyg).

Let A s) be the set of closed terms, that is without free variables : these
are the agents of the calculus, which denote processes, as we shall just see. Let
~ be the coarsest equivalence relation between agents which satisfy the pro-
perty of commutation {(or compatibility) with transitions :

» .3 . q ' .3 . ’ ,

p~gandp 2p' =>=¢ g~>g¢ andp’ ~g
It is a congruence relation over the algebra of agents, called the strong
congruence (see [10,1]). The set Py sy = Ay s)/~ of equivalence classes is the

set of (MEWE) processes. In this set we still have transition relations:

ipt 5> (o iF3q:psgandg~p

(where { p}| denotes the equivalence class of the agent p).
Equational laws where verified somewhere else ([1]), among which:

(L1) (plig)~(gllp) (commutativity)

(12) @ligllr)~Uplig)llr) (associativity)
which allows to write (p; |]...|] Pn) ' :

(L3) @llp)~p (unit)
And, fora, B € S:

(14) (@\)\a~p\a

(15) (@\a)\8 ~ (P \BN\
Thus for {ay, ....a,} C S we may write p\{ay, . .., an} for (-e\a)\ " \an).

Another law will be of use : if, as in (R4), we let for 1Si<n
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g: = (z; where | = py....Tx = Pn) then

(L8) g¢i ~[g1/T1.-.gn/Znlp:i (fixpoint).

While agents denote processes, the expressions of the calculus, with free
variables, denote functions on processes. If ¢ is such an expression, with free

variables zy,...,z, we define
fipih. ... A=t [Py/20  Pa/Za ]t D

for agents py, . . ., Py

For example, the interleaving operator, specified on Pa,s) by the rules :
. a . a
(1) iftp » p' then (plq) » ('l q)

b : ]
(2) ifg » ¢ then (plg) »> (plq')
is defined by the MEIJE expression

(zly) = (az || a*y || hg) \ @

Some other examples of such derived operators (for which ~ is still a
congruence ) are given in [1]. We get a subcalculus by taking some of these

derived operators as being primitive.

3 - EXPRESSING PETRI NETS IN MEJE

3.1. - Let us’ﬁrst briefly recall some basic definitions (we assume here some
familiarity with Petri nets, see [11,2,3]). We deal with Petri nets allowing multi-
ple arcs between transitions and places. Thus a net 7 is a structure
(P,T Pre,Post) where

-P=1{py ..., Pk} is the finite non-empty set of places

- T =1{ty ....ty} is the finite non-empty set of transitions (with some
ambiguity in the use of this word) o

-Pre : P x T -» IN (IN is the set of non-negative integers)
and Post : T x P » IN are the numerical functions setting the preconditions and
postconditions of the firing of transitions. A

A marking p on the net 7 is a map from P into IN: u{p)is the number of
tokens on the place p in this marking (and we note u(pi) = wi). A transition ¢ is
enabled by the marking g, a property noted (7 S>> iff

Vp €eP u(p)2Pre(p.t)
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Under this condition, by firing ¢ we get the marking 4’ on 7 such that
VpeP u(p)=pulp)-Pre(p,t)+ Post(t.p)

We write that (r.u)[t>(r.u'). which is the transition relation between states of
the net.

One may extend this relation in order to define the simultaneous firing of
transitions. Given a non-empty subset U of T, we say that U is enabled by the

marking wu iff

VpeP up)z 3 Pre(@.t)

and we denote again this fact by (7..)[U>. Then, by firing simultaneously (or:in
parallel) the transitions of U, we get the marking u':

VpeP pwp)=upl)+ EU [Post(t,p) — Pre(p.t)]

The extended transition relation is again denoted
(r ) [U>(r )

(This is the definition of [12]).

3.2. - Now we want to find for each marked Petri net a MEIJE agent which, as
far as the two denote processes, is "isomorphic” to this net. The idea is to con-
sider places .and transitions of the net as processes, and then to express them

by agents and find an appropriate communication structure between them.

