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ABSTRACT

We study the structuye of.éomphtations by term rewrite
’rules, allowing non-determinism{and overlapping. Computa-
tions form, up to permutations of rewritings, a complete
§artia1 order, and semantics is defined as the set of
results of terminating (i.e. maximal) computations. A call-
by-need computation rulé'is then introduced  and we prove, by
means of a continuous oro1ection over the complete partial
order .of call- by-need computations,that it is correct for

sequential syvstems.

Réswund: Rous &tudions la structune des calouls détarminés pax
syatéms da rééuriture de Termes, auterisant e non-ddtermingsms
et le chevaychanent. L'ensanble de ace caleuls forme, aue
paprmutats LOTs dz rédevitures prés, wit ondre pmdiel complet,

at la aém«mtwm. ast définie comne L'engsenble das résultats
deg calouls twawinds (ie meximaw). Une régle de caloul en
appel par nécessité-est introduite et nous pouenns, grice
un@ projection aontinue sur 1'ordve pavtiel des calevls o
appt? par ndeesgitd, qu‘e??ﬂ est aorveste pour les ayatémub
aéquen tiels.
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1. Introduction

May hé the best way to introduce this work is to take a short walk
.on the historical side. It seems fair to say that the concept of compu-
tability is relevant to computer science. But here our concern is not in
automata theory. Thus the starting point is recursion theory, as it can
be found in the book of S.C. Kleene 26), or in the work of J. Mac .
Carthy [28). With regard to computability, D. Scott [40,41] proposed a
general 'semantical model, whiéh recaptures the well-known fix;poin£'
theory of recursive definitions. Denotationai semantices haé gained a -
considerable popularity, owing to its mathematical elegance and fruit-
fulness (see for example the paper of R. Milner [29]), but also because
it has an operational foundation : from a less abstract point of view on
computability, denotational semantics ;s'also adequate. For it has been
shown by J.M. Cadiou [10], J. Vuillemin [44], P.J. Downey and R. Sethi
[16] that theré exist "correct" computation rules for recursive defini-
tions. Efficiency is a less tractable problem,and indeed its precise
formulation requires a careful analysis of the concept of computation,

as in the work of G. Berry and J.J. Levy [4].

"In thé operational setting, computations are symbolic mahipulations
" of syntactic objects, suéh as rewriting on trees studied by B.K. Rbsen
{391 and G. Huet [21] (thus computations have something to do with
proofs in first-order equational theories -e.g. : abstract data typeé -
- see [221). The confluence of denotational and operational approaches
gives the so-called algebraic semantics of M. Nivat [311 and ADJ Group
f1], which relies on the initiality of the symbolic semantics (see [32,

45, 171). This semantics is "operationally adequate" in yet another

acceptation -: as shown by J.C. Raoult and J. Vuillemin [38], initial

models are fully abstract.

Problems arise when we want to model non-determinism. Here it is
not a ﬁatter of implicit non-determinism (resulting from hiding an argu-
ment to a function) but of explicit one, as introduced by adding a new
opérator of choice or to the recursive definitions _(see ‘for example
r2,331: we shali.not quote all the ﬁuherous papers on this subject).

Semantically this seems to be nothing mofévthan set-theoretic union,'
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whereas operationallv the behavior of this operator is given by
or (x,vy) -> x
or (x,y) =>y

To extend denotational semantics then requires constructions of power-
domains, such as the ones given by G. Plotkin [35] and M. Smyth [43],
generalized by M.C.B. Hennessy and G. Plotkin [18] in a category-
theoretic framework. But is there any operational. counterpart to this
denotational semantics? If we want to‘keep track of programs expressly
designed to ﬁun forever, we have to carefully define a notion of accept-
able computations; this has been done in [7] (and, with a distinct
notion of "acceptable"” , in [2,37]) where we show (see also [8]) that
the operational semantics which we get for non-deterministic recursive
definitions is iﬁtrinsically"non-continuous. However, this "computa-
tional semanfics" is consistent with the algebraic approach, and we
retrieve an implicit non-determinism, since the semantics of a non-
deterministic recursive program is actually a function from oracles to

values.

Let us now more accurately investigate this computational
approach. As we have said, in this setting computations are sequences of
rewritings on terms, following a given finite set of rules (i.e. pairé
of terms, subject to some restrictions about the occurrences of vari-
ables, see below). Usually a semantics is then defined by means of fin-
itely terminating computations (those which end on a normal form), but
when the term rewriting system is confluent (or has the Church-~Rosser
property,_see [39,211), and if we'interpret terms in a complete partial
order, one may -have a more general definition of the denotation of a
term (as the lub of the directed set of partial informations got along
computations).

Confluence property is fulfilled when the term rewriting system is
deterministic ("unequivocal" for B.K.Rosen [39], "non-ambiguous" in the
terminology of G. Huet and J.J. Lévy f231), that is. a partial function
fnom left-hand sides to right-hand sides of the ruleé, with no overiap-

ping between léft-hand sides. This kind of term rewriting system, which
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covers primitive recursive and recursive definitions, is a widely stu-
died one ([39,3H,5,20,23,11]). " From the work 6f G.Huet and J.J. Levy
(23], pursuing those of J. Vuillemin {44] and C. Berry and J.J. Levy
[4), one may say much more about computations in deterministic term
rewriting. systems than confluence : one 'may define a very natural
equivalence on computations  (to be the same up to a permutation of the
rewriting steps) and a preorder by means of "what remains to do" (the

residual) of a computation after another one, up to permutations. With
each term is thus associated a lattice of (classes of) computations. In
this setting correctness and efficiency of computation rules can>be pre-

ciselv stated ([4,23]).

The key idea that a computational device determines an ordered
space of "events"™ is not new : it ﬂnderlies the work of G. Kahn and G.
Plotkin [24] and of G. Berry and P.L. Curien [6] on concrete domains,
and the concept of event structure of G. Winskel [46]}. This ordered'
space is a set of classes of computations, up to permutations, nbt only
in the context of deterministic.term rewriting systems, but also for the
lamda-calculus (see the nice paper of J.J. Levy [27)), for some kind of
Petri nets ([30]) and in some sense for algebras of processes ([47]).
This work is just an attempt to generalize (in two directions, relaxing
the hypothesis of determinism and finite iermination semantics) some of
the results of G. Huet and J.J. Levy [23] (and of [4,71]), applying this
computational approach. We givé a partial answer to a question of (23] :
"does one really need the non-ambiguity condition?", as it can be seen

along the lines of the following presentation:

- In a second section, we briefly recall the necessary theoretical
framework, and introduce term rewriting systems as finite sets of paib

of terms (the‘ruies)'subject to the following restrictions H

(i) a variable cannot appears as the left-hand side of a rule

(this is to prevent some semantical aberrations, see below)

(ii) -a variable which occurs in the right-hand side of a rule must
occurs in its 1ePt—hand side'(bv this way, the application of
a rewr1t1ng rule at some of its occurrences glves a deter-

minate result)



-6 -

(iii) left-hand sides of the rules are linear, that is a variable
may not occurs more than once in these terms (this seems to

be only a technical restriction)

Thus we allow TRS’s in which two distinct rules may have the same left-
hand side, and more generally TRS's in which left-hand sides may over-

lap.

- Section 3 contains the definition of the equivalence of computations
up to permutations. A slight difference with the deterministic case is
that we have here to take into account the possible incompatibility of
elementary computation steps. This appears in the permutation lemma
(elsewhere called parailel moves lemma). Another crucial (and not easy .
to establish) property of this equivalence is its left simplifiability
w.r.t. composition of computations (the simplification lemma). Then we
order computation by "extension up to permutations" and, generalizing
the deterministic case, prove that the ordered space of computations is
a complete partial order. This allows to generalize also the concept of
termination, by saying that a computation is terminating if it is maxi-

mal.

- In section U we first réeall the main theorem of algebraic semantics,
stated in a somewhat unusual form (but which is nothing more than'the
Birkhoff’s completeness theorem, see(22]), which we call here the fac-
torization theorem : thé Herbrand interpretation of an -equational
theory is initial in the variet& of its models, as an algebra of func-
tions (not objects). Thus, thinking about TRS’s as computational defini-
"tions of objects we define ;heir interpretations : algebras in which no
information is given on terms which have to be computed (this is con-
sisteht with the classical semantics of recursive definitions, see
[45,14]). The semantics of terms under interpretation is then defined.as
the set of results of terminating computations (and here again we gen-

eralize the case of recursive definitions, see [U]).

- The last section 5 is an approach to the construction of interpreters,
along the lines of [23). The problem is to give effective and efficient
correct computation rules. We first define the notion of needed redex:

call-by-need computations are those which only rewrite needed redexes.



-7 -

‘The main result is that the subspace of call-by-need computétions is yet
complete (and seems to have a better structure : it is a coherent alge-
braic domain - a "domaine de calcul" in the sense of [24] - and we con-
Jecture that it is an event structure [46] and, in'thé non-ambiguous
case, a concrete domain [28]1) and that there is a continuous projection
giving from any computation its (m;ximal) cali-by-need subcomputation.
Moreover when the system is non-ambiguous (which for us means that if
left-hand sides overlap, then they are equal) this projectioh preserves

termination.

Then we define sequential systems, which are nbn-ambiguous ones in which
needed redex cannot be created by unnecessary rewritings, and Wwe prove
" that the céll-by—neea is a correct (and effective) computation rule for
these systems : the bcontinuous projection preserves results in this

case.
. § .
Note: For_lack_of space, most of the proofs are omitted or only sketched

(thus we merely emphasize the intuitive view of objects).

2. Domains, Algebras and Trees

2.1 Domains

In this section we introduce somé basic concepts widely used in
programming languages semantics. The aim of this theory is to pﬁovide a
notion of interpretation for languages, in order to give meaning to
objects (such as programs). Thus a first question is 't what can be a
domain of interpretation? We must take into account the fact that func-
tionnal objects can be defined, and that these "infiniteﬁ.objects have
to ‘be computablé in Some sense. An answer hés been givén by D. Scott
(40,413 : his idea is that infinite computable objects are limits of
finite approximétions: to be an approximation is nothing more than a
partial order and in domains, an increasing sequence of objects must
have a iimip, its least upper bound. There are many possible Qariatiohs

about this idea (see [45,241) but in this paper we shall have no need of.
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an elaborated notion of domain, thus we adopt the classical conceot of
complete partial order :

a domain is a complete partial order (cpo) that is a structure

<P, E, L > where
(1) * D is a set
(ii) © is a partial order . on D
(iii) L is the least ("undefined") element of D

such that any directed subset X of D has a least upper bound Lix

(1let us recall that X is directed iff two elements of X are bounded in X:
Vxe XVyexaze X : xC z&y © 2)

A typical example is the set of partial mappings from a set to another,

ordered by _inclusion (or extension).

The corresponding _notion of morphism is that of strict continuous fur}c-
tions, that is .inc.r*easing functions which preserves the lub of directed
subsets (f(LIX) = LIF(X)). With this notion (which is not exactly the
usual one : generally one consider continuous functions, which are the
increasing functions preserving the lub of non-empty directed subsets),
there are free domains over partiélly ordered sets with least element :
we say that a domain <D°, ' ,l1'> is a completion of a such a <D,,Ll >
(up to a mapping j: D = D) iff for any domain <D°°, €£°°,1 "> and
strict increasing mapping f: D -> D" (s.t. f(1) = 1”° and

x B y => f(x) g "f(y).) there .exists one and only one morphism

r® £

: D°=>N"  such that f = o .

