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REMARKS ON A MODEL OF A. MAJDA
FOR COMBUSTIONS WAVES

*

Bernand LARROUTUROU

ABSTRACT In this paper, we study the system
u' =su - sv+ f(u) +Cy ,

dv" +-sv' = Ko(u)v .
These equations modelize combustion waves, with a positive diffusion
coefficient d. The system with d = 0 was introduced and investigated by A. MAJDA"
[7] . We extend the results of [7] (existence, uniqueness and some qualitative
~ properties) to the case d > 0, using different arguments. We show the conti-
nuous dependence.of the solutions with respect to d, and study the Timit d-0.

REMARQUES SUR UN MODELE DE A. MAJDA
POUR DES ONDES DE COMBUSTION

Bernand LARROUTUROU

RESUME Nous étudions dans ce rapport le systéme : \
u' = su - sv+ f(u) + C ,

dv" + sv' = Ko (u)v .
Ces équations sont liées & des modéles d'ondes de combustion, avec un coeffi-
cient. de diffusion positif d. Ce systéme avec d = 0 a été introduit et &tudié
par A. MAJDA [7] . Nous étendons les résultats de [7] (existence, unicité et
quelques propriétés qualitatives) au cas d > 0, par des méthodes différentes.
De plus, nous montrons la dépendance continue des solutions par rapport & d,
et étudions le passage d la limite d » 0.

*
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SECTION I : INTRODUCTION - MAIN RESULTS

In recent work, A. Majda proposed a simplified model for the qualitative
study of one-dimensional combustion waves : see [ 7 1. This model is the follo-

wing system of equations :

(u+qZ), + (f(u)), =Bu,,
Zt= - Ko @(U)Z
In these equations, u is a Tumped variable having some features of density,
temperature and velocity, and Z is the mass fraction of unburnt gas. q, is the
energy liberated by the chemical reaction (qp > 0). The reader is referred to
[ 71 for the signification of the other variables. ¢ and f satisfy'the following

assumptions (an ignition temperature mechanism is assumed) :

' ® e c'(R)30< ¢ <13 0" = 03
(1.2) 8(0) =0 ; ¥u>0, o (u > 0 ;
JU,>0, o(U)=13%¥u <Ug, o(u < 1.

f e c?(R)

- (1.3)
Yu e R, f'(u) = a(q) > 0, f*(u; > 0.

.

The model (1.1) is derived from the one dimensional combustion eqﬁafions
written in Lagrangian coordinates for a simple reactant »~ product mechanism
(see (71 ). R. Rosales and A. Majda [9] and P. Fife [6] have actua]]y shown that
these Lagrangian equat1ons with certain add1t1ona1 hypothesis can formally be

reduced to A. Majda's model (1.1). In fact, it can be hoped that this qualitative
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model retains most of the essential features of the Lagrangian equations,
except the species diffusion (see'[7J). In the present paper, we study the

following model, with a positive diffusion coefficient D :

(u + QoZ)y + (F(u)), = Bu,,

- Ko o(u)Z + szx‘

N
]

The aim of this paper is to study the traveiling wave solutions u(x -st),

Z(x - st) of equations (1.4) . For model (1.1), this work has been comple-

tely done by A. Majda [71. We will also study the relationship between the two
models by defivihg an asymptotic analysis for small values of the diffusion

coefficient D.

For system (1.4) travelling waves propagating with a positive speed s

are given by :

- s(u + qoZ) + f(u) + Cy,
KO ¢(U)Z,

Bu'

(1.5)
DZ" + sZ'

i

where the prime ' denotes differentiation with respect to ¢ = x - st 3 Cp is a

real constant. Using (1.2), the natural conditions associated with equations

'(1.5) are :
(- %) =032 (40) =13 o< u(b=) <0 @u(- ) < 4

Following A. Majda [7], we will mainly deal with the more interesting case

where s and C, are chosen so that the equation

(1.6) -su+ f(u) +Coy =0




has two positive solutions. Therefore, we consider bwe fixed points A, B

with the hypothesis :

(1.7) 0 <Us <A <B,

. ¢

and we define :

f(B) - f(A)
s=——— >0,
B - A

Under hypothesis (1.3) on f, this implies (see 71) :

(1.9) 0 < a(A) <s <a(B),
(1.10) 8, > 0

¥ qo 2 G0, 31 U(qe) £ 0, =sU(qo) + F(U (q0)) - sG0 + Co =0

Finally we denote : qoZ = v ; KeB = K> 0 3 D™ =d =20 ;¢zB ! =y.

The problem derived from (1.4) to be addressed here is the following :

For q, > 80, find (u,v) ¢ C*(R) X CZ(R),>such that :

u' = - su -~ sv+ f(u) + Co,

(1.11) dv" + sv' K¢(u)v,
V('°°)=O ) ,V(+°°)=q03

u(- =) e {A,B} , - u(+ =) =U(q).




A solution (u,v) of (1.11) satisfying u(-») = A will be referred to as

a weak detonation profile. In contrast, if u(-~) = B, the solution corresponds

to a strong detonation wave (see [7] [5]).

REMARK 1.1. ' &
A solution (u,v) of (1.11) is only determined up to a translation of the
origin. In particular, uniqueness results which are stated below are to be un-

derstood up to translations of the origin. B
We can now state our main results :

THEOREM 1.2.

Consider the combustion profiles for equations (1.11).
Let K> 0, d =0 and qo 2 4o be fixed.
Thére is a critical value qCR, with qCR > §o, such that :
(i) For q, = qCR, a unique weak detonation profile exists. On this pro-
file, u is a monotone decreasing function of y.
(ii) For qo > qCR, a unique strong détonatfon profile exists.

CR CR

(iii) When q" > qo; for energy values qo with §o < qo < g, no combustion

profile exists. B

THEOREM 1.3.

Let r be defined by : dr® + sr - K =0, r > 0.If q, satisfies

a0 > (1+30) [a, + 4 2(Rr8) " ],
CR

then qo > @ and the strong detonation profile from (ii) above has a
nonmonotone spike in the u-profile : the function u has a unique maximum,

and this maximum exceeds B. Il




THEOREM 1.4.
| The following estimate holds, for fixed A,VB, C, and s, and for

CR CR
q =q  (K.d):

d . Y 2
P) rA qgrA) 1.

(1.12)  qR(k,d) <(1+ ) o + B+ 22
For fixed d = 0, the function qCR(~,d) is continuous and monotone
increasing on R: , With

CR

(1.13)  Tim q°R(K,d) = o »  Tim qUN(K,d) = + e

K-0 K> + o

If K> 0 satisfies qCR(K,d) > Gy, then the function qCR(-,d) is

strictly increasing on the interval [K, + « [.

REMARK 1.5.
The results of Theorems 1.2, 1.3, and the properties (1.12), (1.13) were
proved by A. Majda [7] in the case d = 0. For the study of the function qCR(K,O)

and other results concerning this case, see the Appendix beiow. n

REMARK 1.6.

The reéu]fs of Theorems 1.2 are almost unchanged if the equation (1.6)
has.é unigue solution A =B > 0. In contrast, 1f'(1.6) admnits two solutions
satisfying A < 0 <B, R. Rosales and A. Majda [9] indicate that there is no
longer a critical energy value, in the case d=0: for any positive qo, a'dni-
que combustion profile solution of (1.11) exists. We will see that this too

remains true when d > O.

The next result concerns the passage to the Timit d -~ 0. W



THEOREM 1.7.

The notations are those of Theorem 1.4. K is now a fixed positive

number.

CR CR(

(1) lim q " (K,d) = g (K,0)

d-0
(ii) Let yo-e R and F ¢ 10,A[. Let (ud,vd) be the weak detonation profile

defined in Theorem 1.2 (i), with ud(yo) = F. Then :

Uy = Uo in ¢'(R) and Vg > Vo in C°(R) as d » 0.

(iii) Assume that qo satisfies qo > qCR(

CR

K,O). Then for sufficiently small
values of d,.q " (K,d) <qo. Let yo e Rand F ¢ 1U(qo),B[. Let
(ud,vd) be the strong detonation profile defined in Theorem 1.2 (ii),
with ud(yo) = F. Then

g > Uo inC'(R) and v, »v, inC°(R) as d >~ 0. B

d
To conclude this introduction, let us emphasize that the methods we employ here
are different from tﬁe ones used by A. Majda [7] in the case d = 0. Our problem
(1.11) can be written as an autonomous 3 X 3 syétem of first-order ordinary dif-
ferential equations (sée (3.8) below). But the standard theorems which are valid
for first-order 2 X 2 systems, on which are based the arguments in [7] ., do not

apply for this more general system. Nevertheless, many an idea of [7] will still

be used in the analysis below.

To prove the existence of solutions, we proceed as follows. First, we
study an associated problem posed on a bounded domain [-a,0], which approximates

(1.11). This problem is solved by using the topological Leray-Schauder degree.