A place of a net is no more than a bag, into which we can put -and there
after remove- tokens. Let us denote for a moment by a and b respectively the
atomic actions of putting and removing a token. Then a bag is a process, the

behaviour of which is the following :
one can, simultaneously
- put (performing the action a ) as many tokens as one wishes
- remove (perfofming b) no more tokens than there already are in the bag.

Thus, if we denote by %) a bag containing initially k tokens, its specification is:
| a™p™
VmeNVneNn sk Q) ——s qlkem-n)

Now let o*) be the sequence of MEIJE agents defined by

o) = (z where z = (a:6:0|| z))
w(k-'l-l) = (b:(D “ w(k))



lemma 1

VikeN o®)n~(a:5:0] o®)

proof : we proceed by induction on k

- if k=0, then we apply the law (L 6) and immediately get the result
~(a:00] o®*V) = (a:b:0 || (6:0 || o*))) (definition)
~OD| (a:d0 ] %) (by L1, L2)
~ (:0 || &*)) (induction hypothesis)

= o**1) (definition) =

lemma 2
c
jof) - (ph Ik €N, k>0 c=afand [ph = {®}

proof :
ok
(1) by induction on k (£>0) we prove that w(®) - o)

a
(1.1) - We have (rule R1) a:5:0 > b:0

a
whence (rule R5) (a:00 || o)) » (6:0 || &{°)) = oM

a
Thus (rule R4) o) > oM
ak a
(1.2) - By induction hypothesis w(®) - of®). Since a:b:0 » b:0 we have (rule

RS)

k+

gk+1
(@:b0 || w®) ——- (00| wlk)) = ok+1)

k+1
Thus (rule R4) o) o s

(2) We prove the converse by induction on the definition of the transition rela-

o

tions.

k
If {®) - {2} then (by definition of transitions in P4 5) and rule R4)

hfﬂﬁﬁl\q,wwg‘é&‘q;’bi'léf'f“ EASEL T LA

: [
Jg~p (b0 @) -q

_then
S

ol
£
"Q‘I‘\ .
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(2.1)-c=a and q = (b:0 || &) = o) (rules R 1 and R5)
or
(2.2) - (rule R7) 3 q' () 5 g and ¢ = (a:b D ¢')
then by induction hypothesis
Jk €N, k>0c =a* and g’ ~ o)

Thus g ~ (a:b0 || o)) since ~ is a congruence and by lemma 1 g ~ wlk)

or

(2.3) - (rules R6 and R 1)
.
3 c' 3 q' s of®) 5 g', c=ac andq = (b0l q')

by induction hypothesis
Jk>0 ¢ =a*andg ~a®

thus ¢ = a**! and (~ congruence) g ~ (b:0 || ®)) = w+1) «

We get the immediate corollary :

lemmma 3

[
VeeN (o®) » {ph ff3nmeNnsk

and c = a™b™, P~ c"(lc-i-'rn—'n)

(proof : by induction on k and case analysis, obvious).
This proves that we modeled well the concept of bag by the MEIJE agents W),
that is:

| o®) j = q®

In the synchronous calculus of Milner ([9,10]) we should have written

o®) = fiz, {z; = é((b":l) x Zmam:zjm—n)/j €N
n<j me .

where 1 = hy = (z where z = L:z).

3.3. - The second step consists in building agents for transitions. The

semantics of the firing of a transition ¢ is that, simultaneously :
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- one remove Pre(p.t ) tokens from the input places from t
- one performs ¢
- one put Post (¢,p) tokens in the output places of t.