Two such completions are canonically isomorphiec, and in this case j is

an "embedding" :

XEV <> i.(x)e” i (v)



thus injective, so we may identify P and j(D) (and f 1is the restriction‘
of £™ to D). There is a very well-know way to build a completion of a
<D, C, L > : let us call ideal of D any non-empty directed cone (that is
Xech s.t. xeX&ycx=D>ye X) of D, let D*. be the set of these

ideals and j ¢ D => p® be given by

Jx) ={y/yed&ycx}

Then <0* , €, {1}> is (up to j) a completion of <D, C, 1 >.

The definition of domains of interpretatioﬁs as cpo’s allows to
build various: domains from other ones. For example any product of -
domains, ordered by the product order (ie componentwise) is a domain. AS
a special case, one cah see that the set Dx of mappings from X to D is a-
domain if D is a domain, and the product order is here the extensional

~one :

feg<=>Vxex: flx) g glx)

(and the limit of a directed subset f is a pointwise defined mapping :
L F(x) = U {f(x) / fE&F}). If X is also a domain, we get as a sub-

.- domain of Dx the set (X->D) of the continuous functions from X to D.
2.2 Algebras

Pursuing our investigationé about interpretations of languages, we
remark that programming ‘languages -exhibit, ét least at the level of
ébstract syntax, some algebraic étructure. This is obvious for func-
tional 1languages and also, for  example, qudting again the work of

‘D.Scott [42], we may built instructions fﬁom other ones by conditional
branching, sequential composition and so on, so that control structures

are functions over instructions.

Thus, as we have said that domains of interpretations are cpo, we
may now precise : interpretations are complete algebras (or continuous

algebras 17, cbmpleté magmas [131). Since in programming languages we
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have in genera) many svyntactic categories, we should have consider
heterogeneous aleebras, but in this paper we shall not emphasize this
point. Algebras are relative to a signature, which ‘is a set F of

function svmhols and a mapping from F to N (the set of non-negative

integers) which indicates the number of arguments (arity) of function

symbols. We allways forget this mapping, denoting

P =2F +F, 4+ + F ..
o 1 n

where Fk is the set of function symbols of arity k. We shall use the

following definitions (see [1,131) :

(1) an F-algebra is a structure A = < D, { fy / £ € F}> where D is a
set and for each f & Fk ’ f‘A is a.mapping from Dk to D (an ele-
ment of D if k = o since D° = ( 0 })

(ii) an ordered F-algebra is A = <D,g., L, {f

p / T E€F 1> vhich is an
F-alge’_a‘a where <D, © , L > is an ordered set with least element,

and the mappings f, are increasing.

A

(iii) a complete F-algebra is an ordered F-algebra where <D,E, L >

is a domain and each f‘A is continuous.

The respective notions of (strict) morphisms have an obvious definition:
mappings (resp. strict increasing, striect continuous méppings) P

which preserves the algebraic structure :

P (f, (dpreeeyd ) = £ (@ld))yee, pld))

This allows to define free structures generated by some set X : these
are algebras on D and mapoing 3 ¢ X -> D such that for all other algebra .
(of the same kind) on D’ and mapping f : X => D there exists one and

only one morphism f®: D -> D’ such that £ = f® o j
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Tn diagram @

3

Fao

D
|
1
1
v

D

OQur next aim is to provide constructions of such structures which

are, up to isomorphism, unique.

2.3 Trees and ferm Rewriting Systems.

Tt is well-known(1) that the sets of terms, finite trees and (fin-

ite or infinite) trees, on a set X, give the domain of the intended free
structures. Terms can be considered as special cases of (finite) trees,
so we formally define Bnly this last concept and write terms as expres-
sions (in polish notation with parenthéses) or as tree-like pictures as
well. The concept of tree has many possible definitions, as graph (may
be labelled) for example. Our trees consists of a set of nodes, each
"equipped with a label in Fy X, in'such a way that if this label is in X,
then the node is a leaf, and if it is in Fk, the node has at most k sons
(we shall represent 1 as the empty tree, which may be a subtree of

another one).
Example 2.1

if F o= {c}+{b}l+{a}l (which means Fo = {ec} , Fy = {v} , F, = {a} and

Fk = & for k>2) and x€Y, we may picture an example of finite tree by

N
N
]

p ¢

(1) We shall emphasize here on very classical notions, in order to
reduce our proofs to hopefullv convincing intuitive arguments.
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and ar example of infinite one is suegested by N

a \

fsually (see [35)) nodes are coded by sequences of integers. We adopt
here another convention : nodes are again words, in such a way that if

in a tree a node has label f € F we code in its sons which argument

k,
of £ tbey are. So we use to define nodes the "splitted alphabet"

eG Fx O associated with F :

we = {(f,i) 7 JkeN: e F, & 1<ick}

- (in the exampleswe often shorten (f,i) in -fi)
Example 2.1 (continued)

with F = {c}+{b}+{a} we have

WF = {(b,l),(a,1):(a,2)} ( or {b1,a1,a2})

As it is usual, WF* denotes the set of finite words over wF. We

shall denote by £ the empty word, and the concatenation of u and v by

. ref
(for it. is obviouslv a partial order). Finally, for LCW_ and w € W* we

F F
denote by L/w the residual of L by w :

uv. We say that u is a prefix of v iff aw T v = uw and noté u»ip v

*
L/W = {u/uewpandwueL}
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The definition s

ve

. *
an F-Tree on ¥ is a partial mapping t from wF to Fu X such that, if
dom (t) denotes its range of definition : .
(i) u € dom(t) & v < u => v & dom(t)
. —pref

(11) wf, € dom(t) for f €F  => _ -

t(w) = £ & (dom(t) / w) n w?;{q yeees £ %

In this definition, u & dom (t). is a node of the tree t, while t(u) is
its label. We may note that 'if this label is in F v X, then the node
is a leaf, that is dom(t)/u = {£}. If dom(t) #¢ then € € dom(t), and

€ is the root of the. tree.
Example 2.1 (continued)

The finite tree of this example is formally defined by

dom(t) = { € 235 s

a
t : J
. a

C

y A3, a2a2b1 }

while for the infinite one

+7Y)= - - i
dom{t”)={ u./ ] nenN : < or a2a1b1} with
4 p
“t (az) = a (may be p=o0)
., . n ‘
t (a2a17_= b
t”’ (a;a1b?) = b if p<n  or ¢ otherwise {(p=n)

We shall denote bv MS'(Y) the set of these trees, and by MF(X) the

subset of finite ones (ie 's.t. dom(t) is finite). Trees are naturally
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ordered as partial mappings that is by inclusion (or restriction), but

here we adopt for this relation the notation of M. Nivat :

V *
t < £t° <> Yue WF : u€ dom(t) => ue dom(t’) & t’(u) = t(u)

We may also say that t is an initial subtree or a prefix of t’. For this
order the empty treel (s.t. dom (L) = @) is obviocusly the least element.

We shall say that a finite tree is a term if it is maximal w.r.t. <, and

we denote the set of terms by ﬁ%(x). If we define :

(i) jrx o MF(X) by :

VxeX dom(i(x)) = {€} & (4(x))(E) = x

. 00 k o0 ’
{ii) For all f e Fk ’ f‘H : MF xX)" - MP (X) by :
o0 k
V-(t1,...’tk) e MF (X) . t = fH (t1,ooo,tk) . <=>
dom(t) = (€} v U {f,} dom(t))
18igk

t(€) = £ & for u erdom(ti) :t t (fi u) = ti(u)

then we can state the well-known (see [13]) result :
Proposition 2.1

The structures -
Mg x) , {f‘q‘/ fqF

MAX) L&, 0,00,/ FEFD

= <M, ’
Ho=Mmi), <, L, {f'H/f‘er

are resp. the free F-algebra, free ordered F-aleebra, free complete F-
algebra generated bv X w.r.t. i. Moreover <M;’(X),-§ , L > is a comple-

tion of <MF(Y),‘$ , L >,
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The last point allows to make free use of definitions and proofs on
(X) by structural inductvon and continuity argument. As we _have
already mentioned, we identify x and j(x), thus X ¢ Mp (X), and we omit
the suscript H in fq thus we can write finite trees és expressions sucﬁ

Ty
as

afe, aC 4L ,b(x)))
for the finite tree of example 2.1.

In order to introduce computations on trees, we have to give more

insight into these objects.

_ All the following definitions are..classical (see [39,21]), but our
notations mav be unusual at some points. The first concept of use 1is
that of occurrence: we shall make an ambiguous use oP thié word .
oceurrences’ in a tree will. be occurrences of symbols, of subtree, of
redexes and so on. There is a 1little difference between nodes and
occurrences since we want fqr_example to talk about .the occurrences of

the emoty tree in a tree} So the definition is :
for all t & M (X) oce(t) is the subset of - W given by

occ (L) = €} and for ¢t £ 4:

occ(t):dom(t)U{wf‘i / w & dom(t),t(w) = f € F, 1<k}

We usually picture an occurrence w in a tree t by
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' *
Since occ(t) is a subset ofer, we may comvare occurrences by means of
soref : we savy that two occurrences u and v in t are disjoint,

and we denote u # v iff they are incompatible (ie there is no w in
oce(t) s.t. u Spref w .and Veref w). On the other hand, two compatible

occurrences are comparable and we say that u covers v if usprefv (the

only possible respective positions are :_u:# V, qurefv or vsprefu)'

In picture :

9

u#v u <

. —pref_v
(u and v disjoint) (u covers v)

by

We may also note tﬁat, if we define a partial order on WF

then for all tree t, occ(t) is totally ordered by the lexicographical
» .
ordering < on W_ associated with < (u < v iff u covers v or u is
—lex F - =lex
"at the left" of V)L

We have said that occurrences are occurrences of subtrees, thus for

u € occ(t) we define the subtree (t/u) of t at occurrence u as

dom(t/u) dom(t)/u

(t/u)(v)

t{uv)

and we draw :
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We can sav that u € occ(t) .is an occurrencé of (t/u) in t and more gen-

erally for T < M:’(X), we denote by occ(T,t) the set of occurrences of

elements of T in t = ' ¥

oce(T,t) = {u / ue oce(t) & (t/u) € T}

(this is not the last ambiguous use of "oce"!).

From now on, we shall take for X, the set of generators of the free

algebras of trees, a denumerable set of variables:
X=1{x /new}
n

(we shall also denote variables by X, y, z ...)

SO our terms are expressions denoting functions, and we denote by var(t)

the set of variables which have some occurrence in t
var(t) = {x / xe X & 3 ue&ocel(t) : (t/u) = x }

- A tree t is linear iff any variable has at most one occurrence in ¢t.

With this 'set of generators, it is usualv to call substitutions the

endomorphisms of H, for in this case such endomorphisms are s® for some
st X = M (X).

We say that a tree t° is an instance of t (or t matches t°) iff

their exists a substitution s such that t° = s® (t), and we draw :
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This.defines a preorder, the subsumption preorder: two trees are said to
be unifiable iff thevy are compatible w.r.t. the subsumption preorder.
We shall also say that u € occ(t) is an occurrence of t° in t if (t/u)

is an instance of t°, and we say that, in this case, the pair (u,t”)

covers an occurrence w € occ(t) iff 3 ve occ(X,t’) : uv Spref w. In
picture :

(u,t’) covers w in t

We want to define now the overlapping relation betweenAtrees, and
to avoid trivial cases we shall denote by int(t) the "internal"

occurrences in t, that is those which are not occurrences of variables :
int(t) = occ(t) - oce(X,t)

We then say that a tree -t overlaps t° iff,a ue int(t) s.t. (t/u) and t
- are unifiable (we may precise that t overlaps t° at occurrence u) and we

draw :

t overlaps t° at u




- 19 -

Fxample

with F = fel+fbl+fa}l

LA
. b_ / \y O\IIer.‘-laps y /a.\ at a,
’ . c z

<

‘ In fact, we shall COnsidér overlapping as a symetbic relation :
. ¢ .

t At’ iff t overlaps t° or t° overlaps t

The last. definition about trees is that of replacement of the sub-
tree at occurrence u in tAby~t' resulting in a téee denoted [t‘/ult
(usually this is written tlu<-t’], but there is some Similarity with
substitution) defined by

dom(L”/ult) = (dom(t)-{u}WD) U (uldom(t’)

ft 7ult(v) = t(v) if v & dom(t) & uviprefv

[t /ult(uw)

t'(w) if w € dom(t”)

.

