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INTERDEPARTURE TIMES FROM A QUEUEING

SYSTEM WITH PREEMPTIVE RESUME PRIORITY

Philippe NAIN
INRIA
Domaine de Voluceau - Rocquencourt
B.P. 153~ 78153 LE CHESNAY CEDEX

Résumé

Nous considérons une file d'attente & capacité illimitée et
d un seul serveur, qui regoit des clients ayant des degrés de prio-

rité différents.

Parmi les clientsen file ayant la plus forte priorité, le
serveur traite le plus ancien. Ce traitement est interrompu par
1'arrivée d'un client plus prioritaire ; le service acquis est ce-

pendant conservé ('preemptive resume priority").

Dans 1'hypothése ol les flux d'arrivée sont Poisson, nous
calculons 3 1'état stationnaire et pour chaque classe de clients,

la transformée de Laplace-Stieltjes de la loi des interdéparts.

Des résultats numériques permettent d'illustrer 1'influence
de cette discipline de service sur les processus de sortie. Une

application aux réseaux de files d'attente est aussi donnée.
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Abstract

INTERDEPARTURE TIMES FROM A QUEUEING

SYSTEM WITH PREEMPTIVE RESUME PRIORITY

INRIA, domaine de Voluceau, Rocquencourt, B.P, 153
78153 Le Chesnay Cédex

Queueing Systems, Output Process, Diffusion Process,

Preemptive Resume Priority.

We derive the Laplace-Stieljes transform of the limiting interdeparture

tires distribution for each class of customers of a queueing system with

preemptive resume priority, Poisson inputs and general service times. Nume-

INTRODUCTION

rical results and an application to queueing networks are also given.

Independently of the theoretical interest, the study of output processes

has a strong practical motivation since the behavior (performance) of a queue-

ing system is often expressed in terms of throughput.

Output processes have réceived much attention since the work of

Burke [1] whog showed that the departures from a M/M/s queueing system in

equilibrium form & Poisson process. The reader will find mostly references

on output processes in the papers of DALEY 2] and PACK[I&].
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In this study, we are cencerned withthe output processes of a queueing

system under a preemptive resume priority.

More precisely we consider the following model : customers arrivexﬁt
a service facility at r priority levels. At each priority level the input
process is Poiséon and these procésses are mutually independent. The ser-
vice times have an arbitrary distribution function which depends upon the
priority level. A single server serves under a preemptive resume disci-
pline. Results are obtained which characterize, for each class of custo-

mers, the asymptatic distribution of the interdeparture times (Section 2).

The influence of this service discipline on the interdeparture times
distribution of the nonpriority customers is shown, through comparative

numerical results (Section 3).

An application is given, concerning the analysis of queueing networks

by means of diffusion approximation (Section 4).

This work uses previous results of WELCH [17] who studied the above
processes. His study is-based on a reduction of these precesses to comparable
processes in simple generalizations of M/G/1 queues. The results he obtained
concern in particular the transient and asymptotic behavior of the size of
the kth queue (k : l,...,r) just after a departure from this'queue.‘Suqh
queues have also been studied by JAISWAL 92 , MILLER 117 , WHITE and

CHRISTIE (18] , STEPHAN [15].
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1. THE MODEL AND NOTATION

Customers arrive at a single server from r different sources. Customers
arriving from source 1 have the highest priority and those arriving from

source r thelloweét. From each source or equivalently at each priority level,

arrivals form homogeneous Poisson process with intensity Ak and these pro-

cesses are mutually independent. For k = 1,...,r customers with priority
level k will be called k-customers. We define for n = 1,2,... , k=1,...,r ¢

T = arrival time of the nth arriving k-customers.

k,n
Tk’o.= 0.

We assume that for fixed k, the service times process is a renewal process

with an arbitrary renewal distribution which depends upon the priority level
k. All the processes are supposed to be mutually independent..
We define for

Re(s) 20, k=1,...,r

a, = average service time of the k-customers (which is supposed finite).
¢k(s) = Laplace~Stieltjes transform (LST) of the service times distribution

of the k~customers.