In order to provide this, we assume that places and transitions communi-
cate by means of signals. Technically we suppose with the notations of (3.1),

that:
-the set A of atomic actions includes {¢y, .. ., ¢y}
- the set S of signals includes {o;,8; / 151K}

Then performing @; means putting a token in the place p;, while p; performs the
action a;, that is receives this token. When p,; performs E,-, a token is sent from
pi, while performing f; means receiving this token. Thus each place p;, with

some initial content (marking) is now a bag among

8f°) = (z where z = (a;:B::0 | z))
8f+t) = (8,0 || &%)

(1£isK)

If we denote my; = Pre(p;,t;) and my; = Post(t;,p;) to each transition t;

correspond the instantaneous action
—a™d ... g TGN . T K
=/ Bx' Y t;ay ag

And the process associated with this transition, which can repeatedly perform

this action, is therefore modeled by the clock h.,’_.

Finally for each Petri net = {with the notations of (3.1)) and marking pon 7
we build the MEIJE agent

ooy =aog (g 1ol ) 1@ 1 - 11 0N \ foxi 0/ 154K

Here we set an interleaving structure (which, strictly speaking, ought to be
expanded in its MEWE code) on the transitions, according to the fact that only
one at a time may fire. Restriction on the signals means that tokens flow

between places and transitions, so none can be lost.

lemma 4
c . 3 . R
dp(r.u)b - iph FTJ (1§J§N) such that
1- Vi (15isK) pi 2n;; and

2—c=t,- and'
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8= P ~pry) where Vi(1SisSK) w'y =y + myj — ny

proof

' ¢
(1) Let us assume that p¢ )~ p. Since for all i (159<K) and k € IN we have

¢
efx) 5 g implies ¢’ € M\ {a;,B; /1SiSK)}
we deduce {using rule R3) that

. .
(1.1) - either (rule R5) (he, |...1 Ry,) » g for some g such that

p =(g I (@F ] - | 8%\ (a;.8:,/15i5K}

In this case we have, by the definition of the interleaving operator {and the

behaviour of the clocks) :
35 (1555N) ¢ = 7j and g ~ (ke || hoy)

Moreover ¢ € M\ {oy.B;/15i2K]} (rule  R3) thus for  all
1(13i2K) Ny ,; = 0 = m;; and we get the desired conclusion in this case.

(1.2) - either (rule R6)

c' .
(h'rx .| h‘rN) - g and

c”

{ (g} .
@) ed) S g

and ¢ =c'c”, and p = (g || ¢') \ {@.B:;/12isK}. Thus 3 j(1sjsN) ¢ =71,
and g ~ (hy, |...] Aipy)

Since c € M \ {a;,8;/15iSK} we must have
c"=§?"j . -E;K"' ay M og®i whence ¢ = t;
Thus for all i (1£i$K') such that n; ; + m;; # 0 we have :

—_— m. .
pi 3 “i .7

31::9-0“) ————— = q;- -

1

U{)

' i ( y |
and ¢' = (g, || - llgx) if we let g; = 8; " if ny; + m;; = 0.

By lemma 3 n;; £ p; and if we let u'y = 3 + My ; — ny; we have g; ~ @.;(”").
Finally, p ~ p(r .) @s we meant to prove.

(2) Conversely, .assuming that for some j (1SiSN) we have
Vi (15iSK) pi2n;,, it is easy, by means of lemma 3 and rules defining the

transition relations, to show that
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t
]
1ol > 1PEwb

where (s = py — ny; +myy;

Our goal is now plainly achieved :

proposition 1

For any net r, marking u and transition ¢ :

(rat>(rat) F Lpead > 1Peun)

We model the parallel behaviour of a Petri nets in a similar way, by defining
— - (#;) - (“X) <i<K
P(r.u) =des (((h'rl ” e ” h'T”) “ (el “ ' ” 8K ))\ (ai-ﬁi/l—"'-— ;

and we get the analogous property :

proposition 2

For all non empty set U = ftjl, R tj“] of transitions of 7
— tj‘ o tjn —
(T r/-")[U>(T-/-L') f i p('r,y.)h ______ - f P(r,u')n -

This last expression seems more convenient if we think about Petri nets as
modelling parallel systems. And we get a flow expression in the sense of [8]
which depicts the graphical aspect of the net-taking marked places’ and transi-

tions’ agents as primitive nodes.