Then, with appropriate a priori estimates we take the Timit of a so]ution of
the associated problem as a -~ + «, and obtain an existence result for (1.11),
namely Theorem 2.7 below .This 1imiting procedure along bounded intervals has
some interest in its own right, eépecia]]y in view of numerical computafions(l).
In remark 3.12, we sketch another proof of the same existence result.
This second method uses a shooting argument, similar to the one used by H. Be-
resfycki, P.L. Lions and L.A. Peletier [21, or by H. Berestycki, B. Nicolaenko
and B. Scheurer [3] and M. Marion [8] in other work§ concefning combustion

waves.
The paper is organized as follows :
Section 2 : Associated problem - Strong detonation profiles.

Section 3 : Critical energy - Weak detonation profiles.

Section 4 : Continuous dependence - Asymptotic analysis.

(1) We hope to publish our results about the numerical approximation of the

combustion profiles in a forthcoming paper.



SECTION IT : ASSOCIATED PROBLEM
STRONG DETONATION PROFILES

From now on, we assume d > O.

For o > 1, we denote by Ia the closed interval [-o,a] and by Xo the

Banach space ¢! (Ia) X ¢! (Ia). We consider the problem :

Find (u,v) € ¢2 (Ia) X ¢2 (la), such that :

u" = - su' -sv' + a(u)u' ,

03 V((X) = qo .

v(-a)

The reason for differentiatihg the first equation in (1.11) will become

clear in the analysis below. About problem (2.1), we will prove :

PROPOSTION 2.1

For any positive value of g, , there exists a solution (u,v) of problem
(2.1). Moreover, there exists a constant R independant of o ¢ [1, + » [ , such

that :
(2.2) 11 (uav) 11y, < R. L

Proof : It relies on the topological Leray-Schauder degree. For T ¢ [0,1]1,

consider the problem :




Find (u,v) € ¢?(Ia) X c?(la) such that :

u" = t(- su' - sv' + a(u)u'),
(2.3) ) V" +sv'= KO (Y) Vs
u(-a) =B, u(0) =0,
v(-a) =0, v(a) = qo.

For T € tO,l], we can also.define a mapping :

F o+ ( Xa > Xo
T .

(u,v) +‘E}(u,y)<= (U,V), with :

U" = 1(- su' - sv' + a(u)u'),
dv* o+ sV o= TK¢(u)v,
U(-a) = B, U(0) =0,
V(-a) = 0, V(a) = qo

It is fairly classical that E}‘is a continuous and compact operator -

- from Xo to Xa. Furthermofe, the mapping :

H Xa X [0,13 ~ X,

C(u,v) 5 1] ~» FT(u,v)

is compact and uniformly continuous with respect to . Notice that problems
(2.1) and (2.3) are equivalent to- 1 (X) = X and FT(X) = X respectively. Set
G = Iqu - F_. We want fo solve (2.3), or to find (u,v) ¢ Xa such that

G%(u,v)‘= (0,0) -: we are going to show that the degree ofAGT about 0 is well

defined and different from zero.
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The next lemmas provide us with estimates which are required to compute

the degree :

LEMMA 2.2.
Let © ¢ [0,1]. Let (u,v) be a solution of (2.3). Then :

(2.4) ¥yela, 0=v(y) < aqo,
(2.5) Vye la, v'(y) > 0.

Proof : a) Set h(y) = tK¢(u(y)) = 0. (2.4) is a straightforward conse-

quence of the maximum principle for the linear elliptic equation - dv" - sv

+ h(y)v = 0, together with v(3Ia) = {0,q0}.

b) From (2.4), we get : v'(-a) = 0. If v'(-a) = v(-a) = O,
the differential equation for v implies : v = 0. Therefore, we have :
vi(-a) > 0.

Furthermore, we can write, for y ¢ Ia :
sy h(y) . SV
(vi(y) e d)' = e d =20,
sy - SQ
whence : vi(y) e d 2 v'(-a) e "d > 0, and the proof is complete. B

Lett e 10,13, If (u,v) is a solution of (2.3), (2.5) yields :

¥yela, u'(y) =0=u"(y) = - Tsv'(y) < 0

which obviously implies :
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COROLLARY 2.3 :

Let T e 10,11. Let (u,v) be a solution of (2.3). The following alter-

native holds :

Either : oy y e la, u'(y) <0 .
(2.6) Or D3 Yge lo, ¥y <y, u'(y) >0,
Vy>yy uly) <0.H

LEMMA 2.4 (Upper bound for v').
Let t ¢ [0,1]. Let (u,v) be a solution of (2.3). Then :

tKqo  qoS - Qo
¥yela, v'(y) <max ( , — + —).
' ’ S d 20

. o
Proof : Define yo ¢ Io with v'(yo) = max v'(y). If yo ¢ la, we have :
Ig
V'(yo) = 0. If yo = a, we get : v"(yo) 2 0 . In both cases, we obtain :

sv'(yo) < 1K v(yo) ¢ (u(yo)), whence sv'(yo) < tKqo.
It remains to study the case yo = -a. For y ¢ la, we have :
Sdv"(y) + sv'(y) 2‘0. Integrating this inequality between -o and y, we get :

d(v'(y) - v'(-a)) + sv(y) = 0. But we can choose y ¢ Ia such that
v(a) - v(-a) Qo
v'(y) = ————— = —, and we obtain :
20 20,

Go Sq¢
v'i(-a) = v'(yo) £ — +
20 d

", which completes the proof. W
LEMMA 2.5 (Estimates for u and u')
Let T ¢ 30,11. Let (u,v) be a solution of (2.3). There exists a constant

R, independent of T ¢ 10,11 and a ¢ [1, + «[, such that :

Vyela, lu(y)l <Ri,lu'(y)l <Ri.
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REMARK 2.6
The independence of the estimates with respect to o does not'play any
role to prove the existence result stated in Proposition 2.1. But il will be

. useful later on, to take the 1imit o>+ W

Proof : Obviously there exists a constant Ca such that :

u' =1 (- su - sv+ f(u) + Ca)
dv" + sv' = TK¢(u)J

a) Upper bound for Ca

Using (1.3) and (1.9), we have :
¥u <A, a(u)

s <a(A) - s <0,

whence : . ¥ u <0, f(u) - su> f(0).

Since (2.6) yields u(a) <u(0) =0 and u'(a) <0, we get :
(2.7)  f(0) - sqo + Ca < - su(a) + f(u(a)) - sqo + Co <O,

and therefore : Co <sq¢ - f(0).

b) Lower bound for Ca

For (p,q) ¢ R?, we define : go(p,q) = - sp - sq + f(p) + Co,

and g (p,q)
and 90(890)

- sp - sq + f(p) + Co. (Notice that u'(-a) = T-gu(B;O)
0).

Assume that Co < Co. Then : u'(-a) <0, and u is strictly decreasing,
whence : ¥ y ¢ [-0,0], u(y) ¢ [0,B]. But the hypothesis on f and s imply :

Y u e [0,B], f(u) - su < f(0) (see Fig. 1).
Then : ¥ y e [-0,01, u'(y) <t [f(0) + Ca - sv(y)] <t [f(0) + Ca]..

A

Integrating the last inequality between -o and 0, we get :
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(2.8) -B < 1a(f(0) + Ca),
-8
or ’Ca 2 f(0).

Fiqure 1

go(usv) < O go(u,sv) > 0

gO ('U,V) > 6

=\

A\_/B MI

If we now assume Co = Co, we can write :

Co 2 C, > ~F(0) > =& - £(0), where we used (1.8) and (1.10).
We have therefore proved the following estimate :
-B

(2.9) = - f(0) s Ca s sqo - £(0).

c) Lower bound for u

We have : ¥ y ¢ [0,al], u(y) < 0, whence :
yye[0,alu'(y)21If(0)+Co-sviy)lzr £f(0) + Co - sqol.
We integrate the last inequality between 0 and o, and use (2.8) to get :

~u(a) =2 -B - sqo TO.
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On the other hand, we have from (2.7) :

- su(a) + f(u(a)) - sqo + Cu <0, which implies :
- su(a) + f(0) + a(0)u(a) - sqe +'Ca <0 , because of the convexity of f.
Thus : u{a) > (Ca + f(0) - sqo) . [s - a(0)17". |

. Finally, we obtain :
¥ye la, u(y) 2 u(a) = max 3—8 - SQo TQ } (%g~— sqo) -{s - a(O))”}
It is then obvious that there exists a constant M, independent of T ¢ 10,11 and
a e [1,+=[, such that :

¥ye lo, u(y) =2 M

d) Upper bound for u

If Co <Cq, u is decreasing : ¥ y ¢ Ia, u(y) < B. Let us then assume

Co =2 C,, and max u(y) = u(ya) > B. Then :
I .

u'(¥q) = 19y [u(yy)sv(yy)l = 0, which yields : g [ u(y, ), qod < O .
and go [u(y,)s ol < 0. The point [u(y,), Qo] Ties in the region {go < 0}.
Therefore u(y,) is bounded (see Fig. 1), and '

¥ye lo, u(y) < M,

where M' is a constant independent of T and a.

e) Estimate for u'

From : u' =1 [; su - sv + f(u) + Cal and 2.9, we easily deduce

1qwer and upper bounds for u', independently of 1 ¢ 10,11 and o e (1, +=[. W

We can now complete the proof of proposition 2.1. Up to now, we have
considered the case t # 0. But the case t = 0 is very simple, since the mapping
Go,is a translation. We can then extend the results of Lemmas 2.2 to 2.5 and

state :
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Let 1 € [0,17 and o ¢ [1, +=<[. Let (u,v) be a solution of (2.3). There

exists a positive constant R independent of 1 and o such that K
u, R
H(UY)HXOL <

We may therefore compute the degree d [GT 3 B (0,0)1 where
Bge {(u,v) € Xo, Il(u,v)llxa'< R}. The homotopy invariance of the Leray-Schauder
degree yields : '
¥1e[0,1], d'[GT,; By (0,0)j =d [Go 3 Bys
ly equal to 1, and d [ G13 BR; (0,0)1 = 1 : there exists a solution to problem

(0,0)1. This last degree is obvious-

(2.1),and (2.2) holds. W

Now, we want to prove the following existence result :

THEOREM 2.7

There exists a value qc > Qo, such that :

If the energy qo satisfies qq > qc, then the problem (1.11) has a so-
Tution (u,v). Furthermore, this solution is a strong detonation.profi1e': |
u(-«) = B.