We obviously HaQe
[(t/u)/ult =t ,([t7/ult/u) = t° and
i H = ] , ‘ -
ifug v lt,/u) (Tt 7vit) = [t /v] ([t1/g]t)

while ftz/v] (Tt /ult)

T ) A
RCIVAS A28 LA LN 2y UL erY

o 1 (Tt /ult) = T 1t if .
and “tg/v. (,tj/u_t) | ty/vit if v iprefu |



Now we introduce rewriting relations on trees which are subsets of

the cartesian square of M;,” (x).
Such an R C M (X) x M (Y) is said to be

(1) compatib‘le (with the algebraic structure) iff Yk eWN V£ e F if

Vi (1<ick) (ti,t' ) € R then (f‘(t1,...,t ), (7 pperest )) ER

(ii)stable (by substitutions) iff for all substition s
(t,t) e R=> (s®(t), s®(t)) €r

We shall only use stable relations on trees, thus we call

precongruence any compatible and stable preorder, and congruence any
symetric precongruence. If < 1is a precongruence, we denote by
M;,° (X)/< the quotient of M;o (X) by the congruence associated with <
(that is : t < t" & t° < t), which is canonically an F-algebra.
" Given R G M (X) x M (X), the rewriting. relation determined by R is

#
the reflex:.ve and transitive closure -}-; of the relation ?det‘ined by

t LT <> J (6,6") e R Js substitution Ju € oce(t) :

(t/u) = s2(0) & t°= (s®(0°)/ult

4 If we denote by? the inverse of !-R) and ? = (4§ U ?), it is a

L

’ .
well-known fact that ?and?are resp. the precongruence and congruence

generated by R (they are the least ones which contain R). In fact we
only consider ?as a true rewriting relation when R is a term rewriting
- system :

a term rewriting system (TRS) is a relation R C M‘;(X) x M;o (x)
such that :
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(i) R is a finite subset of ﬁ%(x) % ﬁf,(X)
(i1) (8,0°) € R => - A ¢ X
- var(6”) € var (9)

- © is linear.

Fvery element r = (0,0°) of a TRS R, written 6->6°, is a rule of R, 0 is
its left-hand side (lhs(r)) and @’ its right-hand side (rhs(r)). A TRS R

is said to be non-ambiguous (or non overlapping) if overlapping left-

hand sides of its rules are equaliand deterministic if moreover no two

distinet rules have the same left-hand side,(thus<R is a partiél func-

tion). o
¢

From the definition of 2 =g iﬁ will be usefull to introduce sohe ter-

monology : we say that an occurrence u in t is an occurrence of applica-

the left-hand side of some rule of R :
occR(t) = {u/u € oce(t) & 3 © € 1hs(R) 3 s : (t/u) = s®(0) }

and we may even precise : u is an occurrence of the rule r, writing
an occurrence of r in t. We denote by redR(t) the set of redexes of R

in t ¢
redR(t) = {(u,r) / u € oce(r,t) &r € R}

(i€ R is deterministic, the occurrence u € occR(t) determines a unique

redex, and a unique left-hand side if R is non-ambiguous). Thus if tﬁt'

we can say that t' results from t by application of a rule r of R -at

some of its occurrences u in t which is written t SE;EL,t . Since R is a

term rewrltlng system, the relations ﬁELEl are partlal manolngs (for

var(rhs(r)) € var(lhs(r)) for any rewrltinq rule r), while the notation - 0

is generallv ambiguous since for example if we have r ¢« al(x) => x as a



: (E,r) '.(a1”)\
rule of R : a(a(x)) ——ér—'a(x) and ala(x)) -5 a(x).

3. Computations

In a TRS R, a relation LELEL constitutes an elementary step of com~
putation, and computations will be any sequence of such steps. But this
definition is too fine, and we want to identify such sequences when they
rewrite the "same" redexes, perhaps in different order. For example, if

r: b(x) => a(x,x) is a rule of R, then the two sequences

(a,,r) (a,,r)

a(b(x),b(x)) = ala(x,x),b(x)) — a(a(x,x),a(x,x))

(az,r) : : (a,,r)

a(b(x),b(x)) —=—> a(b(x),a(x,x)) +’a(a(x,x),a(x x))

Y are the "same" computation. In this example the situation is clear since

the applied redexes are disjoint. Formally two redexes (u,r ) and (v, r, )
in redg (t) are 13101n iff u # v. In picture :
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This is less clear if one covers the other (ie (u,lhs(r1)) covers v for

example), as in the example of rewritings

' (& " (a,,r) (a,,r)
b{b{x)) ——%—» a(b(x),b(x))‘——?rf+ ala(x,x),b(x)) = a(a(x,x),a(x,x))
. ' (E,r) ‘ (a,,r) : (a1,r')
b(b(x)) —%—> a(b(x),b(x)) —-—ﬁ——+-a(b(x),a(x,x)) — a(a(x,x),a(x,x))
) (b1,r) (g r‘) .
b(b(x)) —— blalx,x)) —2—>»a(alx,x),alx,x))

R R

which, intuitively, are again the "same"” computation. To explain this,

we have to say that the set {(a1,r),(a2,r)} is, after the application of

(E,r), the "same redex" that (b1,r). In picture :
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Thus we have to

(i) define in what sense some sets of redexes can be considered as a

single step of computation.

(ii) define the notion of "to be the same step of computation" along

rewriting sequences.

This has been done by G. Berry and J.J Levy [4] in the case of recursive
definitions and by G. Huet and J.J. Levy [23] in the more general set-

ting of deterministic TRS's. We shall take exactly the same way.

3.1 Consistent set of redexes.

A set of redexes can be viewed as defining a single step of compu-
tation if we can apply simultaneously (or : in parallel) all its ele-
ments. Clearly, this is not allways possible : let us say that a rédex
(u,r1) overlaps a redex (v,r2) in a tree t iff 3 W : VvV = uw and 1hs(r1)

overlaps 1hs(r2) at w.

In this case, even if this diagram is confluent, there is no natural way
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to define_a‘computétion which represent the simultaneous rewriting of
(u,r1) and (v,r2). On the other hand, the examples of the begining of
this section suszgest that the other possibilities (disjoint redexes, or
one covering the other)'lead to more tractable situations. This is par-

tially explained by :
lemma 3.1

let (u,r,) ahd'(v,rz) be in red (t) where R is a TRS

(v,r2)

If (Q,r1) covers (v,r,) or u #v agd t —g—> ¢’

then (u,r1) € redR(t')

proof: we only have to check (the case u# v is trivial) that if (u,r1)

covers (v,r,) then (t“/u) is again an instance of 1lhs(r ). But this is

§

1
true since_lhs(r1) is linear w

We can now define what sets of redexes can be simultaneously
rewritten (from now on we only consider relations R which are TRS “s, and

computation of terms) :
let t be a term. A set 0°C rédR(t) of redexes of R in t

4ié'consistent iff any two (distinct) of its elements do not over-

lap.

A consistent set of redexes is thus a partial mapping from occ(t) to R
(which indicates what rule is to be applied at some occurrence) whose

range of definition is
dom(o) = {u/u € ocel(t) & 3 reR: (uyr)e ol

(for two distinct redexes in t at the same occurrence must overlap,
since 1hs(R)NY = ¢ )

Remark: in a deterministic TRS, any set of redexes (in a term t) is con-

sistent (and 8 is allways consistent).
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Let us now define what is the result of the application of a con-
sistent set of redexes (the simultaneous rewriting of redexes) o to a
term: from the preceding lemma, it can be defined by induction on the

size lol (the number of redexes in o) as the term t.o given by :

(1i) if lol >o then t. o= t". o where o’ = o - {(w,0(w)},

w is the last element w.r.t. ¢ of dom(o) and
. =lex
{(w,o(w) .
t R t

We shall write t %t' (or sometimes t-%;t') when o is a consistent set
.of redexes of R in t and t° = t.o.

Example

Let R be the set of rules

A ' e
Ty 3 {/ \\T ——’g// \\x

(-4
a £
AN
|
b h
Pyt ' —_—
x x

Y, () w1, (3570 ]



are inconsistent, while

.. e
N
(€m0, (2, F 5r) £ T
NG ]
| l
c ¢
| 3
) (£,r2);(a2,r3L l
l

In this example, one can see that,- applying (8,r ) in the first one step
computation, the redex (a f1,r ) has been duplicated, while applying
(E,rz)-in the second con31stent set of redexes, (az,r3) have disappear.

This will be formalized latter.

3.2 Computations

From now on, the steps of a-computétion are consistent sets of
redexes (we might better say : derivation instead of computation, since

we want to consider computations as eduivalence classes of sequences of

rewriting). Let R be a TRS and t & EF(X) a term

a computatlon of t in R is a finite or infinite sequence
Al AL

Yy = (o-)i e.I (wvhere I is an initial segment of W, the length of

the computation) of sets of redexes (the steps of Y) such that

Yiel Qi is a consistent set.of redexes of R }n t'?b“'°i_1

(implicitelv 1’ izo O ..-0; 4 is the empty sequence and-ob is a con-

sistent set of redexes in t). We mayvalso sav that the length of a



finite computation Y = (ca-i)i e 1Is the integer |Y! such that

T = {i/ie N & i<iyl }, and in this case we say that Y is a computation

of tint” if t” = t. O ...0 and we write :
0 R4
* P P
Yy : t ?t (Y is a computation of t in t° in R)

of £t in R by :

! i =
We shall also denote a com‘putatlon Y (o’i)»i e 1

cer B %
Yy ¢+ t = t,o R t, .>...->ti_1 = ti S

G; (t) is the set of computations of the term t in R, GR (t) is the
subset of finite ones. Sometimes we use GR if we do not want to know

what term is computed.

For every term t, Gq(t) contains the empty sequence of consistent set

of redexes, that is fthe empty computation € . If

. .
Y « t ?t’ and Y € 8: (t”) the concatenation YY’ is obviously a compu-
tation of t, which is called the composition of Y and Y°, and denoted by
YsY°. ‘

For Y = '(o-i)i e 1 3nd J € I, we define the r"estr'ict_ions of Y at j :
y 1= o), and
)'.Ij = (G'k)k e g |“here J = {i-j/1 e I & 1 >j} and
c"k = c'j+k

and for je T and i < j :

I _cyd
| Yoy =y

The size ||Y || of a computation is the number (may be infinite) of the

non-empty steps of Y.