We assume that the server is subject to a preemptive resume priority service
discipline (9]+ Hence, it is conyvenient to define the following
stochastic variables for n = 1,2,... , k=1,... r.'

T'k,n = departure time of the nth departing k-customer.

Ek n

= size of the k~queue at time T'k + 0.
'3y

ek,n = beginning time of the service of the nth k-customer.

ck’n - T'k’n - ek,n ‘



c Kon is called in the literature the "completion time" of the nth k-customer,
’ .o

which is defined as being the service~plus-interruption time of this cus-

tomer.

wk,n+1 = ek,n+l - Tk,n+l'

W, is the waiting time of the (n+l)th k-customer.

k,n+1]
We first observe that because of the service discipline, the l-customers
behave exactly as customers of an M/G/l queue with input parameter Al and
Laplace-Stieltjes transform of the seivice times distribution ¢l(s). The
Laplace-Stieltjes transform of the limiting interdeparture times distri-
bution of an M/G/1 queue can be found in TAKKCS [161. 1In the following,

we will consider k 22.

2. THE INTERDEPARTURE TIMES

In the proof of Theorem ! we will use the following basic lemma due to
WweLcH [171].

LEMMA.

For k = 2,..., r the occupation time of the server with respect to the first

k-1 queues at time t (t' >0) is the same as the occupation time of the ser-
def kzl

ver at time t of an M/G/] queue with input parameter Ak-l X Ai
i=]
and Laplace-Stieltjes transform of the service times distribution
| k-l kd . 3
] (s) def I X, 0. (8) / A ( Re (s) 2 0), given the same initial
k-1 — 4o 174 k=1

conditions in these two queueing systems. [J

»
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THEOREM 1

The LST for the limiting interdeparture times distribution is, for k=2,..
k
Re(g) 20, .): >‘i e, <] :
i=1
. " ' -t = - .
n1‘;)m_m E{exps (T 41 Tk,.n))} 8 s+ A _ Vi-1 (s)))
. k
Al - (Ak - Ak,'l Vk_}(lk)) (1 - 151 Xi ai) (s + Ak—l a - \)k_l(s))) /
(Ak(s + Ak - Ak-l Vk—l (Xk+s)))}
where V-1 (s) is the root with minimum absolute value of the equation,
z = ®k-l (s + Ak—l (1-2)).
Proof, For n 2 1, we have:
Cne1 M G n #0
' - ot =
T k, n+l T k,n (1)
O ontl * Mignel t Cigner & =0
where P (68 K, n+1 <x) = (1 - exp (-)\kx)) lxzo where lA is the indicator
function of A.
We first investigate the following LST,
def
fk,n+l (s) — E{exp (—s(wk’n+l+ek’n+l Nl 2)
Hence,
o .
fk,n+l (s) = é Ak exp (- (Ak+s)x) E{exp(-s Wk,n+l) / ek,n+1 = x} dx. (?)

s



Define :

Pe el = occupation time of the server with respect to the first k-l queues
?

at thé time Tk,n+l given Ek,n = 0,
Using the lemmé, we have that the duration of W. 0+ given 8 k,n+l = x (x 20)

is the duration of a busy period of an M/G/l queue with input parameter
A _ys with LST of the service times distribution @k_l(s) and with an ini-

tial waiting time distribution whose the LST 1is E{exp(-spk,n+l)/e k,n+l= x}.
rd
TAKACS's result shows then that ([16], remark 4, page 63) :

E {exp(-s W )/ ©

k,n+l

konel = XP = Elexp(=(s + A, (0 =y, ())) P, n+1) /

0 x} A (4)

k,n+l =

with v, _, (s) the root with minimum absolute value of the equation, z = ¢k_1(s +