The proof of this theorem is divided into a sequence of lemmas or pro-

positions. The next statement follows from Proposition 2.1 :

. LEMMA 2.8
For o ¢ [1, +=], define (qx;%x) e Xa as a solution of (2.1). There
exists an increasing sequence (an) with a2 1 and Tim a =+ o, such that the

- 1 1 - - .
sequence (uan,van) converges on oc R) X Cloe (R) to (u,v) satisfying :



dv" + sv!'

u" = - su' - sv' + a(u) u',

Ko(u) v. W
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In the sequel, we will forget the integer n, and still denote (ua,va)

the converging sequence. Notice that we have obviously : (u,v) e c%(R) X ¢*(R),

and

(2.10)

= -su - sv+ f(u) +C,

with C = Tim Ca.

LEMMA 2.9

(2.11) -

Let (u,v) be defined by Lemma 2.8. Then :

-o <y (+0) <0 , v(+e) = qo.

Either ¥y ¢ R, u'(y) <0,

3)’050’ Vy>yo, ul(Y)SO’_

-

Vy <yo, u'(y) >0 and u(y)'z B.

(2.12))
Or
\ Either u=0, v = qo,
(2.13) do
Or
Proof a)

dvg(y) + sva(y)

Proof of (2.11) : For a ¢ [1,+=[ and y ¢ [0,al, we have :

0. Thus :

d _ Sy _Sa
%l(¥) =g - g v4(0) (e ~d - e “d).

Takjng the 1imit a > + <, we get :

-Sy

(2.14) ¥y eRt , v(y) =g -ow'(0)e @ , and v(+) = qo.
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Furthermore : ¥ y e R+ , u'(y) = 1lim u&(y) < 0 3 u is a monotone
o > +>° )
decreasing function on R+. Since u is bounded, we have : - w <y(+o) < 0 = u(0).

b) Proof of (2.12) : Let us assume :

(2.15) iyeR, u'(y) > O.

Then, for sufficiently large values of a, ui(y) is strictly positive too : Uy

is  nonmonotone and has a maximum Yy € Jy,0L. The sequence Yy, is bounded ; we
claim that it is convergent. To see this, consider two subséquences Yoy and ya;

with Tim y = yﬁ <y = lim )/OL2 . For y € 1lyi,y.[ , we have :

(¢3]
oy > « . Q> ™
u'(y) = lim uzh(y) < 0 and u'(y) = Tim u&Q(y) > 0, whence ¥ y elyr,y.l , u'(y) =0 :
(o 3] -+ a2—>oo

u is constant on 1ly,,y, [. From (2.10), v and therefore v' are constant an this

\

interval. Then u and v are constant on R, which contradicts (2.15).

Therefore we have : 1lim Yy = Yo and (2.12) is proved.
a—»-}-co

c) Proof of (2.13) : Assume that u is not constant. Then, (2.12) implies.

the existence of u(-~), with 0 <u(-=). Since v is obviously an increasing func-

tion, v(-x) exists in R.

Let £ = Ko [u(-=)].v(-=) = Tim [dv"(y) + sv'(y)]1. It is then easy to show that

y > -

Tim sv'(y) = £, which yields : £ = 0, whence v(-~) = 0.
y>=-—°

To complete the proof, notice that, if u is constant, u = u(0) = 0.

v is constant from (2.10), and v = v(+=) = qo. M
We can now show a more precise result about u(-=) :

LEMYA 2.10
f u is not constant, u(-») « 10,A1 U {B}.
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Proof : For (p,q) ¢ R?, we define : g(p,q) = - sp - sq + f(p) + C.

(C= 1lim Ca).
o > 4@

a) Assume first that C < Co. Then Co < C, for large values of o, and
Uy is decreasing : ¥ y ¢ lo, ua(y) < B. Therefore : ¥ y e R, u(y) < B, and
u(-») < B.

Moreover, we know that :‘g Lu(-=),01 = 0, from (2.10).Then :
go [u(-=),0] = g [u(-=),01 + Co - C > 0. The point [u(-=),0] Ties in the region

go > 0. Together with u(-~) < B, this implies u(-~) <A (see Fig. 1).

b) Let us now suppose C > Co. Arguing as above, we see that y, is non-
~monotone for large values of o : Let € ¢ 10,C-Col. Then :
Jogz1,¥az2a0 , Cu>C-e>Co.
For o 2 ag, we can write :
3y, ela » ugly) =0, Y, (%) = B.
;Hence © ud(wy) =0= gu‘[ua(ya),va(ya)] >-5sB + f(B) = sva(ya) +C-¢

which yields :

C-e-sB+f(B) C-¢e-C C
Vo (W) > (B).C-e-Dooerso

From (2.5) and (2.6), we have :

¥yelo, y(y) <Boy > ¥ =%) > wln) > e
Taking the 1imit a -+ +~, we get :
¥yelR, u(ly) < Bov(y) >e' >0.
If u is not constant, we have v(-») = 0, whence u(-<) = B. But we know that :
g [u(-»),0] = 0 ; since C > Co, the point [u(-=),01 lies in the region {go <0},

which contradicts u(-») = B (see Fig. 1). The case C > C, is therefore impossible

if u is not constant.

c) Since the case C = C, gives obviously u(-» ) ¢ {A,B}, the proof is

achieved. B
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Now , we want to prove that u is not constant if the energy qo is
sufficiently large. We first need to define some notations. For €20, let Bé
be the solution of : B, > 0 and f(B_ ) - sB! = f(0) + €. We have B/ > B (see fig. 1),

and we denote B' =B +b_.
. € [o4

LEMMA 2.11

Let § be defined by : § > Qo and&fL4ﬁ -80)%2 -3=0.
: 0

Then, if qo satisfies qo > 4, u is not constant.

Proof : If u is constant, we have u = 0, v = qq, and, from (2.10),

C =sq, - f(0). Therefore it suffices to show that the equality C = sqo - f(0)

implies qo < q .

Let qo > §o, and assume that C = lim Ca'=_sqo - f(0). We recall that
o > 4o ,
Co = SB - f(B) = s§o - f(0). Then : C = Co + s(qo - Qo) > Co. For a e [1,+=l, we

have, from (2.9) : Ca < C. Let us define : e = C - Ca > 03 v, = 2% ;gB) + Ca

= Eﬁéé_gi . (Notice that e depends on a !).

For large values of a, we have : Ca 3 Co, and Uy has a maximum :

ud(ya) > B. Then, we can write :

- sua(ya) + f(ua(y&)) - sva(ya) + Ca = 0,

= su(y,) * Fluy(y,)) = svy(yy) - €y <sqo - Cy = f(0) + C - C, = - sB. + F(B),
whence ua(ya) < Bé .

Furthermore, we have :

sva(ya)'= - sua(yd) + f(uu(yu)) + Cu 2 - sB + f(B) + Ca = 2s Ve

wh1ch implies : va(ya)z 2vE.
Now, we take yo € [—a,ya] such that va(yo) =V For y ¢ [-a,yo], we have :

]

<
—
<
~

IA

Ve and B < ua(y) < Bé B + b€ ;

SV _.
13

c

Q

<
v

thus : - sB + f(B) - sv_t Ca
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After integration, we get :

bE 2 Ua(yo) - U'u(-OL) = SVE(‘yo + a),
b
€

SV
€

or Yyt o s

Let y1 [-a,yoel, such that :

sV
1 - VOL(.y ) - Vrv(_a) € .
VoY1) = ;0 T o > Bg
' sy
We know that : ¥y ¢ Ia , (v4(y)ed)' =20
Then, for y =2 y; ,
Syp -sy SVo  sy1 - Sy
voly) 2 vglyr) e"d-e"d 2= ed e d
c
dV? - sa
whence : qo 2 v (y1 + o) 2 1;;(1 -e"d ).