L - 29 -

In order to define equivalent computations, we have to define, as
we have already poinﬁed out, the notion of "to be the same occurrence"
along a computation. This_is done as in [4,23] by means of the concept
of residual due to A. Church [12] (see also [271), to what we add the

notion of trace of an occurrence through a computation :

given a term teﬁF(X), .a finite computation Y € BR(t) and a set
W < oce(t) of occurrence in t, the sets W [Y1 of residuals of W by Y and
W <Y> of traces of W by Y are defined by : ' '

U wiyl andwern = U wem

(1) W Iyl =
we W v . wew
(1i) w [E] = {w)} = weE>

(i11) w [oxY] = (wloD) [Y] and weos > = (w<od) <>
(iv) w [8) = {w]} = w<sd
() if lol>o then wiol = (wlu,r])lo’] and w<o> = (w<u,r>)<e™>

where (u,r) € o, u is the last (w.r.t. < ex) element of dom(o)

1

and ¢ = o - {{u,r)}

Tt Jjust remains to define residuals and traces of an oceurrence
w e oce(t) by an elementary one step computation of t, that is
(u,r) € redp(t) :

(1)  if u does not cover w (i.e wfu or w<prer)
Tu,rl = = . i :
then w Tu,r] {w} = w<u,r>. Otherwise (ugprefw)

(i1) if 3J v e int(lhs(r)) @ w=uv

then wlu,r] = #¢ and w<u,r> = {u} else
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(141) if 3 v €& oce(¥,1lhs(r)) 3 w' s w =z uw’® (i.e {(u,r) covers w)

then wiu,r] = w<u,r>
A ' = u. {v’/v" € occlrhs(r)) & (rhs(r)/v’) = (lhs(r)/v)}.w’
Example: let R be the TRS

ry b(x) => a(x,x)

r. @ a{x,v) > f(x)

2

“and Y the finite computation

(€,r)) (E,r,)

Y 1 b(e) ——» ale,e) ——R—Z—» £le)

Then : ‘ i
- E(Y)] = 4 and €<)¥> = {€} : the occurrence &

is consumed by the (first Step of the ) computation

- b1(7] = b1<7> =z {f1} and b,

[&r.1 = {a ,a} ¢

the occurence b1 is duplicated by 7|1 while a

az[E,r21 = a<&r> = ¢

, is deleted by 7|1 since

i 1
- the redex (E,rz) is created by YI : it was not a redex of t.
We even may have backward (or bottom-up) creation of redexes as in :

r, ot k(x,a) -> ¢

r2 t b =>a

(kz’r?) (8,!"1)

—> k(X,8) ———>

and Y : k(x,b) = =
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(to follow residuals and traces along computation, it should have been

better to have colours, or labels as in [U441),

It is easy to verify that if Y is a computation of t in t° then
WI'Yl and W<Y> are subsets of occ(t’). These concepts give a first tool
to distinguish computations :

let Y and Y’ be two finite computations. Y and Y  are elementarily

equivalent , Y XY’ iff -E]teﬁF(X) :Y and ¥° are two computations

of t in t’ and for all weoce(t) :

CowlY) = WYY & WYy = wY>

This is a congruence (w.r.t. composition) for we obviously have

fowlyy 1 Y,) = (WY DIY,) and WY, 5 Y

147 > = W<y >)<Y,>

2

However this equivalence is not fine enough. For example if we have

£(x) => b(b(x))

3

;

r. : b(x) => x

and

th%MMM)%Md

~

Yot rle) B bibie)) b bo)
. C. R [¢] R (o]

then 71'2172 but we shall not consider that 71 and 72 are the "same"
computatibn (in the intuitive meaning : "to perform the same rewriting

perhaps in different order")

We may note that



- 32 -
- since R is left-linear, every occurrence which is a residual of some-

thing thrbugh a computation is a residual of a unique oécurrence H
Yy Etp(t) Yu € oce(t)[Yl ! w e ocel(t) : ue wlyl

and we call w the ancestor of u through Y
{(this property is generally false for traces)

-’one-step computations do not destroy the compatible redexes they do

not use. To state this more formally, let us say that

for o and o’ consistent sets of redexes of R in t, o and ¢  are

compatible, oo’ iff cuv o’ is a consistent set of redexes in t.

For such consistent sets of redexes, one can define the crucial notion
of residual of one by the other, intuitivelv what remains to do of Lthe

first after applying the other :

lemma 3-2 °

for‘o-and o’ compatible. consistent set of redexes of R in the term
t

olo’] = {(w',r')/aw : (wy,r)eo & wewlo’1}

is a consistent set of redexes of R in t.o’, the residual of o by

e

o

proof: by induction on (lo’l,lol) and by cases when lol=1=10"l, omitted.
Remark: if the TRS R is deterministic, one can allways define ofo’]

since in this case twp consistent sets of redexes are compatible.

For the reét of this section, our aim is to state (withouﬁ prodfs,
which are rather long and technical, see [4,7], but straightforward) two
well -known facts about computations : an elementary form of the 'paral-
1el_mo§es lemma" (here called the permutation lemma) and the "finite

developments theorem",
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Let‘us sav that a step of computation*q is elementary if lel = 1,

and denote by e(o) the (elementary) computation

(wn,rn) ' (w1 ri)‘
e(o) : t —R—’,t1->...- '—"{;——’tn

if 0'={(w1,r1),...,(wn,rn)}is a consistent set of redexes in t where
WiseoosW is lexicographically ordered, and e(g) =€. Obviously
o x~e(o).

permutation lemma 3-3 : first (eleméntary) form

let o, and Oé be two elementary steps of computation of t :

oaTOé => oH;e(Oé[oH]) e50é:e(oa[cé])

¥

(one may remark that, under the hypothesis of« tbis '1emma,

.dom(oa[ob]) and dom(cbfohl) are sets of disjoint occurrences).

TIn picture :

-k
N

Now we want to define, by means of the notion of residuals, the set of
computations which "realize" a given conéistent.set of redexes o .on a
term t. Such computations haye to apply only redexes of o, or some of

their residuals through a first step which partially realizes o:
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a computation Y€ CP(tA is relative to a consistent set of redexes o
in t iff either Y =& or ¥ = o’:Y" for some oo, 0'4 ¢ and Y°

relative to olo’1.

Then a computavtion realize - or : is a development of - o if it is
relative to o and per'f‘orms all the rewritings ‘indicated by o, that is

it remains nothing to do of‘ o after it :

Ye Gp(t) is a development of o on t iff Y is relative to o and
dom(o)(Y]) =

This definition is not empty for all o, there exists a development of

ocont : € if o = 4, otherwise o itself (or e(o)).

Example

Let R be given by the set of rules

h(a,x) =>x

s fla,x,y) => h(x,x)

!“2.

Then the following computations (where we unambiguously .forget some

indications) are developments of

(€,r,)5(f,r ), (Fur )} on

qQ
(]

cr
|

= f(a,h(a,a),h(a,a))

€ M h,
t P»_1'1(h(a1,a),h(a,a)) —-’h(a,h(a,a)) ?h(a,a)_

£ - "1’“2
» t ﬁvh(h(a,a) h(a,a)) —-“R‘—-h(a a)

.
Y. : t —Z-r(a a h(a,a)) €, =>h(a,a)

o £ hyoh,
)’u tt g+ f(a h(a,a),a) -'h(h(a a) h(a,a)) ——ﬁ'—-’h(a,a)
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and SO N »

The finite development theorem 3-1
For all consistent set of redexes o of R in a term t

(i) there exists n & (N such that if Y is a development of o on t
then 1Yl < n ‘

(ii) for two such developments Y and Y’ : Y~ ¥’

The termination argument for the first point is not so easy to find s

see T41,

3.3 Equivalence : the permutation and simplification lemmas

In this paragraph we consider only finite computations. We havé
seen that we can define residuals for compatible consistent seﬁs of
redexes : without the compatibility'hypéthesis, this in general does not
make sense, and a fortiori for computations. Thus in our TRS's {may be
ambiguous, non-deterministic) we cannot say as ‘in [H,27,23j that two
computations are the same if it remains nothing to perform of one after
the other. Neverthelegs, we have already define 'in some parficuiar
cases combutations which are the same one : the developments of a given
consistent set of redexes. This is the basis for the definjtion of the

equivalence by permutations of finite computationé of a given term :
For computations ¥ , Y’ in ER

(1) Y~y <,

HYW = o = II¥Y'Il or Yand ¥ are developments
of some consistent set of redexes con t '
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(ii) the equivalence bv permutation is the congruence (w.r.t. com-

position) £ generated by ~, that is the transitive closure of o

given by :

ygy' = ger 3V Ve 887 Y =Y, ;5,:72 AR A

and § ~ 8°

]

We may read Y=Y  as «Y° is a permutation of Y ». An immediate conse-

quence of the definition and of the finite developments theorem is . :

For Y,Y  in tR(t) t YEY >y 2y’

which we shall freely use .

We want to show .another property of this equivalence : its left
simplifiability (w.r.t. composition). This needs some intermediate
results, the first being a more elaborated form of the permutation
lemma: the formulation of this last requires the definition of a compa-
'tibility relation on computations (which, from now on, are finite compu-
tations in a given TRS R of a given term t), which allows to simultane-
ously define the residual of‘ a..computation by another compatible one.
This definition is by induction on the 1length, thus we picture'the
induction step to support the intuition : '

e ‘ $ ,
¢ A ]
¢ | o'fe]l (@' [eN EE]
! :
) cle']l ¥
U= Rt S O
4 N : f (c“';S')[c‘; 8]
' 1
s 8 [ele"]) [N [0 0)))
: |
! .
Jo'—-———.—.y!-_--__--__'..._.yt 7 .

(o' NS (S{' [IND[E' oo 1))

(018112 &'
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two computations Y and Y are compatible: -)'1')'" and under this assump—-
tion Y[Y’1 (resp. Y'TY)) is the residual of Y by Y’ (resp. of ¥’ by )
iffr | | |
(1) Y =€ and YY'1=€ and Y[ Yl=Y or
(ii) Y =& and Y Y"1=Y and Y'TY]=€ or
(ii1) Y = 028 and Y =0":8° and (see the figure):

- o0’

v _ oflo’1T8 and o’ To)1% 8

8lo’l0114 6" (ofo"]] i

YY1 = (olo' D8] 1 (8lo'Te1)) [67[olo 1]

Yyl = (c’{c])[é] : (§°[clo”1N8[o" (eI N

The compatibility relation is reflexive and symetric, and Y and Y[Y’]

have the same length. We obviously have
)’?)‘1:)'2 <=>yty, & )'()’1]1‘72 and
YAV, <> MY, 7,0 = Y, DIV, &
SAIAIS ERAG ER A AL
Remark: equivalent compu.t‘ations may be incompatible. For example if R is
the TRS |
rys k{x,a) => ¢

r.: h->a



- 38 -

r.: b =>c

then

(k1,r2) £
712 k(b,a)~——7;——* k(a,a) e and

(k1,r‘3) E
Y2: k(b,a)———=> k(c,a) >e

are equivalent (and equivalent to Y:k(b,a) g%c) but incombatible._

The permutation lemma 3-3 (second form)

yty =, yy'Iyl = y:yy)

proof: trivial induction on the length of computations. We only have to
check that oto’ => oj0'fo] = o' :0lc’], but these are two developments

of cU 0 m

We now state without proof (straightfobward,_but father.tedious)

another well-known fact about computations :

the cube lemma 3-4 (first form)

Let o,07,0" " be consistent set of redexes (in t) pairwise compati-
ble.