Ak—l(l_z))°

Moreover, WELCH [17] shows that for Re(£) 2 0,

. 1 - E/(s+A,_ (1=v, _(s)))
L Efexp (B, /8 o4 = O} e Tax = k=11 V-1 L)
° ' ’ s = E+ A _ (1 -8  (E)

From (2),(3), (4),(5), it follows that ¥n 2 1, ¥k 2 2, ¥Re(s) 2 O,

fyne1 (8 = Oy + M O (8) = v Qe / Uyrs = Ay vy (89)) « (6)

We conclude the proof using the two following arguments :

i. ) and C are two independent stochastic variables
1 k,n+l

(® k,n+l + wk,n+
because of the arrival Poisson Processes and the independence hypo-

thesis of the input and service times remewal processes in queues
l,...’k.

»
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iio vn 2 l’ VRe_(S) 2 0’ Vk = 2’.0.,r H

E {exp (-s Ck,n+l)} =0 s+ A _, (- Vi1 (8))).

This result can be found in [9] for example.
Hence, from 1,2,6,i,ii, we obtain ,

] - 1] - v = : -

nLT E{exp(-s (7 kel = i)} 3:1: PE, 0 B (s + A (-v_ () +
Lo PG, = 0) Bi(s + by (= v 160D Gy + Ay Oy (8) = vy O #e)))
/ (Ak+s - Ak—l Vi1 (s + Ak)). (7)
It remains to determine, lim P(Ek n "= 0).

n -+ o

This can be done using the theorem in the Appendix A with z = 0.
We find,

k
Hm P, =0) = (A =A . v, - (A)) (1= I Aa,)/A.
e Ky k k-1 k-1 k iop 3% k

The proof is then concluded introducing the above result in (7).

3. NUMERICAL RESULTS

We know that the meaninterdeparture times of the k-customers is
A;l for k = 1,2,...,r. In what follows we are therefore only
eoncerned with . quantities related to the. variance of the interdepartiire

processes.

In order to get numerical results comparable with known analytic

results, we consider the case where all the service times are exponentially



distributed. The queue with the 1-customers is then simply a M/M/1

. . . -1
queue with input parameter Al and service rate a .

Let V2 be the variance of the stationary distribution of the inter-

departure times of the nonpriority customers (the 2-customers).

[ cevy - cev, - '
s = ( , ) x 100, where CCVA and CCV_ are

D
CCVA , :

respectively the squared coefficients of variationof the interarrival

Let s be the ratio

and interdeparture timee distributions of the 2-customers. Due to Poisson

inputs CCVA = 1 and s is then simply reduced to s = (A% vV, - 1) x 100.

2

For three given levels of priority traffic Py Table | gives s
versus the nonpriority traffic Py
def

(pk 3 Xk o

k =1,2)
For small values of p] and p2, Table 1 shows that the departure process
of the nonpriority customers remains "close'" to a Poisson process (s emall)
with intensity Az. In other words, this indicates that under this

" priority rule and for small values of P 9Py the qﬁeue of the 2-customers

2 ]
which would be exactlythecaseif‘kl= 0 [1] . On the other hand, as soon as

"almost" behaves as a M/M/! queue with input parameter ), and service rate &

P and/or pzimcreasethen the departure process of the nonpriority customers

is no longer close to a Poisson process (s increases).

Y
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4i APPLICATION TO QUEUEING NETWORKS AND LIMITATIONS

An application of Theorem | arises in the approximation of queueing
networks by means of diffusion processes. First, let us briefly recall

the method of diffusion approximations in queueing theory.

The idea is to approximate a process which is not time-continuous -
for instance the number of jobs - by a time-continuous process ~ a diffusion

process = according to the central limit theorem.

This technique has originated in.queueing theory with the work of
GAVER [ 3] and NEWELL [127 for a single server queue and generalised
to queueing networks by KOBAYASHI [10] and GELENBE, PUJOLLE [67.
Many authors applied this approximation method for various queueing systems,
for which exact results are unknown or not readily usable GELENBE 4],
HEYMAN [8] ,» HALACHIMI and FRANTA [4] , NAIN' 1131 and many others. -

The method involves the choice of two diffusion parameters b and o,
respectively called the drift and instantaneous variance, and which charac-
terise the diffusion process in a unique way, given the initial conditionms.
These diffusion parameters must be chosen in order that the corresponding
diffusion process reflects the particular queueing syétem under considera-

tion.