We should also emphasize that these results are actually more accurate :
they are true for the semantics of agents given by an equational congruence. We

find among the equational laws we use the "laws of flow” of Milner [8].

4 - THE ALGEBRA OF LABELLED NETS

So far we have only used a restricted syntax (a subéalculus) from MEIJE to
express the behaviour of Petri nets. But even in this restricted syntax (inaction,
action, parallel composition, restriction and recursive definition) we could write
agents which do not represent Petri nets (see [1]). Thus in this section we face
the question of whether there is (inside MEUJE, that is by means of derived
operators) a syntax which describes exactly the processes determined by Petri

nets.

We do this for a slight extension of these nets, to be precise for labelled
nets. The idea behind this is that the set of transitions merely is a set of (spa-

tial) occurences of actions. Thus a labelled and marked net is
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-asin (3.1) anet r = (P.T.Pre Post) with T C A

- é marking g on 7

- a labelling, that is a mapping A : T - A
For a transition t € T, A(t) is the actual action performed when ¢ fires. Thus the
transition relation is modified in an obvious way :

() [V> (rN) i 3U T () [U> (p)

and V is the multiset A\(U).

A labelling uniquely determines an endomorphism on M such that A(a) = a for
e €(S UA)-T (and we do not distinguish the two in notation). A labelled

marked net is modeled, in the same sense than before, by a MEIJE agent
<A P

Let L, be the set of such nets’ expressions in MELJE. We may thus define the set

of processes determined by labelled marked nets by
Ry=Lp/~

This is the universe of processes which we want to present as an algebraic cal-
culus.

In the sequel we will note ay and 81 by a and §, and a marked "typical place”
will be an agent from the sequence i@“‘) / k € N} where 8l) = @f").

There exists an operation on marked nets which consists in "adding a condi-
tion", that is which adds a new marked place and extends the Pre and Post func-

tions in a specified manner. Thus such an operation is fully determined by
- an integer k € IN which is the marking of the new place p

-amapf :4A > INX IN which for each transition ¢ gives
(Pre(p.t), Post(t p))=rt)

We do not formulate the precise definition, but merely indicate the MENJE

expression of the operation associated with such a "marked condition" (k.f):
T(ke.r) (T) Zder (<y>z |l 8kl \ o, B
where ¥ is the morphism determined by
Va cA Yla)=fraa" if f(a)=(n.m)

(and Y(s)=s fors € S)
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Here we simply call such a derived operator a constraint.

proposition 3
let N, be the least set of MENUE agents . containing the set
Hy = {he / @ € A} of clocks (on 4) and closed under parallel composition,
labellings and constraints. Then Ry = Ny / ~.

proof (outline)

(1) In one direction we have to prove that each labelled marked net expression
< A >p( 4y may be franslated, up to strong equivalence, into a term of the
algebra N,. It suffices to show that P(r.u) is equivalent to a term build on
clocks using parallel composition and constraints. And here we simply fol-

low the idea that, in order to build a marked net one
- sets together some transitions,
- then adds one by one places and appropriate arcs.

We use here a slight extension (concerning morphisms) of Milner's laws of

flow (which are valid in MEIJE, see [1]) together with:
- for all morphism ¢ < @ >hs ~ hy(a)
- if @ is the morphism given by ¢(a;) = a and

o(B;) = B then < g >8f) ~gl
We sketch the proof that, with the notations of (3.3)
- _ (1) () s
Porsy = e 1l W) 1@ 1 - [0 )]\ foi B / @ S1SK]
we have -
P ~ @Dy - TRy )
where 7 = m, 1. filty) = (g M)
By induction on X : . —
(1.1) - K =1, welet
Y(t;) = 0 T
for 1<j<N. Then,
(heg I o) ~ (Y >R I <Y >hy)