Then ofo’:0”'(0’] and oto "ic'lo" "] & 0{0":&"[0"]] = olo’ 30 [c” )]

which can he drawn :
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As a technical consequence of this propertv, we get :
corollary 3-1 -

let o and o’ be consistent sets of redexes

ot o’ => for all development X of o : o’f & 4 .

o’'fT) = o'fol & alo’] = ofo’]

proof: induction on lo¢!
(i) The property is obvious if |&| = o (<=>o = &)

(ii) ot = o’ 1, where o’ is a non empty subset of o and o’ a’ develop-

ment of ofo” 1. ¢

Since c? o’ and ¢’ ° ¢ o, obviously o't o’  and

c'le’ ]l v ole "] = (v o)o'’1 => o'l 14 oo’ "]

thus by induction hypothesis o’[o”’1% o', whence o'% o

By induction hypothesis @

(o'To" " Die’] = (o°To" lolo’ 1] thus

o'l = (o'fe’ " Dloflo’’]] = o—'[q".:c{o'"]]
But by the cube lemma 3-4 :
c’l] = o'Tol (since o '[o] = &)

we have : o&flo’] = o’ [0’ 1:e’ [0’ [0 1]

and by the induction hypothesis :
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x(0"(o" 11 = (of o Nlo’[o" 11
But (ofo” " Dl lo" 1] = o{o-”:cr'_b"ﬁ]
and by_ the cube lemma 3-4 :
(6{0'"])[&'1'0-"” = olo"10" To’11 = (olo" 1) e [o”1],
If 0"’ [o’1 = ¢ then

o1 = o To' 1’ lo"[a” 112 «’To’[o" 1] £ (ofo” ‘Do’ (0" 1 = ofo”)

Otherwise

wlo’] = o [0’ Mz’ [0"[0” 11 = 0" [0’ )i (olo” " Do (0" 1] =
0" “lo’ 11 (ol 0" Dlo" (o7 1]

but o o' l:(cfo"Nlo"fo’1] is here a development of ofo’] =

We can infer a second form of ﬁhe cube lemma, if we define :

§ is stronglv compatible with ¥ ,8§®Y ¢<=>VY’ : y'=y =62y’

the cube lemma 3-5 (second form)

“if , for o consistent set of redexes and Y finite computation

oftY then Y2 Y =>0ofY'1 = ofyl & Y [col= Yo)

proof: by transitivity (= = =) it suffices to prove that for Y=Y, and

this is an easy consequence of corollary 3-1 =

Let us now define the external occurrences for a computation of
r237 '
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For )’eCP(t), w € ocel{t) is external for Y ,we& extq()’) iff

(1Y Y

£ or

(ii) Y 0':_V; and

(ii1) u € dom(o) & U e = Jv & int(1bs(o(u))) : w=uv

(iv)  wo> g_ext?(?’)

(external occurrences cannot be covered by a redex of the first step,

and their traces remain external).

Some obvious facts about external occurrences for a computation are :
l"

- if = v = ;
if we extR(Y) >and u¢ oW DUE ext, ()

-WE extR(Y) => augﬁre.w s Wiy :{u}

f‘

(external occurrences for a computation cannot disappear along this com-

putation).

R

-extR(Y1:Y2) ={w/ﬁeextﬁ(71) & w<Y1>—g ext (Y2)§

thus extR(Y1:Y2) c extR(Y1)

External occurrences are also preserved by permutations :

lemma 3-6

Yy => extR(y) = extR(V')

proof : by transitivity, we only have to show this when Y =Y’ and in.

this case, by means of the above remarks, we only have to prove : if o
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is a development of o then extp(dj = extp(oé

by induction on lal and by cases, straightforward w

The initial redexes of a computation are the redexes of t applied by Y

(possiblv not at the first step) :

For ¥ €& Tfp(t) , (u,r) € redR(t)

israﬁ initial redex of Y
(u,r)e initredR(Y)
Y = o3)° and

(i) (u,r) € o or

(i1) (u,r) o y (u,r)(olfe and (q,r)[cﬂ < 1nitredR(7')

One may verify that initredR(Y) is a consistent set of redexes of t such
that

initred (Y) t Y & Y= initred ()): Yinitred ()]

( for initredg(Y)F71=¢, whence the terminology) and for all development
o of o

initredp(u) = 4

(for R is left-linear)

Now we may call external! redexes of a computation its initial redexes at

an external occurrence @

extred,(Y) = {(u,r)/(u,r) & initredP(Y) & u e extR(Y)}
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In fact extwedR(Y) (which obviouslv is a consistent set of redexes) is

étronglv compatible with Y and

y = excredR<7):7;extredR<y)]

One méy also show that :

(u,r)é.ektrédn(71:Y2) <;>'
(1) (u,rje §xtredh(71)'and g<71> E.extR(Véiw _lor
(iii (u,r) t Yj ,uééxtR(71) and (u,r)lY1 ¢ extredR(Yz)

From this fact it follows :

lemma 3-7

=Yy = extredR(Y) = extredR(Y')

proof: by transitivity, we have to check this for Y &2 Y° and for this to

establish
if ®x is a development of o then extredR(«) :'extredR(cﬂ

which is easy, from what have been asserted up to this point -

lemma 3-8

"
S

Nyl = o <=> extredR(Y)

proof: obviously

YN = o => initred ()) = 8 =>extred () =

To prove the converse implication we can suppose, by cancelling the

empty sﬁeps ( which preserve the size and equivalence class),_that
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- AN .
Y = (Gi.)i<k where k>0 and V..(kv A £ o

Then initredR(Y) { 4 since A c initredp(-)')

and we could prove, bv induction on k that if u is the first W.r.t,

¢ element of dom(initred_(Y)) then ue& ext (¥) w
—-lex R R

As a corollarv, we may assert that :

§:6°=€ =>86=8"s€

lemma 3-9

let B be the relation given by :

y_|> y'.<=>def, a(u,r) e ext.,redR(Y) : Y = Ylu,r]

Then B> is noetherian (that is there is no infinite sequence of

computations (Yn) s.t. Vn EMN Yn > )‘m_ )

nelN 1

proof : let us first remark that (from lemma 3-8) if 3)" : YP Y then
1Y 1=1Yl>0. We prove that ' V

Y& Y 2 n(r) ¢ n

where, if k=1Y{, <

lex
6 = (o) 4 e | ' .

is the strict lexicographical order on Nk,and, f'or

a(8) = (ale,_),...nlo))

"where, for o consistent set of redexes

n(o) = ldom(o)<o>!

Tt can be checked that Y = O f+e+30, _, and Y > )" implies
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: 31’.<k E](u,r‘) € o, (ard in fact (u,r) & extredé()’))
© 2o et Tuyrliaaas
yho= o o, Lu,r] | o4
and- that

(u,r) € o & (u,r)X<e> ¢ & .=>g(o{u,r])<g(c') -

From all these technical results, we finally get the announced

simplification lemma 3-10 (first form)
§:y =86y =Dy =Yy’
proof: by induction on 18] : it suffice to prove this for 161=1 (one ¢

step computation, § = o), and here we proceed by noetherian induction on b

(see [211) :

- if there is no § s.t. ozY & 6 then, by lemma 3-8
Ho:Yll=o thus (o=g) ¥ =7’ trivially.

- otherwise, let (u,r) & extr‘edq(m)'). Since (u,r) ' o3y, by the per-

mutation lemma 3-3
orY = (u,r) : (2N lu,r] = (u,rf):(o-,y')[g,r‘] =0y
and by ﬁhe_cube lemma 3-5
dun]fﬂmeH@]=(Gwﬂuw15(m73Nnﬂ=<ﬂmrhYHuwﬁcM
Since q1Y > (Q?Y)Eu,ri, by iﬁduction hypothesis :

Y (u,) o1l = Y[ (u,r)lol]

..if (u,r) € o then (u,r)fol = ¢ and thus we have ¥ = ¥’
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ceif fu,r) ¢ o then (since (u,r) €EXtY‘edP(0':)') =>(u,r)[o) = (u,r)

' and (u,r)eextredP(Y))
Y = (u,r) 3+ Yu,rl = (u,r) 3 Y (u,r)ol)

Since (lemma 3-7) extredP(o:Y) z extredp(c¢7f) we also have :

Yz (uyr)eY Tuyrd = (uyr) 1Y u,r)ol]
Thus, from (induction hypothesis) Y (u,r)lol] = Y [(u,r)[o1]:
Yy=v | ' _ ' -

This property will be of constant (and often implicit) use in the fol-
lowing. We may remark that the technical developments of this paragbaph
has anbther consequence : we may find (exactly as in [23]) in any
equivalence class of finite computation a canoni¢al representative,
which is the standard (external) form of the computations of this class.

Let us say that :

Y is standard iff

Yy=& or )= extredR(Y):Y' where Y’ is standard

Then one can easily prove (by noetherian induction, routine) the

standardiiation theorem :

For all Y€ BR(t) there exists a (unique) standard computation

~l
n

YEB () st YEY , Y=Y <>V =¥ (and ¥ = V)

This result allows a reformulation of the property of ‘left-

simplifiability of the equivalence bv permutations :

the simplification lemma 3-11 (second form)

6;

u

Y=Y & yib =y 6 =56
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3-1 The ordered space of computations

Our aim in this paragraph is to define and study an ordering rela-
tion on cdmputations which formaiizes the intuitive idea that a computa-
tion is greater than another if it remains nothing of the second aftér
it. As we already have pointed out howevéb, we cannot exactly take this
way, that is by means of residuals as in [4,27,23] since our TRS’s are
not necessarily deterministié : two computations may be incompatible.
But we can rephrase the ‘intuitive idea : a computation Y’ is greater
than Y if it makes the same rewritings as Y and perhaps other ones, up

to permutations, or else : Y’ begins by Y , up to permutations.

Formally :
For finite computations Y,Y’ in T:R(t) :
(1) YEY <y [JE 2 y=ysh

(Y is an initial restriction, or a prefix of Y*)

(11) ¥ < Y7 <>y . J6 : ycée b=y

(Y is a subcomputation of Y*)

Example 3-1
Let R be given by

r, : h(a) => b r h(a) => ¢

1 2

r, : k(x,a) => b k(x,a) e

3 Y‘ut

: (k,yr,) ' | (%.,r.)
Y, :vk('h(a),a)__lw_l_p k(b,a) Y, : k(h(a),a)—1 25 k(e,a)
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(E,r‘?) '(f,r‘u)
61 : k(h(a),a)—x—*h 8. k(h(a),a)———_‘;—)c

then ¥, < 6i for iyi € {1,2}

Some obvious proverties of these relations are expressed in

lemma 3-12
(i) < is a partial order

(i1) < is a preorder such that :

- < contains E": YE Y =D Y LY

]
in

is compatible with composition : ¥ < ¥* => &3 < 83)°

¥

- the equivalence associated with ( is E: ¥ =Y <=>Y < Y & ¥ <

(for the last point we . use the simplification lemma and

§:6° =€ => 86 =86'=¢€)

Thus the quotierit CR(t)/E is ordered by the quotient order for which
we keep the same notation 5 . Let us recall that if R is deterministic
then for Y,Y" in _tﬂ(t) Y4 ¥ is allways true and thus Y and Y° are

compatible w.r.t. < since

Y<Y LYl and Y <Y i YLY]

Moreover in this case we have the equivalent definition of < :

y<y <= Yy1sE

Thus \gR(t)/-:: is, when R is deterministic, an upper semi-lattice: the

least upper bound of the classes of ')‘1 and )’? is the class of Y1;72[Y1]
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This is the result of F23]..

Now we extend these relations to the infinite case. We keep the
same notation E for the relation "is a'prefix of" on infinite computa-

tions
(1) For),)" € B (t) .