. €
Taking the limit o -~ +=(e > 0); we obtain :
d C = CO)Z d

Qo 2-53( 7S = 4b0(q° - §0)?, which obviously implies qo < §,

and the proof is complete. B
The next proposition gathers all the previous results :

PROPOSITION 2.12

Consider the problem :
‘Find (u,v) € C*(R) X C*(R) and C ¢ R, such that :

u' = -su - sv+ f(u) +C,

(2.16) dv" + sv' = Ko(u)v ;
V(=) = 0 5 v(+o) = qo 3 u(0) =0 3
u(==) ¢ 10,A1U {B} 5 ufR+) < R_; - w<u(+®) < 0

If the energy qo satisfies qo > g, (2.16) has a solution.

We can now explain why we differentiated the first equation of (1.11),
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getting two second order equations for problem (2;1), and of course two condi-
tions on Uy A unjque condition 1ike ud(-a) = B could have been adequate to *
ensure the boundedness and hence the existénce of Uy But the second condition
u,(0) =0 p]ayed a crucial role ih obtaining the explicit expression (2.14) and
the Timit v(+=). Naturally, it remains now to prove that we really solved the
original problem (1.11), or eauivalently that C = Co (or u(-=) = B).‘

In fact, we are going to show that u(-<) = B when qgo is sufficiently
large. From Lemma 3.4, a natural idea is to find a fUnctionvwhich acts as a bar-

rier for (u,v) and finally prevents u(-~) to be < A. The precise result is the

“following :

PROPOSITION 2.13

Let r be defined by : dr2 + sr - K = 0, r > 0. For qo > §, let (u,v,C)
be a solution of (2.16).‘If moreover :

1/2

(2.17) g0 > (1 +£’s£ ) {4, +_r_55+ 2(q-osrA )2

then u(-«) = B and (u,v) is a solution of problem (1.11).

We just reguire three lemmas :

LEMMA 2.14
For qo > g, let (u,v,C) be a solution of (2.16). Then :
3

(2.18) v(0) = qo .
_ dr + s

Proof : Let V(y) = v(0) e for y < 0. We have : V(o) = v(0) s
V(-») = v(-=) = 0, and dV" + sV’ - KV = 0, whereas ; dv" + sv' - Kv = K(®(u) - 1)v<0

Uging the maximum principle for elliptic equations,on decuces easily that ,
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these properties yield :.¥ y ¢ R-, v(y) = V(y). Since v(0) = V(0), we get :
v'(0) < ¥'(0) = rv(0). But v'(0) = %(qo - v(0)) from (2.14), and (2.18) is proved. M

The next lemma is due to A. Majda [7]. We will just indicate the main

érguments of the proof. Consider the following autonomous system :

0'= - sh - s0 + f(0) + C,
(2.19)
'=rv

LEMMA 2.15

Let a e 10,81, Denote § = HL2L* L and tet v, Ja,+=C .
Consider the integral curve ¢ of (2.19) through the point (0,9, ). ¥ is a monotone

decreasing function of G along ¢ as ‘long as this curve remains in thevregion :
P=1{(0,0), 0 <0<a, -sl-s9+f(0)+C <0}. Denote [Q, 9(0)] this piece of

curve. If 9, satisfies :

(2.20) 90 = 4 +‘2? N 2(9§§)14

then [O, 9(0)] ¢ P and 9(Q) > § for 0 ¢ (0,a].
Proof : The monotonicity of 9(0) as long as the curve remains in P is

straightforward (see [71). We now prove the second part of the lemma. Since a < B

we deduce from (1.3) that max (f(n) : C - sh
0 ¢ [0,a]

that, along the integral curve, we have :

) = § (see Fig. 1). Assume now

(2.21)  9(0) 2 (1 + b)g

for 0 ¢ [0,al and for some positive b. Then [(,9(G)] ¢ P,




L dey e ' r9 r 1+b
a”d'“clﬁ"sm_f(o)m-sofm s 7B
: S
By integration, we get : ¥(a) = 9o - a~§ L ; b. As ¢ is a decreasing function of

0, it suffices to choose ¥, such that :

’ - r 1+5b
002(1+b)q+a§ 5

remains now to minimize the right-hand side of the last inequality over b > 0 to

to ensure that our assumption (2.21) is fulfilled. It

- get (2.20)! The proof is then easily finished. R

Denoting ¢ = { [u(y), v(y)1 , y s 0}, we have :~

LEMMA 2.16

If Vo'< v(0), the curve ¢ remains above the curve Cas long as both
curves stay in the region P. o

Proof : We defihe an origin on the curve ¢ by setting : Q(0) = 0,
0(0) = ¥o. Let D = {y e R-, [0(y), 9(y)1 e P I

~ We already know that : ¥y e D , v(y) 2 v(0) e 5 9y e = 2(y):

We also have u'(0)= - sv(0) + f(0) + C <0'(0). Since u(0) = 0(0), we get :
Je>0,Vye J-e,O[, u(y) > Q(y). Let us assume : ‘

IyoeD, ¥ye Iyo,00, u(y) > 0(y) and u(yo) = U(yo)-

Then : u'(ye) - 0'(yo) = = sv(yo) + s9(yo) <0, which is impossible.
Therefore : ¥y ¢ D , u(y) > a(y), v(y) > %y) , and the proof is complete. |
We can achieve the proof of Proposition 2.13. If qo > g satisfies

(2.17), we get, from (2.18) :

/
v(0) > Qo + 2? +2(Q££A§/{ Let 9o ¢ [, + 2? + 2(q°§A 3 i v(0)L.

Since C < Co and § < o, 9o satisfies (2.20) for a = A. From Lemmas 2.15 and

2.16, we know that the curve C does not hit the segment { 0 < u < A,'v =q }.A

Therefore,'we have : u(-») > A, whence u(-~) = B and C = Co. H
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We have then proved the existence result of Theorem 2.7. qC is defined
by : _
q¢ = max 3 g (1+ %;) [Qo + 2? + 2(§%§A)1/2]$.

The next statement is an obvious consequence of this section, together

with our uniqueness result (Theorem 3.3) below.

THEOREM 2.17
For a ¢ [1, +=[, let (ua, vu)-be a solution of the associated problem
(2.1). If qo satisfies qo > qc, the whole sequence (ua, va) is converging in

¢! (R) X ¢! (R) to the unique solution of the problem (1.11) as‘a > +o, W

loc loc




..25_

SECTION IT1 : CRITICAL ENERGY
WEAK DETONATION PROFILES

In this section, we will state a uniqueness result and characterize
the set of values of the cnergy q, for thch (1.11) admits a solution. We
will alsqQ show the existence of a unique wcak detonation profile. |

‘From now on, we drop the subscript 0 in Cy; and §, denoting only C
and § ; C is now a fixed constant : C =sB - f(B) =sA - f(A).

We first state two simple lemmas which will be used several times

in the sequel. The proof of Lemma 3.1 is obvious and will be omitted.

LEMMA 3.1

Let (u,y) be a solution of (1.11). The following properties hold :

Either : ¥Yye R, u'(y)<0 ;
(3.1) Or 3! yo ¢ R, ¥ y<yo, u'(y)>0, u(y)>B;

¥y o>y, u'(y)<o

(3.2) ¥y eR, v'(y)> 0.
(3.3) It y2 € R, u(yz) = Up and ¥ y < ys, v'(y) = rv(y).

If Qo >q; 3! Y1 e IR, u(.Vl) =0’
(3.4)
and ¥ y >y, sv(y) + dv'(y) =sq,. B
(We recall that U, and r are defined in (1.7) and Proposition 2.13

‘respectively).



LEMMA 3.2
For i ¢ {0,1}, let (u ,v)e C*(R) xC?(R) satisfying :

i i
u' = ~su-sv+ f(u) +C,

Kd (u)v.

dv" + sy

(3.5) %

Moreover assume that : % up (0)

Uy (0)s3vg(0) = vi(u) =S 20 ;
vll (0) [}

V'o (0) =

20, S+S'-0.