~ <yl Ry
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(1.2) - At the induction step, where K = [+1, we let
- for 15j<N

¥(t;) = 5" t; G ™ and

3 Ty= BT BTN e w
(thus ¥(ry) = ;)
~ By = e - WA ) 1 @FD 11 - | 8F)]\ tou.8: / 151503
We have |
Boray ~ [(< ¥ >hp - I < >he) 1@+ 1| 0£F)]\ fei: / 151SK}
~ <> hp 1 IR )T @ [ - 1| 8D\ fi. s / 15iSK)

— (ng)
~ (<Y > Pl 8x ') \ ox.Bx

~ 50 40)

(the last two steps might have to be detailed).
And we apply the induction hypothesis

() Now in the converse direction we have to prove that each clock is equivalent
to a (labelled marked) net expression and then that the operations
preserve this property. Here again, apart for the generators, we essentially

A use laws of flow.

(2.1) - Intuitively a clock h, is nothing but the net

< J

And in fact one can prove (by induction on the definition of transitions) that

adding such an implicit condition has no effect :

if f : A » IN x IN is such that, for some a € 4

(1,1) if t = a
f(&) ={(0,0) otherwise

then for all net expressionp 7 7y (@) ~p

o -
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(2.2) - The parallel composition of net expressions represents the operation
of juztaposition (and here appears the labelling). Thus the proof that it
preserves the property of being equivalent to a term of Z, follows the idea
that to juxtapose two labelled nets, one '

- renames {by injective labellings) their sets of transitions, in order to dis-
join them ;

;puts together these two new disjoint unlabelled nets, obtaining a net ;

- resets the labelling (6omposing the original one with the inverse renam-
ings). '

We omit the technical details.

(2.3) - Applying a constraint to a labelled net we have

e <A > By ~ <A > (Te.g) )
O At) ftET
where g = foX', N(t) ='{t otherwise
And as in the point (1) : |
3" : mag) Blrad) ~ P
(2.4) - The case of labellings is trivial since
<Y>(<p>p)~<Yyop>p =

We may rediscover the interleaved transitions behaviour of labelled Petri

nets since

if f:A -» N xNissuch that

Vaed f(a)=(1.1) then m(1yr) (KA>Derw) ~ <A>pru

5 - CONCLUDING REMARKS

In order to build a true calculus of nets, it remains to find expressions of
other interesting operations preserving (or extending) the proposed algebra
and, perhaps more important, to discover algebraic prol’);rties of these opera-
tors. Each equational law may be seen as the validation of transformations or
simplifications. '

But we must first discuss the semantics. The informal postulate underlying
the strong congruence is that nothing can be said about a "state" (of a process)
unless it results from the observation of the performed actions. Thus one may
disagree with the fact that our semantics is right for Petri nets. For instance the

k-boundedness property is not preserved. Nevertheless, this question requires
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more careful examination : what is the exact meaning of our strong congruence,
that is‘how can we describe our "states" of a net (obviously all that concern
transitions is preserved) ? Moreover we could have proposed a stronger
equivalence : we may find a set £ of equational laws (among them the laws of
flow, together with laws concerning the dynamics of generators and primitive
operators) so that we may present, with the same proofs, the algebra of labelled
nets as L, /=; (where =j is the least congruence containing the instances of
the equalities of £). Here again, to what extent do we get a right semantics for
Petri nets ? Certainly such an equational congruence preserves some structural
aspects. On the other hand, observational equivalences or bisimulations (see
[7.10,1]), which allow one to forget about some transitions, may be better suited
for some purposes. Thus the equivalence appears as a parameter of an algebraic
calculus of processes, which may be chosen according to the intended seman-

tics.

We leave all these semantical questions for future research, which may

bring forth a new point of view on Petri nets.
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