YEY <>, . Y= Yor YEBL(t) & J6 : v7=Y36

k

(ie Jr =Y = y 1%

This is obviously a partial order on C;i'(t) for which € is the
least *element and s.t. < t?;'(t),g, € > is a complete partial order;
in fact a completioﬁ of < gﬂ(t),E, € >. 'This allows to define ‘an
algebraic extension of < (w.r.t. &) on infinite computations : Y <* Y’

if for each finite approximation - w.r.t. = - of Y, there is a gbeater -

w.r.t. < - finite approximation of ¥’ :

(ii) For Y, ¥ € r;;m :

<Py <>,  VEEG (1) 18y J6 e T (e 6 ey kb6

Fxample 3-2
Let R (deterministiec) given by

r,.:a -> h(a)

r, i k(x,b) -> ¢

Then, if for ne M we let t_ = k(h™(a),b) and ()  is the
; n nneN

(c-increasing) sequence of computations of to :
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1 i w.r.t. & € - ¢ i
“ Y ;s the 1ub (w.r.t ) o (yn)n €’ tfhat is

n+1

Y : k(a,b) 2 k(h(a),b)->...-> k(h™(a),b) > k(™" (a),b)->...

we have Y _<_°° & where

§ : k(a,b) %’c

since for each n : )’n <&

Clearly g‘” is a preorder which contains €, whose restriction to .
finite computations is <. Relating im to composition, we can assert

that :

y=y &6<T 6 Dy 6<% v 8y, finite)

and give the last formulation of the simplification pbopert,v :

simplification lemma 3-13 (third form)

[ 4

We shall denote by = the equivalence relation associated with

00

< and keep the same notation for the quotient order. Our main result

about (C;o(t)/ =% g"") is that it is complete. An intuitive way to
see that is to consider an increasing (w.r.t. <) sequence ()‘n)ne N of’

finite compu{:ations: we build the lub of this sequence, up to =%, as

follows : we choose an increésing sequence (w.r.t. E)'(7n)n en of finite

computations such that ¥n € N : 7n = )’n
Such a sequence exists by definition of < = Eo = », , which con-
i = y = =Y : Y CY = ‘
tains T o< (Y Y S g = ERAVERE IR~ A A
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Then the lub (for £) of the sequence (¥ ) is, up to =%
© _ n'neiN S
r.t. f
(werit. <7 ) 0 (yn)new

, a lub

Formallv, if we denote the equiva]..ence' class of é'computation

P
(resp. finite computation) Y w.r.t. -=©° (resp. w.r.t. =) by Y

(r'esp.. Y .
Theorem 3-2
- 00

the partial order <C:('t)/ £® , <® ,"€ > is complete :

it is a completion of < ER(t)/E y <y 'E_" > .Moreover, if R is

deterministic, it is a complete lattice.

Proof: let us first remark that <T§: (t) ,€ ,E> is algebraic, of .denu-
merable base @R(t) . Tpis simply means that, w.r.t. €, any combutation'

is the lub of the increasing sequence of its finite prefixes.
roo . ) g ‘
Obviously &€ 1is the least element of < ﬁa(t)/i y <O

Let # be the mapping from t;a (t) to the power set of lfR(t)/.E given by '

WY = (67 88 (6) & 6P )

One easily verifies that :

(i) for all Y, #(Y) is an ideal and ¥{(€) = {T€"}

o0

(11) for all Y,¥" ¢ ¥ <® ¥" <=> #(¥) € #(Y") (this is the definition of <*®).

Thus we cén define :
0’ %0 = |00
P : E’R (£)/2% o> (€ (e)/ =)
by @ (Y M) = )

and this mapping is such that
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o) e e BEGIUED 1o ® o <o ple)E ple

Thus P is increasing and injective. To establish that it is the desired-

isomorphism, it only remains to show that it is surjective.

Let ¥ e (B(t)/2 )% and ¥ = (y /Y €]

Wwe want to exhibit & & @;o (t) such that #(8) = Y . For Y and Y~
in gﬁ(t_) we let

FY,Y)Y =y /7Y €Y&Ye Y’ &yt

Then Y,Y” € Y => £(¥,Y")#6 since Y is an ideal

Now let ()‘n)n en he an enumeration of Y and h 'a choice function

over gp(t) (which for each non-empty subset gives one of its ele-

ments). We define :

Y =Y,
Y 4 = heY Y )

It is easy to verify that :

(1) ¥nen y € Y and Yng7

ju 3

(13) V_.n €N -)'n c )’n+1

Thus, if € is the limit (for E) of the increasing sequence (7n)n ewm
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then (&) = Y -

-

We cannot sav much more about this order structube, which seems to

generally have no "good" properties (even in deterministic TRS's)

Example 3-1 (continued)

For C:’(t) where t = k(h(a),a) we get

in which. two compatible points (w.r.t. the order, not in the technical

sense of T ) do not have a lub.

Example 3-2 (continued)

Here C:(t) where t = k(a,b) is

where a finite computation is greater than an infinitevone (that is
greater than an infinite number of finite ones). Thus we do not inves-

tigate further the properties of the partial order §°°, but' merelv
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indicates the onlv consequence of the theorem that we shall use :

since 5;" (t) is complete, it is inductive (every <® chain is bounded)

thus by Zorn’s lemma, every computation is bounded by a maximal one :

Corollary 3-2 '

For all ¥ € Gy (t) there exists ¥* € B (t) such that ¥* is <%

maximal (ie Y'<® & =>6 =% ¥’) and K% Y’

From our intuitive point of view'of'gw s, We can say‘that a computation
is maximal if "it remains nothing to do after it" (at least this is the
exact formulation in the deterministic case). Thié is why ﬁe call ter-
minating the maximal computations, and we denote by E;”'(t) the set of
such computations (of the term t). We must say that finite termination

¢ 1s just what is usually meant :

’

®
for Y : t irt

, Y is maximal iff t° is a normal form (that is
red,(t") = ¢ , or equivalently ‘C; (t) = "€

One may use the third form of the simplification lemma to see this. Tt

is less obvious to get an intuition about infinite terminéting computa-

tions.

Example

Let R (non-ambiguous) be given by

Px) => f(x,?(x))‘

Then
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Pl > Fly(#)) => F(a, Fley @) => fla,e..,fla,@#). ) ...

is not maximal. It is strictly majorated by

P(#) > @la) > £la,pla)) -> £la,f(a,p(a)) ->...

which is maximal. On the other hand :

@) => £(4,@(#) => £la,fP(#))) => £a,f (b, s @#)))) ->...

(where we alternatively use the rules ¢« -> a and # -> b) is terminating.

We mayv also note that if R ‘is determihistic, then thgre is only one (up.

to Ea° } terminating computation of t. ‘We can describe it as

KR(t) = (Oh) , the full computation of t (we recapture here the

n €N
case of recursive definitions) given by :

o

o
-t St - - <0 ..
R T ATIE A N ~ L P PP

where Vi€ N oy = redR(ti).

oy -]
In this case t;‘ (t) = r'K,R(t)-l

4. Semantics
In order to define the semantics of a term in a TRS, we have to
define what can be the result of its computations. But computations are

symbolic manipulations, thus we must define interpretations (of a TRS);

As a preliminary step, let us revisit algebras.

“
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4-1 Fouational classes of algebras : the factorization theorem

In paragraph 2-2, we have seen that the set Mw (X) of trees is
"the" free complete F-algebra generated by ¥, and later .we have said
that, since X is a set of variables, our terms are expressions denoting

functions. This may be asserted jin fact for arbitrary trees :

if A =< D,E, L, {fA / fE€F} > is a

-complete F-algebra, any mapping e : X => D may be viewed as an evalua-
tion of variables in A. Since H is free, such an evaluation uniquely
extends in a morphism e® : hﬁ?(x) => D. Thus we can now consider a tree
te M:’(X) as a mapping t ; Dx -> D which, for any evaluation of the

A
variables gives a value (the value of the Texpression" t)

tA(e) = e® (t). This mapping is the interpretation of t in the algebra
A, and we abstractly define the semantics (of the free language given by

F,X, for which Mg’(x) is the abstract syntax, see [1]) as the mapping

()

00 . p _
A, ¢ Mz (X) => 1 given by AA(t) =

In fact, we can say more about the image of AA

lemma 4.1

For each t € M?’(X) tA is continuous

proof: by structural induction on MF(X) and continuity argument, omit-
ted.

Thus 1 is actually a mapping from M (¥) to (D ->n).

This last is also the domain of an aleebra, if we define

A Y Y
for fEVk ’ FA s (07 n)k > (M >N by
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A, »
fA(h1,...,hk)(e) fA(hJ(e),...,hk(e))

and we may now precise the properties of AA H

proposition b1

For all complete F-algebra A = <N, &, i ,[fA / f € F}>, the

A ' B . ' 3
structure A = <(Dx S>D),E, & ’[?A / f&F}> is a complete F-algebra,

and AA is a morphism from H to Y

(the proof is straightforward).
. . X" 0
The new point of view about semantics is thus now @ MF (X) is the

abstract syntax, an interpretation is a complete F-algebra A and the

semantics under this interpretation is_ﬁm, thus we actually interpret in

the ("second order") structure 2 determined by A. A question is : is
there any "initial object" w.r.t. this definition ? We shall answer
(affirmativeiy) to a more general question, by giving a slight modifica-
tion of the central result of the so-called "algebraic semantics" due to
I. Guessarian (see [13,17]). To express formally the problem; lét us

give some definitions :

a tree t° is semantically greater than t, under the intefpretatioh A,

-A

rd - C L4
t ¢ t° < >def tA C t A

This definition can be extended to classes of interpretations, if dﬁlis

such a class

t<at <=>def‘VA ech: t &t
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These preorder idt are continuous precongruences containing 4 , See
r{u1,

/

Given an interpretation A, we denote by EFA the canonical struc-

ture of ordered F-algebra on Mg ©(x) 7/ <A. This structure is obviously

jsomorphic to <A M (Y)), c, L, {f / £ € F}>, thus we can say that
its domain is the domaln of definable funct:ons (from D to 0), and con-
sider that A, isa morphism from H to ng (remark :-in general SCA is
not complete, see [171). We_ahe now ready to give the definition of

"initial objects" :

let'o& be a ciaés of interpretations;va complete F-algebra A is

said to be A-universal iff for all A‘e ot there exists one and only

one morphism (of ordered F-algebras)

£ , =
')‘<A,A'> from ‘?"A t;) ?'A' S.t. >\ 'A<A ps0 A

We could have samd "OA -injitial" or "04 ~-free" instead of a&.-univeréal,
but this deflnltlon is s]ightlv different from what is usually found in
the litterature. [1,3?,13,17],. where one devises more on algebras of
objects than on algebras of functions. We could also have said that A
factorizes ¢7Q, since A d%-universalimeans that the semantics in every
interpretation in A is factorized, univocally and homomorphically, by

‘the semantics in A.

Wle now show the existence of such objects for equational classes of
algeb}as.'To restrict ourselves to such classes correspond to the idea
that our abstract syntax is too abstract : we often have to assume some
properties of the functions in ¥ (given by an interpreter, for example).
Yere these properties are expressed as first-order equational theories,

that is simply subsets S of MF(X) x MF(X)’ written as equalities, and

the class of their model are equational classes of interpretations 045:

Aew%s <= e (t=t)ES Dty =t”,
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To build an &Sfuniversal intne'r'pretation, let us define

< g @s the reflexive and transitive closure of £ v (thus

is a precongruence containing 4 and S ), and denote

< 4

by 'rrg the canonical surjection from MF,(X) to MF(X) /$S

(which is an ordered F-algebra). The structure :

: . o .
H, = '<(MF(X)/ 4 S) &, L

s {fs / feF}>

g,
is given by :

- .1.'q is the ideal generated by ’n’é( 1)

'\‘.

, » 0
- For f € F,_and T,,...,T in (MF(X) /4 S) :

oy T =D - cee T Reeoo :
'trs(t)e f‘S(T1,.. ,‘-k) <=> J(t1_, ,tk) € T %e..xT,

t 58 f‘(t.l,...,tk.)

The algebraic extension of % S~ to infinite trees is :

[ 3] , - . - - ’ . Pl . ) P
=) 5319 <=> VteMF(X) .;5.9-}jteMF(x).t < 0" &t 551:

Denoting by Eg the canonical surjection from M;° (X) to M;"(X) / < °g we

get

the Sactorization theorem 4-1

For .all relation S_QM.F.(X) x MF(X)’ Hy 1is a complete F-algebra

S

which is Wg-universal. Moreover .‘?7” is isomorphic to
{ ‘ » s

- |
Ma (X) ./ 492
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Since this result is only a variation of a classical one, we onlv sketch’

the proof, leaving the details to the reader.