Then :

- sy

(3.6) ¥ y EIRt’ Uo(y) >u1(y),
ds' (e d -1).
S

¥ yeR_, vo(y) 2vi(y) +S

+

Proof : a) The preceding asSumptions imp]y':
(3.7) 3e>0,¥ye 1-€,00, uo(y) >ur(y), vo(y) > vi(y).
If S >0, we have indeed v,(0) > v;(0) and u'o(0) < u',(0),
which gives (3.7).1f $=0 and S' >0, we have u'eg(0) = u'y1(0),
u"e(0) > u";1(0) and v',(0) < v'4(0), and again (3.7).
b) Let yo<0 such that :

¥ ye 1yo 00, uo(y) >ui(y)s voly) > vi(y).
Then, for y eJy,,0[ :

Sy K sy N

(vo(y)e "d)' = - o(uo(y))voe(y) e d = (vi(y) e d

Integrating between y and 0, we get :
>y ' 3y
V'io(0) = v'o(y) e d = v (0) -v'(y)e d ,
w5y
or Vi(y) > vb(y) +S'e d . sy,

Integrating again : vo(yo) =z vi(yo) + S +»2§w- (e d . -1)

In particular, we have : vo(¥o) > vi(¥o).
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If U (yo) = wi{yo), we get = us(yo) = ul(¥o) = - sVo(¥o) + svi(yo) < 0,
which is impossible. Therefore : uo(yo) > U1 (¥o) and the proof is easily

achieved. B

The next theorem is now an easy consequence of the two previous

lemmas :

THEOREM 3.3 ‘

If the energy qo satisfies qo > §, there exists at most one solution
to problem (1.11). ‘
Erggf : For qo > §, let (ug,vo) and (ul,vl)‘be two different solutions of
(1.11). Using (3.4), we define an origin on both curves (us,ve) and (ui,vi)
by setting : uo(0) =u1(0) = 0. If Vo (0) = v1(0), we have : vg(0) = vi(0)
from (3.4) and the two solutions coincide : (Uo Vo) = (ur,v1). We ma& there
-fore assume : vo(0) > vi(0). The assumptions of Lemma 3.2 are then fulfilled

and (3.6) yields : vo(-©) - vi(-=) = +=, whence a contradiction. B

We denote by.A the set of values of 9o > g such that (1.11) admits
at 1éast a solution. We also define B < A as the set of qo for which a solution
(u,v) of (1.11) is a strong detonation profile : u(->) = B. We already know
that 4 and B contain the interval ]qc, + o[, We are going to prove the next

result :

THEOREM 3.4

4 1is a closed interval [qCR,+<v[ with qCR > §. B is an interval too.
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We begin the pkoof with the

PROPOSITION 3.5

Let qo ¢ 4. Then [go,+~[ < 4 .

If moreover q¢ ¢ B, [qp,+ [ < B.

REMARK 3.6°

In the sequel, we will consider several times the equations (3.5)

~as an autonomous system :

u' = - su=-sv+ f(u) +C
(3.8) vi = w

w' = ‘3‘ w o+ -—é— ¢ (u)v.

If Cu(y),v(y),w(y)] is a maximal integral curve of (3.8) defined
on an interval I, such that the estimates

Yyel, luly)l<M,  Iv(y) l<M
hold, then the existence is global : I = R. This is easily shown from the
equation : '

sy K sy
(we ' d ) =g duve d . H

The proof of Proposition 3.5 cohsists»in five lemmas. We are going
to use the shooting argument mentioned in the introduction (see [2], [3] or [8]).

Let qoe 4 and q, > qo. Let T ¢ c? (R) such that :

T satisfies the assumptions (1.3).,
¥

uz U(qr), T(u) = fu) ,

!

(o )> = .
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We denote (P) the problem (1.11) in which the function f replaces f.
Since -U(qo) > U(q1), the two problems (1.11) and (P) are equivé]ent when
the energy value is go or q,. Therefore, in order to show that q, ¢ 4, we
are going to solve (P) for the energy q..

We ffrst consider the case qo> §. Let (up,Vvo) be the solution of
(1.11) satisfying : vo(+ =) = Qo, uo(0) = 0.

For me ¥ =L §, qu+ 1], let (um s vm) be defined by :

1

- sup TSV, + flu) +C,

'
u m

(3.9) dv“m + sv‘m

K ¢(um)vm., on a maximal interval D » °

um(O) =03 vm(O) =m 3 v'm(O) = '%T (91 - m).

We have :

LEMMA 3.7
Let m ¢ M. Then :
]R+CDm‘§Vm(+°°)=Ch-
Proof : If m = §, we have : um' (0) =0, um" (0) <0 ; if m>§, we
get : um' (0) <0. In both cases, u_ (y) is negative for small positive y.
. v
Assume : ¥ y € Dy 0 R, um(y) <0. TheQ,;y
¥yep nR,,v(y)=aq+(m-a)e d .
As v is monotone, we can apply the same argument as for Corollary 2.3 : If
v is increasing on D _n R, (m < q1), u is decreasing and : ¥ ye D n R_,

u(q:) < u(y) s 0. If v is decreasing (m > q,), we have :

Either ¥ye D n R, u'(y) <0
or Jyo >0, ¥y <yo u'(yy< 0

Yy >you'(y)> 0,u(y) > u(yo) .
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If u is monotone, we still get U (q;) < u < 0. Otherwise, it is easy to see
that :

Vyez%pR+, 02 u(y) = u(ye) = U(m).
It is then obvious to complete the proof : the assumption Uy < 0 holds, and
]R+ c Dm from Remark 3.6 .

We define now :

M, ={meM Jye D

+ 9Vm(.Y)>q‘l+2}

m
(3.10)

M ={meM, 3 ye D

2 m e Yy (V) <0}

It follows from [2] that M_ and M_ are open subsets of M.

Moreover, we have :
LEMMA 3.8
Proof : Llet me M nM_ . We canwrite :

3y, € B0 RO vilye) > auk 2, vi(ye) < 03

3_)"2 € Dm n ]R_ ’ Vm(.YZ) < 0 s V|m(y2) > 0.

Ify, <.y, , we get:

3 yi e Woayz [ vplyr) > ay + 2, v' (y1) =0, v" (y1) < 0,
whence ¢(um(y1)) < 0, um(yl) < 0. Using (3.8), it is then easily seen that
¥ y>y1 ., u(y) <0, v (¥) = v (y1) which is impossible. We can argue in the

same way if y, >y, , and the proof is complete . H

Let now mp = vo(0) , my = qy +—%— . Using Lemma 3.2, we get :
_ Sy
o n]R_sVO(.Y)EVmO (.V)"'(ql‘QO) (e d - 1),

(3.12) Uo(y) = uy  (¥).

3.11
( ) Vye.%

v
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Then we have :

LEMMA 3.9

My € M_
Proof : If R ¢ D

)

, (3.11) yields : v (- ) = -, and mp. ¢ ¥_ -

m g Mo

Assume now : my ¢ ¥_. Then Dm0 nR_ is bounded and :
S
¥yel o IR__,.Osva(y) < vo(y) - (a1 ~ Qo) (e d - 1)
vmo is bounded.
From (3.12), we have .: ¥y ¢ P nR_, umo(y) < max Up = M
Since f is bounded on the interval ]- =, M] , we obtain :
IM >0, fu'+sou o= i‘f(umo)-svrrl +C [< M.

0 , 0 0

As Dmo n R_ is bounded, this implies the boundedness of Un, - From Remark

3.6, we get : R_c D , whence a contradiction. M
0

LEMMA 3.10
m, e‘M+
Proof : Arguing as in the proof of Lemmas 3.8 and 3.7, we obtain: the
monotonicity of vmz and umz . If m é‘M+ , it is obvious to see that vmz and

u are bounded.
mz

Then b Do, = R 5 4> v, (=) > mp, > 0, umz(—w) > 0, whence
Tim [dvm; (y) +s Vm; (y)1> 0, which is impossible. W
yo- e

We can generalize the arguments used above to show that

[q; mO]CM_ [mz ,ql+1]CM+.
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Since M, and . M_ are non empty disjoint open subsets of ¥ , we get :

3.m1 € :Imﬁst[, m é .‘M_{_ U M_

Setting (uy,vy) = (uml,vml), we have :

LEMMA 3.11

(uy,vy) is a solution of problem (P)

Proof : a) Assume that the curve (u ,v; ) hits the curve (u,,v, ) :

3 (Yoay1) € R X B uo(yo) = urlya)s vo(ya) = valya) -
If v'o(yoe) = v'1(y1), we have :

¥yeR, vi(y +¥1) = Vo(y * ¥o),
and q; = qo, which is impossible. If v'i(y1) > v'o(Yo), We can use Lemma3.2
and obtain, as above for mp : m;y ¢ ¥_ , which is again impossible. We leave
it to the reader to check that vii(¥1) < v'o(yo) implies : m; ¢ M, .

Therefore, the curves (up,vo) and (ul,vl)'do not hit each other.

Since my > my , we have : v;(0) > vo(0) : we will say that the curve (ugsvy)
remains- "under" the curve (u;,v;).

b) If : 3 ye D_, v'i(y) <0, we can use the proof of

m
Lemma 3.10 to get : m; « M, - Therefore, we have,

V"y“é Dml' vii(y) 20, 0<vi(y) < qp+ 2.
It is ﬁow easy to see that the alternative (3.1)lho1ds for u;. Then : u; is
bounded, Doy, = R . uy(- =) and v, (- w).exist, and : u; (=) > uy(=-«) >0,

from a) above. Since é(u (- ©)vi(-=) = 0, we get : vi(-») = 0,

Up(-*) e{ A, B} and finally q, c 4. B
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To complete the proof of Proposition 3.5, it remains to consider the

case q; = §. Then it suffices to use the same arguments, with mp = 9.0

Therefore we have proved that 4 and B are intervals .
We denote : inf 4 = qCR‘z 4. Before ending the proof of Theorem 3.4, we

‘study some consequences of the shooting argument used in the preceding proof .