For a single server queue, b and o are functions of the mean and variance
of the interarrival times and service times distributions (for a full treat-
ment see GELENBE, MITRANI 51 ). Thus, if we consider a queueing network

(open or not) where node io consists of the queueing system investigated in

this paper (all arrivals to node io - external or not - are supposed Poissonean),

we know from Theorem 1, the mean and variance of the interarrival times distri-

#0,

bution of the k-customers (k=l,...,r) arriving to node j if P k i
0'Rslse

(for io#j or io=j and k=1 and the service times of the l-customers exponentially

distributed) where P j def
[ Bt ] 3

. . .0 .
1ts service at node 1 enters node j.

probability that a k-customer having terminated
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Then, making the "usual" assumptions (in the context of diffusion approxi-

mation in queueing theory) that the departure processes from node '1o are all

. . )
renewal processes and mutually independent, we can extend the method of diffu~ d

sion approximations to queueing networks containing nodes of type io.

However this application is limited to particular queueing networks
since a node of type io cannot belong to general closed or open queueing
networks. For example, a node of type io cannot be visited more than one
time by a job otherwise inputs into this node would not form a Poisson
process. This application is valid for instance if all arrivals to no-

des of type io are external and Poisson.

APPENDIX A

THEOREM. (WELCH [171 )
K
For k = 2 and if I

L Aiai <1, the Markov chain {gk’n :n=1,2,...} is er-

godic and, independent of the jnitial distribution, we have :

T lnPE =D P =0 O -2) Gz At v O (1-20)).

j=0 noe e '
K

.- Aiai) / (Xk(z -9 (Ak(l - z))) where
i=1 |

@ (s) =@ (s+A_, A=y _ (s))) and V,_1(8) is the root with minimm ab-

solute value of the equation, z = oy s+ A, (-2)).

A

'\7
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APPENDIX B

Let V. be the variance of the interdeparture times distribution of the

k-customers, k=2,...,r.

Then :
vV, = jﬁi 1lim E{exp(-s(t/ -1 N} -1/,2 . (Re s 2 0)
k 352 o P k,n+l k,n ls=0 xk

A straightforward but tedius computation yields :

2 1.1 2 _
Ve = Fk - ak(2 F, Gk + Gk)”‘k l/XIZ(
where :
1 _ -1
P = *=1 :
uk(l - I A ozi)
i=1]
k-1 )
) if_fl_ A; E(5)) E(Si)
FS = +
k k-1 3 k=1 5
l—lk(l - .2 Xiai) (1 - -Z Aiai)
=] i=]
1 1
C = -1 ’
(I - I Ajoa
1=1
k-1 )
- I A, E(s9) _ .
RS U B L o Al R
k k-1 3 k-1 5
(1 - L Ao)” A (- T Mo A
=] i=]
Ak = Ak - Ak—l\)k-i()‘k) with vk_l()\k) given in Theorem 1,
k
i=l
k-1 *© <Apx
- I Ai"; X e k dBi(x)
' = i = i=1 )
Vet 07 35 Vi@ P -
ko A0 - T 2 j; x e E dB, (x))
i=] :

Bi(') = service times distribution of the i-customers .

2 © )
E(8)) = fo x4 BG, el k.

1
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ol .3 )
2
.1 s = 0,6 5,37 24,0
-2 2,4 15,2 64,4
.3 4,8 28,6 108,8
A 7,3 42,3 154
il
.5 10,2 56,5
AY)
.6 13,3 71,4
.7 16,1
.8 19,2
Table 1 : Comparison between the input process and the output
process of the non-priority units.(u1 =y, = 10 ) A
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