(i) the f‘ir‘stvstep is to estahlish that :

Aed‘cgo L% e <

o,
s ==

from what we may infer that A‘A is factorized in a unique morphism (of

ordered F-algebras) :

w MmO ; o
,{A.MF(X)/ﬁs > ?’A

such that #, o Ty = AA

(ii) in a second step, one proves -that 4% - £ and thus ?«H fac-
. S 'S
torizes in a unique isomorphism

» M | © -
Pg My (X) 7 4T ?’:Hs

. . |
Now if we let A(HS’A) '*A o(ps we get the reg_ult -

, 0 .
Remarks : one has H € c}fs, thus < 4o = SHS = {S that is !fs is also
u‘lg-Herbrand (see [13,171). We could have define the domain of Hs as

the set of -Sl-s-ideals of MF‘(X)’ that 1is to say non-empty subsets
T of M (X) such that : ' '

. 'T‘ =—. : .
(i) t, ETE&L, ET >J ter t1£.st&t2£_st

(ii) tE€ T & t'ﬁs t=>t"e"

One can try to improve this result, finding conditions on S under

~ which we can deécr‘i,be more accurately H for example as a qdotient of

. s’ T
M,:,o (¥). This -has been done by B. Courcelle [15] with the concept of

"monotone reduction" :
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a suhset S of MF(X) x MF(X) is a reduction iff S is a finite rela-

tion such that
(1) L ¢ dom(s)

(ii) T is noetherian and confluent, which means (see [21])
- 1 :
(iii) there is no infinite sequence_(tn)n'etN in MF(X) such that

¥n € ﬂitn 2>t

S "n+1
‘) a ' — b * -
(iv) ;ftgh&tgtz then_:_]t.t1st&t.2.§>t
Remark : since | g is noetherian, we must ~ have
dom(S)nX = 8, (t,t°) € S =>var(t’) & var(t), and confluence is.

equivalent to local confluence ([211) :

— * — e
. . ] . - .
NEAP M AP A then Jt : t, It & t, ¢t

It is well-known that if S is a reduction, then every fiﬁite tree
t e MF(X) has a unique S-normal form which we denote As(t) (with some
consistence with the previous notation ?A, as we shall see), that is an

S-irreducible tree Ag(t) such that :

L %* .
t -s>?«s(t) btart’ <=> F\S(t) =A‘s(t )

Now we say that (see [15])

a reduction S is monotone iff Ag is increasing :

t4t = A ()4 '(\s(t'-) '

In this case, one can extend by continuity >'S to M?(X) in 3‘: (with
some ambiguity in the notation, since ‘%g is  the extensioﬁ of
id @ X->X)

A (@) = L (L) / tem(X) &t La)
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o s . . ' o0
Trees of the form Aq (8) are said to be in S-canonical form, and AS is

a continuous orojection. The result of B.Courcelle 157 is :

proposition 4-2

is isomorphiec to the canoni-

S
cal structures of F-algebras on (M? (xy /5; ),

if S is a monotone reduction, then H

. . 00 . o
(Ag(M.(X)))™" and 'As (M;’(X)).

From the factorization theorem, we get the fact that the semantics of a
free-in the equational class of interpretations of a monotone reduction

is represented by a tree in canonical form, its image by Ag’.

4-2 Computational semantics

;

To define the semantics of terms in a TRS R, we have to decide what
is an interpretation for such a specification. In our mind, a TRS is
intended to defipe the denotation of some terms (e.g. the left-hand
sides of the rules) which are to be coﬁputed. Thus we assume that an
algebra A is an interpretation of R if it takes no'decision, or more
technically gives no information about the value of these terms. Follow-
ing the ideas of D. Scott [U0) this means that in these algebras the

denotation of the (prefix of) terms which are to be computed is the

least element :

an interpretation of a TRS R (on the set F of function symbols) is

a complete F-algebra A s.t. for all rule t => t’in R : tA =1

A

Thus the class UP of interpretati@n of R is an equational one.

Remark: if we should have allow TRS R such that dom(R)A X # ¢ then for

such an R , an interpretation would have been trivial (ie with domain
0. ' |

Let us immediatly note a consequence of this definition : if t->t°
is a rule of PR, then under any interpretation A of R we shall obviously

: ’
have}tA.f t

A and, since SA is a precongruence, the information given by
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AA increase along computations (see [211) :

t’ then L, EL

oY *

if t

A

thus we can define the result, under tﬁe interpretation A, of a computa—v

tion of a term t

o . o

[e] n
H = e o “Deaa=? — Do
Yy : t 'tO R t1 > tn R tn*1 >

" as the lub of the increasing partial information that we get along the

computation :
resA(Y) = L] f%A(tn)./ n E.QH
which is an element of (DX->D) if D is the domain of A. Obviously : i

y £°°‘ Y => resA()‘).!_:. resA()")

and thus res, is also defined (and we keep the same notation) on

G ‘: (t) /=%, and it is straightforward to verify that :

res, : “C‘:'(t) /=% —==>(n¥25p)

is continuous.

The computational semantics of a term t in a TRS R under an’

interpretation A is then the relation (since R is non-deterministic)
obtained as the union of the functions which are the results of ter-

minating computations :
S 00
Comp<R,A>(t) = L_) {resA(Y) /Y E tiR (F)}

where we consider that an element of (rX>n) is a subset of DX;D; thus

X . :
Comp () € D'xD or equivalently Comp _ . (t) is a mapping from X

CR,A> ‘ CR,A>
(evaluations of the variables) to the power-set of D (sets of values).
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when R is confluent (e.eg. R deterministic, and especially in the
case of recursive definition 21,45,41) we may have another possible

definition of the semantics since in this case for each t the set

PO *
AR - ¢ t’} is directed (w.r.t. 33'
thus we can define :
() = LJ 1ttt e
val p oy’ = Cp 7t
" and this semantics satisfies R :
t->t"€ R => Va1<R’A>(t) = Va1<p,A>(t )

We know that these two definitions of the semantics of confluent TRS’s
. N il

coincide in at least two cases {which are in fact the only kinds of con-

fluent TRS’s about which something is known, see [211) 3

(i) when R is noetherian (more accurately : ;'noetherian) since here

any term t has a unique normal form t and a computation of t is

maximal iff it is, up to E“’, a computation of t in t

(ii) when R is deterministic (TRS’s defined and studied by G.Huet and
J.J. Levy [231) since there is, up to Ex’, only one ter-

minating comphtation in each 5‘: (t).

In the general case of confluent TRS’s, ihe adequation of the two defin-

itions is an open .problem.

We know from what precedes that there is a universal interpretation
of R, since the class of interpretations is an equational one. We-nbw
shév: that this universal interpretation has a nice characterization,
‘each element of its domain being canonically represented by a tree. Let
us first remark that, since SA allways contains < any interpretation of

R is also a model of :
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®o=f(t, L) /el &aren:t-_< 1hs(r)}

Tt 4is trivial that, since R is a TRS, R is a finite subset of

MF(,\’.) * MF(X),'].ef_‘t-linear' and, by construction, noetherian. Let t be’

such that (t/u1) and (t/u,) are instance of rules of R, for some

occurrences u,,u,, and et ty = g /u1]t and"t2 =1 /u?]t. Ir
r . = .
u1# u,, then clearly t, T4 /u2]t1 r4 /u1]t2<ﬁt2 Otherwise, if for

example u,< u, then (t_./u,) is an instance of another rule of
1 pref 2 2" 1 _ :
R and t2 ﬁbt1. This proves that 'E is locallv confluent, thus a reduc-‘

tion. We shall here denote the R-normal f‘orm. of a finite tr‘ee' t

,(ie"ﬁ-ﬁ(t)) by ’IT’nv(t),' the (symbolic) immediate information about t (.whét

is guaranteed to be an approximation of any term computed from t, what-.

ever could be the right-hand sides of the rules, see_(u5,23]). ¢

B. Courcelle has proved ([15]) that if a left-linear reduction such

as R satisf’ies
(i) t=2t &t'=>t"€ R => T(t) = 'W’R(t‘).‘

. . — A A .
(ii) t->t" € R =>'VF('t)'_$ Wﬁp(t) where we get t from t by renaming each 1

in t by distinect variables (not in var(t).)

then it is monotone.

Rut these two points are here ‘trivial since
£'>t° "€ R&t=t” =>t"" = L -='WR(t') and t = L or
t ->1 € R thus in any case 'T\_Jp(t).= 1 ='“;(t')

- A .
and t->t" € R =>'“'§(t) =4 =< '“'p(t) for any ?

Prom what have been said in the bpreceeding paragraph, we may
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consider the results of computations in the Jp-universal interpretation
. ) o \ .

v, as canonical trees belonming to'"P (NP (Y)) : these are trees which

do not contain any (non-empty) oprefix of a left-hand side of a rule of

R, We call the semantics in Rp the symbolic semantics and we shall

‘denote (") , and Comp by Compp. One may view CompR(t) as the set

<R,HR>
of (canonical) trees generated by t in TRS R. The symbolic semantics
characterizes (or more adequately : factorizes) all the possible seman-

tics of a term t since HP is UR-universal :

for all interoretation A € UR of R

Comp<R’A>(t) = \J fa,(8) 7 6€ CompR(t)}

and this is the exact generalization of the algebraic definition of the-

semantics of recursive program schemes, see [33].

X"
If we define a semantic equivalence of terms in R by :

(t) = Comp (t")

t= <R, A>

L= C
Rt <=>V%¥ A e UR omp

<R, A>

we thus get the fact,(since Hﬁ € UR) that two terms are semantically

equivalent iff they are symbolically equivalent :

t=t” <=> Comp (t) = Comp, (t")

Example: as a typical example of non-deterministic'computable functions,

one may consider (see [25])

(1)  the function which splits a file (first in - first out) of data,

‘buffeered from a shared common ressource, for example, into two files.

(i1) the "inverse" function which merges two files of data into a com-

mon channel.

Assuming that the set of data is D, if we'denpte by D the set of
finite or 1infinite sequences of data, these two functions have for

recursive definitions :

"
g
1"es,_,.E by res,



~. 67 -

split(g) = {(€,8)}
split(du) = {(d,&),(€,d)Isplit(u)
(the first data of the file is at the left) and

merge(u,E) = merze(&,u) = fu}

merge(du,d “v) =‘{d} merge(u,d’v) U {d " Imerge(du,v)

Yere we shall not take care about the definition of the type file,
but merely consider that these functions are defined on lists, for which

the con;truotors are :
cons : data x list => 1list
nil : list kg
Then the merge function can he described by the (ambiguous) TRS :
:merge (x,nil) => x
merge (nil,v) -> v
merge (cons (x,y), cons (u,v)) -> cons (x, merge (y, cons (u,v)))
merge (cons (x,y), cons (u,v)) -> cons (u, merge (cons (x,y), v))
"Then for example the terminating computations of

t = merge (cons (x, nil), cons (v, nil)) are

cons (x, merge (nil, cons (v,nil))) cons (y, merge (cons(x;hil),Anil))

cons (x, cons (y,nil)) cons (v, cons (x,nil))
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Tf we have two processes which repeatdlv produce data a and b resp. we

can write, as equations for these processes :
# => cons (a,#)
® -> cons (b,?)

and the reader may convince himself that the symbolic denotation of

merge(#,9) is the set of all infinite sequences on {a,b}.