REMARK 3.12 : As indicated in the introduction, we can use the shooting
arqument to prove directly the existence result of Theorem 2.7. We now sketch
this demonstration':A A

Consider g, > §, and define (um’,vm)’ M, and M_ as in (3.9) and -(3.10).

Taking mg = §, m, = q; + 1, we can show :

Im e Img, mL, m ¢ M u M . Studying the properties

of (uml,vml) and using Lemma 3.2 for the uniqueness, we get :
¥ qi > 8, 3! (usvi)e C*(R) X c¢*(R) such that :
U =-s uy =-s vy t f(ul)'+ C,
(3.13) dv + svi = K d(ui)vy »

Vi(+=) = qi, ur(+=) = U(q:), ui(0) =0,
¥Yye R, viiy) 20, v(iy) = 0

Fig. 2 shows the different nossibilities for the solution (u;,v,)

of (3.13).
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Figure 2

3]

Y

A 2

A\/B | v

It suffices now to use Lemmas 2.14 to 2.16, which are independent

of the beginning of Section 2 : if q: satisfies :

ar > (1490 g+ 4yt

the solution (u:,v1) of (3.13) satisfies ui(-®) =B, vi(-®) =0 :

(ur,v1) is a solution of (1.11). ‘W

We have actually proved a better result than Theorem 2.7, since we

do not need to consider q! A consequence of Remark 3.12 is :

PROPOSITION 3.13 :

(i) The following inequality holds for q°R :

' 1/2
(3.14) R +dy g+ 2@y
(ii) Assume that qo satisfies :

dr | ¢ o ) .
(3.15)  q> 1+ ra+Br2@ 0
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Then, if (u,v) is the solution of (1.11), u-is nonmonotone : u has a unique

maximum, and this maximum exceeds B.

Proof : (3.14) is obvious. To prove (ii), it suffices to use Lemmas
2.14 to 2.16 with a = B : if (3.15) is assumed, the curve (u, v) does not

hit the segment {0 <us<Bj;v=98 anduis nonmonotone. M

REMARK 3.14 :

| Another conéequence of Remark 3.12 is the fo]]owing : ff the equation
(1.6) has two solutions A, B with A < 0 < B, then for any positive enefgy Jo
(1.11) has a unique solution. (In this case, the solution of (3.13) is a

solution of (1.11)). W

To complete the proof of Theorem 3.4, we need to prove the closedness

of 4. It will be a consequence of :

THEOREM 3.15
If q = qCR, there exists a unique weak detonation profi]e solution

of (1.11). If go > QR

, the unique solution of (1.11) is a stfong detonation
profile. |

The existence of a weak detonation profile was shown in a very
‘ sihp]e way by A. Majda [ 7 1 in the case d = 0, using classical arguments
for systems of two first-order ordinary differential equations. We are
'going to use the same method here ; the proof is rather lengthy since we

are dealing with a system of three equations.

The proof is divided into five lemmas :
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LEMMA 3.16 :

There exist exactly two integral curves (u,v,w) of (3.8) such

that © [u(- @), v(- ©), w(-= ) 1= (A,0,0).

Proof : Computing the linearized system corresponding to (3.8) 1in the

neighbourhood of the statidnnary point (A,0,0), we obtain the matrice :

a(A) - s -s 0
0 0 1
K -S

0 © o d T

We have used (1.7) and (1.2) : ¢ (A) =1, ¢ '(A) = 0. A short calculation
gives thé following eigenvalues :
(3.16) M=r>0, Xy =r'<0, X; =a(A) -s <0,
where r and r' satisfy dr?2 + sr - K = 0.

None of these eigenvalues has a real part equal to zero, and there
is exactly one positive eigenvalue. The result is then an obvious consequence

of the stable manifold theorem (see [4]) . W

LEMMA 3.17
There exist exactly two éurves (u, v) such that :
(3.17) - (u, v) satisfies the equations (3.5) on R_
Cu(==), v(-=)1 = (A, 0)

Proof : Let (u, v) satisfy (3.17). (u, v) is the projection onto the (u, v)

plane of a unique integral curve (u,v,v') of (3.8). It is then straightforward

to show that v'(- ) = 0, and the proof is achieved. W
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LEMMA 3.18 i
Ifq > q“R, the unique solution of (1.11) is a strong detonation

profile.

Proof : t is obvious. If qy ¢ 4\ B, we get ]qCR, qol <4\ B

from Proposition 3.5 and we have a continuum of solution for problem (3.17).

LEMMA 3.19

Let (u, v) satisfy.(3.17). Assume that,~in‘the neighbourhood of
(A,0) the curve (u, v) lies in the region

R={u<A, sv > -su ; f(u) +C 1} .

Then (u, v) is a solution of (1.11) for q, = qCR.

Proof : Let (u,v) satisfy the above assumptions. Choosing one point of the
curve (Q, v) as C[u(0), v(0)1 , we denote by D the domain of values of y for
which [u(y), v(y)l is defined. Applying the same argument as for Lemma 3.8_
we obtain the monotonicity of v. It is then easy to check that :

Vy eD, v'(y) 20, u'(y) <0, [u(y), v(y)leR

a) Assume 3y e D , u(y:) < 0. The argument beihg exactly the same

CR

as for Lemma 3.7, we get D = R, and v(+ ©) = q  from Lemma 3.18.

b) We will then suppose :
(3.18) ¥y eD,u(y) 20
u is therefore bounded. In order to show that D = R, let us asgume

D = 1-w , yo[ , with yo <+« and lim v(y) = + =
: Y > Yo

Then, from (3.18) : ¥y e D, -su(y) + f(u(y)) + € < f(0) + C =s4§.
u'(y) <sq - sv(y) |
¢ (u(y)).u'(y) < s8¢ (u(y)) - s d(u(y))v(y)

6 ('Y 558 - S vi(y) - 52 v)
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u
After setting F(u) =~/P 9 (u)du 2 0, we integrate the last inequality
o

between 0 and y > 0 :
F(u(y)) - F(u(0)) = sy - o [v(y) - v(0)1 - =81 vi(y) - v'(0)7 .

But v'(y) = 0, and we have : 1im F(u(y)) = - » which is impossible.
' Y > Yo

We can therefore conclude that D = R.

¢) Still assuming (3.18), we get : 0O < u(+x=) <A,
V(+ ®) ¢ H%i u{+ e} o If v(+ ©) = + o , we have u;(+<w) = - o, which is
impossible. Then : q <v(+®) < +oo , with & (u(+ «))v(+ «) = 0 and
u'(+ ©) = 0. Therefore : u(+») =0, v (+ ») =§ = qCR and the proof is

complete. H

LEMMA 3.20

There exists exactly one curve (u, v) satisfying the assumptions
of Lemma 3.19.
Proof :  The uniqueness is a consequence of the stable manifold theorem.
To prove the existence, we are going to use a linearization theorem for
systems of ordinary differential equations, due to Samovol (see [11,[1Q1).

We can apply Samovol's result if :

(3.19) Ay + Az = A At Az A
Using (3.16), (3.19) is equivalent to :

(3.20) .d[s - a(A)l - s =0, d’(s - a(A)1%- s2- 4Kd=0

a) If (3.20) is assumed, the two curves [ u(y), v(y) ]
approaching (A,0) as y +- « are at this point tangential to the straight
line directed by the eigenvector correspond{ng to the positive eigenvalue

A and we can write :

(3.21)  Tim “(y\),(;)"; o S — <0

_y-+-oo
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In the neighbourhood of (A,0), one of thesé curves lies in the region R.
b) Denote S the set of values of (K,d) e lR: X ]R: for which

(3.20) does not hold. If (K,d) ¢ S, we cannot use (3.21). The-existence

of a weak detonation profile is then a consequence of Theorem 4.1 below :

s 1is of measure zero, and the existence is already proved for (K,d) ¢ S m

We have therefore proved Theorems 3.4 and 3.15. Of course if

qCR > §, we have B = ] qCR,+o<>[. But this is not necessarily true if

qcR = §. We have no uniqueness resu;r]t for the energy § : there may exist
a weak detonation profile connecting (0,4) to (A,0) and a strong detonation

profile connecting (0,§) to (B,0).
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SECTION 1V : CONTINUOUS DEPENDANCE
ASYMPTOTIC ANALYSIS

In this last section, we study the dependence of the solutions
of (1.11) with respect to both parameters K and d. We will also show the
relationship between (1.11) and A. Majda's problem (without diffusion)
by studying the limit d - 0.

The values of A,B,C and s are kept fixed, whereas K and d are

CR CR

now allowed to vary. We denote : ¢ = q " (K,d). Our firét result is

concerning the weak detonation profiles :

THEOREM 4.1

a) Let Fe 10, AL . For (K, d) ¢ R, X R} , define
Lu(K,d,F), v(K,d,F)]  as the unique weak detonation profile corresponding

to (K, d), with u(K,d,F)(0) = F. Then the application :

*
+

( K, d) ——> [ u(Kk,d,F), v(K,d,F)]

R, X R, ——> ¢*(R) X c?R)

is continuous.

b) Furthermore, the application

*

R,

X m:—-_> R

(K, d) —_> q (K,d)

is continuous.

Proof : Let (K, d) ¢ HQ: X BQ: , and consider two sequences of strictly

positive reals (K, ) and (d ) such that Tim K =X, Timd = d.

We denote u, = u(Kn,dn?F), v = V(Kn’dn’F)'

n
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a) Using (3.14), we can write :

(4.1) 3M, 50,¥ne N, ¥y ¢ R,q s g (K ,d) <M
CR
(4.2) - 0 =svp(y) = a7 (K.d) < M
CR

(4.3) 3 M, <0, My< U (@ (Kpsdp)) < uply) s A

n
Since we obviously have : v, (- «) = v, (+2) = 0, we get :

Iy, e R,vi(y)= mx v(y),
n n‘n yeR M
and v;(yn) =0, svﬁ(yn) = K«b(un(yn))vn(yn). Therefore : |
(4.4) IM 50, ¥ne N, ¥yeR, 0 <vi(y)s—S0M st

Finally, the equations (3.5) yield :
. (4.5) I M, <0, ¥ne N, VyeR, My <u'(y) < O

n
(4.6) j M5 >0, lu;;(y) | < Ms
(4.7) | 3 Mg >0, |V (y) | < Mg

Using the estimates (4.2) toﬁ(4.7), we deduce the existence of a
subéequence (which we still denote (un,vn)) such that :’b
Tim (un,vn,ué,vé,v;) = (u,v,u',v',v") in ¢ (R)°.
(u,v) satisfies (3.5) and : v'> O,v >0, u'< O,vu <A, u(0) =F.
Furthermore, the curve (u,v) lies in the region R of Lemma 3.19. Then, we
have : v(- ®) = 0, u(-=» ) = A, whence : (u,v) = [u(K,d,F), v(K,d,F)]
The Timit of'any subsequence is then uniquely determined : the whole sequence

(R).

(un,vn) is converging to (u,v) in Cioc(na) X Cl,. | |
b) Using (4.1), we can extract a subsequence, still denoted (Kn’dn)’

such that : Tim qCR

Q= R (k, d).

¢) Assume first : qCR(K,d) > §. Then : 3 y0:>0, u(y,) < 0 and we have :

(Kn,dn) =Q ¢ [§, MyJ . We now want to show that

un(yo)v <0 for large n. Using (3.4) for v and Vs We get :

CR \ CR .
(K’d), and svn(yo) + dvn(yo) = sq (Kn?dn)' Taking

CR (

sv(yp) + dv'(y,) = sq

the limit in.the last equality, we obtain : Q = g~ (K, d).



- 42 -

d) We now assume : Q > §. Then, for large values of n,

q (K, dn) > §. Extending sTightTy the definition of u(K,d,F), v(K,d,F),

d,0), v =v(K,d,D0).

we can consider u = u(K , d_ n n® 94

Arguing as in a) above, we obtain the convergence of (Dn; Vn) to
(u(K,d,0), v(K,d,0)] . We can then replace y, by 0 in c) above to get
the same result : Q = qCR(K, d).
e) This equality holds if Q > q and if qCR(K, d) > §. Since
Q =9 and qCR
f) Using the monotonicity of Ups Vs Us Vs it is now obvious

to (u, v) in C3(R) X ¢*R). m

(K, d) = 4, we have proved that Q = qCR(K, d).

to prove the convergence of (un, vn)

An analogous result holds for strong detonation profiles :

THEOREM 4.2

Assume that the energy q, satisfies qo, > §.

a) Let D*= {(K,d) BQ: X HRI, qCR(K,d) < go} .D" is a non
empty open subset of lR: X ]R:. .

b) Let F ¢ 1U(qo), Bl . For (K,d) e D", define Lu(K,d,F), v(K,d,F)]
as the unique strong detonation profile corfesponding to (K,d), with
u(K,d,F)(0) = F. Then the application
D" ——— *(R) X *(R)

(Ky d) ——— 5 Lu(K,d,F), v(K,d,F)1

is continuous.

REMARK 4.3
We could denote u(K,d,qq,F), v(K,d,q,,F) with
(K+d,005F) e {(K,dsq0,F), o > q°R(K,d), U(qe) < F< B} = ¢° . The

preceding result is easily extended to this case.
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Proof : a) p* s obviously open. From (3.14), we have :
(4.8) vd>o0, Tlim qF (K.d) =4,
~ . K-0
which proves that D is non empty.

b) Let (K,d) ¢ D" . We use the notations Kn’dn’un’vn’ as in
the pkoof of Theorem 4.1. The convergence of a subsequence (un,vn) in
_  Ci;£D2) X Cié&ﬂ%) is straightforward. The limit (u,v) satisfies the
equations (3.5). Then, we want to show that v(+«) = q, , which together.

CR

with go > q (K,d), will imply u(-«) = B and (u,v) = [u(K,d,F), v(K,d;F)]

c) As in the proof of Theorem 4.1, the demonstration is easily
finished if : 9 yo ¢R, u(yo) < 0, or if u(0) = F <0 : denoting

u, = u(Kn, dn, 0), Vn = v(Kn, dn, 0), we know that (un,vn) converges to

(u,v) = [u(K,d,0), v(K,d,0)1 in ¢ (R) X C¢'(R).
loc loc ,
Assume F > 0. From Theorem 3.3 and Remark 1.1, we can write :

¥neN,3y e R ,uly)=u (y+y)sv(¥)=v(y+y)
Yy is determined by Gn(yn) = F : it is then easy to show that_]im Y= Yo
where yi'satisfies u(y:) = F. Hence, (u_,v_) converges in ¢M(R) X C¢Y(R)
. : n"n loc loc
to [U (. +y1), V(. +y1)] , which is exactly [u(K,d,F), v(K,d,F)]
d) It remains easy to show the convergence of (un,vn) in

are not necessarily monotone. M

c?(R) X C?*(R), although u and u,

We now study the passage to the limit d » O.

THEOREM 4.4

Let F ¢ 10,AL , K > 0, d > 0, and define T[u(K,d,F), v(K,d,F)J
as in Theorem 4.1. Then : |

u(k,d,F) ————> u(K,0,F) in C!(R)

v(K,d,F) ——> v(K,0,F) in C°(R)

Moreover, 1lim qCR (K,d) = qCR (K,0).

d~>20
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THEOREM 4.5

CR

Let K > 0. Assume that the energy satisfies q,>9 (K,0).

Let Fe1 U(qo), B[ . For small values of d > 0, define [u(K,d,F),v(K,d,F)]
as in Theorem 4.2. Then :

u(K,d,F) ———> u(K,0,F) in  C'(R)
~as d ~» 0.
V(stsF) EE— V(K,O,F) in CO(IP\)

Proof of Theorem 4.4 : Define Kn’ dn’ Uys Vs 8S in thé proof of Theorem

4.1 with Tim dn = 0. The estimates (4.2) to (4.6) still hold, but we have

no estimate for v;;. We can extract a subsequence (un,vn) converging to
(u,v) in ¢H{R) X C%R).
loc loc . o
Then : u' = - su~-.sv+ f(u) +C. '
Let ye¢ D(R), and I = supp ¥ . Thus :

f (dve v+ syl y = K o (u)v v)dy
I

]
o

It
o

or / (dnvnw" - svnw' - Kn ® (un)vn Y )dy
y I

Since (un,vn) > _(u,v) in ¢%1)? and dn > 0, we get :

/ (-svy' - Ko (u)v ¥)dy = 0
I .

whence sv' = K @ (u)v in the sense of differentiation in D'(R). Therefore

v' is a continuous function : it is the derivative of v in the classical
sense. Then : v.e C!(R) and sv' = K & (u)v.
The end of the proofs of Theorems 4.4 and 4.5 is now bbviods and

will be omitted. B
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We end the paper with some other properties of the function

aRik,dy

PROPOSITION 4.6

let d >0 . qCR(.,d) is a monotone increasing function on HQi.
If qCR(Ko,d) > §, the function is strictly increasing on [Kp,+ L. ’

Furthermore, we have :

i qR(kd) =a, 1im o qR(Kd) =+
K-20 K>+ o
N We begin the proof with a new comparison Temma, which is the

analogue of Lemma 3.2 for different values of K :

LEMMA 4.7 :
Llet d > 0 and K; > Ko > 0. For i ¢ {0,1} , Tet (ui,vi) satisfy :
u% = - su; - svy 4 f(ui) +C,
dv? + sv% = Ki ) (ui)vi R
with : 0 < up(0) < uy(0) 5 0 <ve(0) = vi(0) 5 0 <vi(0) < vy (0).
If the equality : '
(4.9) Tue(0), vo(0)s vo(0)] = Cui(0), v1(0), vi(0)]
holds, assume thaf : up(0) > 0 or ug(0) < 0. Then :
¥y <0, ug(y) <ui(y)s Vvoly) < vily).
Moreover : 1lim  [vy(y) - Vo(y)l =+ = .
y>- o .
Proof : It is very similar to'the demonstration 6f Lemma 3.2 and is left to

the reader. The only new difficulty is to show that the result remains true

when (4.9) holds.

LEMMA 4.8 :

Let d > 0, and Ky > Ky > 0. Then

C X CR
q R(Kl,d) > q (Kg,d).
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Proof : a) Define 4, = [q*R(K.,d), + = [. let qy e 4y 0 34, + = [.

We denote (ui,v:i) the corresbonding solution with u;(0) = 0. It suffices to
show that q; ¢ 4y. We define Ups Vs Mys M_, as in (3.9) and (3.10). For
my - v1(0), we can use Lemma 4.7, and conclude that my e M_. Since q; + % c M+,’
we obtain the existence of my ¢ M; UM, W¢ set (umo, Vmo) = (Ug, Vo).
my > m; yields vo(0) > v, (0).

b) Assume now that the curve (ug,V,) hits the curve (ui,vi) in the
region {u = 0} . We consider :
Yo=max { y e D m " R ,3z¢ R, uy) = u;(z), vo(y) = va(z) } .
Yo corresponds to the first intersection point, when the curves arée followed
“in the direction of decreasing v. We set : uo(yoe) = ui(¥1), Vo(¥o) = va(y1) »
and assume : ug(yoe) = ui(y:1) < 0.
As vgy(0) > v1(0), we. have

vol(ye) . Vvilws

Tug(ye) ! ui(y:)

or vo{yo) = vi(y1)=20. WE can then use again Lemma 4.7 and get my ¢ M_
whence a contradiction. Therefore, using (3.1), we can state : the curve
(ug,vo) cannot hit the curve (u,,v,) at a point where'uo 20, ug < 0.

c) We can then end the proof as we did for Proposition 3.5 ¢ (Up,vyp)
is a solution of (1.11) correspondihg to g, and Ko . Thus gq,e A, and the

proof is complete. (The details are left to the reader). M

REMARK 4.9

It will be useful in the sequel to notice the following : assume
Ki > Ko and q""(Ky,d) = q“R(K,,d) > 4. Then, in the region {u =0} , the
weak detonation profile corresponding to K; is strictly under the weak detona-

tion profile corresponding to K, . This is a consequence of the preceding

proof, since u' < 0 along weak detonation profiles. W
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We can now complete the proof of Proposition 4.6 with the two next

Temmas :

LEMMA 4.10
-~ letd >0and K;,> 0, such that qCR(KO,d) > Q. Then the function

qCR(.,d) js strictly increasing on the interval [K,, + » [.

Proof : In fact, we are going to prove the next statement :
" For K, > K, > 0, the weak detonation curve (u,,v,) corresponding to K1 is
under the weak detonation curve (u,,v,) corresponding to Kz in the region -
{us> 0}", and Lemma 4.10 wii] be proved from Remark 4.9.

a) Assume that (3.20) holds for (K,,d) and (Kz,d).'we can then use
(3.21): in the neighbourhood of (A,0), the cﬁrve (uy,vy) is under the curve
(u,,v,). Again from Lemma 4.7, the curve (u,,v,) remains under the curve (u,,v,)
in the region {u > 0} .

b) If (K,,d) ¢S or (K,,d)e S ((3.20) does not hold), we take two

sequences (K;, dn), (Kg, dn) such that :

P 1 - : 2 ; - !
Tim Kn K1 . 1im Kn K2 , 1im dn =d

1
¥nelN, (Ki,d)é s, (K, d)¢ s .

n
It suffices now to use Theorem 4.1 and a) above , and the proof is complete. W

LEMMA 4.11
Let-d > 0. Then

Tim qR (k,d) = 4 lim qR
K—>0 K—++oo

(K,d) = + ©

Proof : We already proved the first limit (see (4.8)). From Lemma 4.8,
Tim qCR (K,d ) exists in R

K+ + o +
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Assume : 1im qcR (Kyd) =M<+ =

K->+oo

Let F e g, AL (Uo =inf { u, o(u) =11}), let K, > K, > 0. Using the
notations of Theorem 4.1, we set : u; = u(Ki, d, F),' v; = v(Ki, d, F) for
i € {1, 2} . Since the curve (ui,vi) is under the curve (u,, Vv,) in the region
{u=01, we have : Uy (0) = ue(0) = F and v;(0) < v,(0), whence
ui(0) > uz(0). ,
Then : u;(y) > ux(y) and vl(y) < vy(y) for small positive y. We define y2> 0
by : ux(y2) = Uy < F. Using (3.3), one caneasily prove that, for y ¢ [0,y.]
A >ui(y) > u(y) = Uo
vi(y) < ve(y) < M
Thus :  uz(y) 2 = sM - sup(y) + f(u2(y)) + C 2 - sM.

. We get by integration :

u(yz2) - uz{O) =Uy - F 2 -sMy,,
F - Uo
sM

whence Y2 2 = Y .

We define rs by dr% + osry - Ki = 0, r: > 0 forie {1,2} .

1 1

We have from (3.3) :

¥y e 10, y2d 5 vi(y) = ravaly) > rava(y) > <2 vi(y).

Therefore :  v,(y1) 2= v,(0) +-%[(v1(y1) - vi(0)1T

qCR (Kp,d) 2 VZ(.YI)'Z :i vi{y:) - vi(0) 1

The difference v,(y;) - v,(0) > 0 does not depend on K, .

- w2 :
Since r, = S * \/; + 4dK, , we get : Tim qCR (Kayd) = + »

d K2++oo

and the proof is achieved. B
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APPENDIX

We now consider the case d = 0, which has,been investigated by
A. Majda [ 73 . We study the continuous dependence of the combustion
profiles with respect to K and we propose another formulation for A. Majda's

results.

1) Consider the equations : u' = - su-sv+f(u) +C=1 (u, v)
v K - .
v' o= —g—-_@(u)v = f, (u,v 5 K).
Let ﬁ > Q > 0. On Fig. 3, the curve AD represents the weak detonation
profile corresponding to K¢ and the arrows represent the direction of the

vectors [ f (u,v) , fa(u,v ;3 Ky )]

N
/

—— 9(u,v) =0

Figure 3
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“PROPOSITION A.1

The function qCR(.,O) is increasing. If qCR(K,,O) > §, the

function is strictly increasing on the interval [Kq, + o[,

Proof : In the neighbourhood of (A,0), the weak detonation curve corres-
ponding to K, is above the weak detonation curve corresponding to K,
(see [7]1 ). The proposition is then obvious, from Fig. 3. H

2) The proof of the next result is easy and will be omitted.

PROPOSITION A.2

a) With the notations of Theorem 4l1, the application

R;XR, ——> CcYR)X.c%R) X R

(K, d) —> [u(K,d,F), v(K,d,F), q7(K,d) ] is continuous

b) Assume that the energy satisfies qo > §, and define

D=1{(K, d) e R¥X Ry , qR

X D2+ ; with the notations of Theorem 4.2, the application

(K,d) < qo} . D is a non empty open subset

*

-of H2+

A% D ———— C¢Y(R) X ¢%R)
(

K,d) ————> [u(K,d,F), v(K,d,F)]  is continuous. M

3) A consequence of Propositions A.1 and A.2 is :

¥ q > @, 3! Ko >0, g% (Ko, 0) = qo ;

CR CR

(A.1) g
(Ks0) < gp 5 ¥ K>Ky, g (K,0) > qy -

¥ K <Ko, q
This is true even if A ¢ 10,Up] : the assumption A > U, is not
CR

useful to prove lim q (K,0) =+~ (see [ 7 1).
K- o _
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We can then restate Ai Majda's results jn a somewhat more
general manner than in Theorem 1.2, where A, B, C and s are fixed, while
the energy q, and therefore the state U (qo) of the cold mixture are
allowed to vary.
Let be given the value qo of the 1iberated energy and the state
‘U <0 of the cold mixture. We consider the problem :
Fors > 0, find (u,v) ¢ ¢'(R) X ¢*(R) and U' > 0 such that :
u' = -su - sv + f(u) + [sU +sq - f(u)l ,

(A.2) ¢V -5 etuyv,

V(-=) =0, v(+=) =q, ,
u(-«) =U' , u(+=) =1U
If (u, v, U') is a solution of (A.2), we have s = fut) - f(U)
' CUt - (U +qg)

We sill state the result for the case represented on Fig. 4 :

U+ qe >0 . The other cases can be treated without difficulty .

24\ /' ss

Figure 4

WV

U U+aq U : - u
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PROPOSTION A.3

Thefe exists a critical value s for the wave speed s such that :

a) If s <s, (A.2) has no solution.

b) If s = s , there exists a unique sblution for all positive K,
with U' = U. |

c) If s > s , there exists Ko(s) > O such that :

(i) There exists a unique solution with U'> U if K < K, (s)

(ii) There exists a uﬁique solution with U' < U if K = Ko (s)

(iii) No solution exists if K > Ke(s) . I

The proof is an easy consequence of Theorem 1.2, Remark 1.6 , together
with (A.1) and Fig. 4 . Notice that the solutions of (i) above are strong

detonations, whereas the solution of (ii) is a weak detonation.
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