For the split function, we have to define the cartesian product
list x 1list and this can be done with a pairing-function pair and two

projections proj 1 and proj 2, which satisfies
proj 1 (pair (x,y)) -> x
proj 2 (pair (x;v)) > v

(and this is the only wav to get data from a pair of lists: these pro-
jections are the names of two channels). We alsoc have to define on this

product a left cons and a right cons, for which
proj 1 (consl (x,y)) => cons (x, proj 1 (y))
proj 2 (consl (x,y)) -> proj 2 (y)
proj 1 (consr (x,y)) => proj 1 (y)
proj 2 (consr (g,y)) -> cons (x, proj 2 (y))
Thus the desired definition of’spli; is :
split (nil) -> pait (nil, nil)
split (cons (x,v)) -> cons)l (x, split (y))
split (cons (x,v)) -> consr (x, split.(y))v

Tf for example we have a process which alternatively produce data 2 and
b, that is :
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¢« -> cons {(a, cons(b, « ))

Then split (%) has for symbolic results (through the projections) any

pair of sequences on {a,b} with at 1east_one infinite. For e§ample>:
proj 1 (split ( # )) -> proj 1 (split (cons (a, cons (b, ¢ ))))
-} broj 1 (consl (a; split (déns (v, #))))
-> cons (a, proj 1 (cons r(b, split. ( ¢ S)))

-> cons (a, proj 1 (split ( ¢ )))

-> cons (a, cons (a,..., cons (a, proj 1 (split ( & )))...))

5. Implementation

This section is just a first approach (and may be the title will
seem to be unfair !) of the following problem : can we give an effective
(t), at least in the symbolic case ? Up to this

<R A> , .
point, we have not made very severe restrictions on our TRS, but the

way to compute. Comp

price of this generélity is thét our definition of-the semantics'is.
" hightly 1ineffective : by no way,  except for the finite case, we can
decide if a compdtation is terminating. As we shall see, the situation
drastically changes .(that is we have to considerably restrict the class
- of TRS’s) if we Qant to have; stating more formally the problem, for
each term t a recursively epumerable set ){R(t) of comp'utations of t

which is universallv correct, that is :

for all interpretation A E'Up

romp g po(8) = U fres, () / YEX ()}
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Nne ﬁsua11y is even more precise about this question : the algorithm

vhich compute the set?iq(t) is a computation rule,

Formal]v in our non-deterministic case a computation rule is a mapping e

which for each tP"m t gives a subset of ocec (t), the set of occurrences

" of rules of R in t. Then a computation is relafive to this rule if at
each step it onlv apply redexes at some occurrences selected by @,and is
full w.r.t. 9 (a special kind of development, related to effective ter-
mination) if at each step, the set of occurrences where a rule is
applied is 'the set given by . Then the rule P is said to be univer-
sallv correct if for all t the set of full computations of t w.r.t. p is
correct. Obviously to be correct a rule P has to be such that
oce, (t) # ¢ ->P(t) 24

From this point of view, let us exémine the situation of two rules
well-known to be correct in the case of deterministic recursive defini-
tions : the "full substitution" one, which is oce_, and the "parallel

R
outermost" one which gives for t :

outoccR(t) = {u/ue occR(t) & VYv e.occR(t) : v¢ u => vzul

~pref

In our non-deterministic case, these rules are not cofrect, as shown by
the

Example 5-1

Let R be given by

k (x,e) => f (x,x)

P ->c

Then for the termt = k ( ¢,¢) these two rules give the same ful). compu-
tations :

13
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k ( #,0) 4> k(a,c) -> fla,a)
Kk ( “,p) 4> k(b,e) > £(b,b).

‘but we -cannot get the results of

f(ayb)

k(@) => kid,e) => fl&,¢)

f(b,a)

This example also shows that the "lefﬁ-most computations" (called normal
in [231) are no longer correct. We may remark also that for the non-
deterministic recurs;ve definitions ([2,33]) the full substitution rule
is incorrect, for the saﬁe reason as in the above éxample s to choose

and then duplicate is not correct. For example if :
P(x) ->'ka,x)
or (x,y) ->x, or (x,y) -5 y
then the full substitution rule cannot allow to get the results

f(a,b) and £(b,a) for @lor (a,b)).

5-1 Call-by-need computations

Tn fact there is another exigence that one has about'cdmputation
rules : thevy have to be efficient, and this means at least that théy-do
not allow to made unnecessary rewritings; In the determiﬂist*c caée, G.
Huet and J.J. Levy 23] define a noﬁion of needed redex, one which is
unavoidable to'compute, in‘order to terminate, and show the correctness
of the corresponding "call-by-need" computation rule - w.r.t. finite
termination, which thus does not generalize the case of recursive

definitions, see TH1, But this correctness propérpy is no longer true in
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the non-deterministic case, even with finite termination; if we take a
non-deterministic variant of the example of G. Berry [3] (of stable non

sequential function) :
fla,b,x) ~> ¢ o ¢ => a
f(b,x,a) => ¢ ' & ->Db
f(x,a,b) => e

then one may check that there is no needed occurrence of redex in the -

term (f(«,¢,4) : for each redex, there is a terminating finite computa-

tion which do not rewrite at this occurrence.

Moreover, as G. Huet and J.J. Levy [23] point out, the TRS must
have a restricted forn if we want to get an effective call-by-needv: one
has to find syntactical restrictions which ére'expressed onlj on the
left-hand sides of the rules. We shall take this way, and we already
have a standard manner to express this kind of restriction : by means of
ﬁhe immediate information about a term (which does not depend on‘the

_right-hand sides of the rules). Thus we define strongly needed (or

necessary ) occurrences in a term, by saying that an occurrence is
unnecessary if the immediate information about the term does not depend
of the subterm at this occurrence :

for t € MF(X) & w € oce(t)

w¢ necR(t) <=>Vt’ :'h‘R([t'/w]t) :'ﬂ’R(t)

And our call-by-need rule of computation will be :

negoccR(t) = occu(t) N negR(t)

(the stronglv needed occurrences of redexes).
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Fxample 5-1 (continued)

For the term t = k( «,¢) we have
ne’cp(t) = {S,kz}

since'“’R(k(dt,a)) = k(l\.,a) £ WR(t) =1 and k(Jc--;.J.).-:-L
. R -

It should be intuitively c]éar that an unnecessary occurrence is one
which is covered by an instance of a tree t such that T\'R(t) =1. One can

prove that it is true :

Let Ep = U En . where
n€N
.f
t e F:o <=> ao‘edom(i) 3 s permutation of X s.t. t = ® (o)
t € F_ , <=> Jeedom(R) Jt'€ E J u€ocelt?) :
var(@) n var(t’) = ¢ , (t/u) =1 &t =

[Q/Q]t'

Obviously teE

R => t is linear and 'n’P(t) = 4

lemma S5-1
for téMw(X) and _weocc(»-t;.”). :
wfnec_P(t) <:>396‘3R :—]veocc(x,g) 311 as substitution :

(t/u) = s® (9) & uv< W
. —pref

proof : if the right-hand side of the statement is true, then since 6 is

linear, for all substitution s’ :'\TR(\[s'w(O)/u]t) :'WR([-L/li]t) = Tp(t)
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and thus w ¢ necR(t).

We prove the converse implicat{on hy —*noetherian induction on t :
: R

(1) t =11R(t). Let us suppose that w#necp(t) for some weocc(t).

Then we have, if x is a variable such that x # (t/w) :

‘fR (Tx/wlt) :'Wg(tj =

Thus, since [x/wlt £ t , we must have [x/w]t-%&t, but this contradicts

the fact that t is in i—normal form.

In this case we have necR(t) = occ(t), and the implication is vacuously
Y

true.

(ii) 1let us now suppose that t iﬂ—l£l>t = TL/w’lt where r = 0 ->1.

By cases :

(ii1) if w<p efw' then for all t°" : [t""/wlt’ = [t°7/wlt, thus

wfnec (t’) and we applyv the induction hypothesis, as shown by

(since 8’ is linear)

(iv) if w'# w then for all t°" : [t” /wlt E-wf_’—r—)’ ft°7/wlt’ and thus
R
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w#necu(t'). We 1left to the reader the details of application of the

induction hvpothesis in the possible cases :

/ N\

B RN

( 8" is linear)

(here with a suitable

change
of variables of 6°)

(v{ if.w’(p w then,Afor X€X ¢

ref

W ([x/wlt) ='V'§(t) =T (£) 4 t7, and £72 Tx/ult

thus we must have : [x/wlt SE%:L:L-t" with
R

- w' " # w, and in this case we return to (iv) (obviously wgnec ([x/wlt)).

- or w’ Spref w and in ‘this .case 1b§(r)e ER and there exists

veoce(¥,1hs(r))such that w''v < W ow
. —pref
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As a corollary one mav see that
wénecp(.t) <=> for xeX , x # (t/w) :TFP(.[x/w]t) :"'R(t)

and thus our necessary occurrences are exactlv the strongly needed ones
in the sense of 231, Another consequence of this characterization is

that one may prove that necessity is oreserved along computations @

corollarv 51
* ’, ' rd
For Y : t_?t y WE n_ecp(t) => W necR(t )

(thus wlYl ¢ necp(t) since wl Y] € w<»>)
proof: induction on |Y|. It suffices to prove this fact for Y = (w’,r)

pep W 204 W E necR(l‘é) then w<Y> = {w’} (since (w’,r) can-

(1) If w’ %
not covers w, by lemma 5-1). But w'¢ necR(t’) => w’¢ necR(t). Thus the

assumption w'¢ necR(t') contradicts w e necR(t) in this case, where

’

w A_gprer We

(11) If w4 . w then w<)> = (v}

Assuming that w ¢ necp(t') and using lemma 5-1, the reader may find a

contradiction in each case :

(here with a suitable change of
variables of e :

f1hs(r)/(w’/u)1 @ er) =

- { 9 linear )
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From this corollary, one may see that strongly needed occurrences are
external for all (finite) computations. If we define the "absolutely

external” occurrences of a. term t as

(f‘\';' ext, (Y)

YGC’ A (£)

extR(t)

then ,necR(t)

in

gxtR(t)

- Another trivial consequence is :
i
» : : :
For ¥ : t Er t° and o consistent set of redexes in R ¢

dom(o) C nec (t) & ot ¥ => dom(of ¥1) necg(t’)

The call-by-need computations are computations which only rewrite neces- -

sary redexes, that .is

o o
Y : tO -R—)'- t1 —>...->tn ? tn+1 D AN

such that ¥neN : dom(o ) € nec_(t )
n R ''n

If moreover Y is € .-maximal such thatVneN dom(o-) = necoecp (t) then
we say that 7 is a full call-by-need computation. We shall denote by cAP“

(resp. c‘i , éf ) the set of call-by-need (resp. finite call-

by-need, full call- bv need) computations. Let us mention some obv1ous

facts
y e A2 >vnen vyt € A sy e
R n R : R
Yy €. (/V)P &6 € VV; = Y6 € JV' (if the composition is defined)

Y, Y € c%”R &Yty o> yryn e’tJﬂp (from the above corollary)
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We denote for Y € ;ﬂﬁp(t) by necredp(Y) the necessary initial redexes

of Y s

necred (¥) = {(u,r)/(u,r)€ initred () & u s'necg(t)}

It is easy to see that
necredR(Y) c extredR(Y)

(thus necredR(Y) is consistent set of redexes strongly compatible with

Y} and :
dom(o) & necR(t) => oc necredp(czé) for all &

~Moreover (by lemma 3-7)

.o

yzy’ => necredR(Y)

necrng(X')
thus ¥<y” => necredﬁ(Y) c necredR(Y')

We now study the structure < c4ﬂ;n ’ $°° > of ordered call-by-need:
computations. The first property to note is that in ol; the compati-
bility relation ( ¥ ) coincide with the usual-w.r.t. ordering-one, and

that two compatible call-by-need finite computations have a lub :

lemma 5-2

For Y,Y" in ol:(t) :

Gy e At sy &Yyt >yt and %¥IY] is a
least upper bound of {Y,Y"}

(it is allways true that §%§6° => 3 8§77 556" & 6'56" » by the per-

mutation lemma)

proof: by induction on min. (1Y!,1Y’1). The lemma is trivial if this is

O.

Now let Y = o 71 and Y = o y2, The hypothesis is :



nec (t) we have og necbedR(Y : 8) and similarly

‘ Since dom(o) <
= necredR(Y'{S'))

o’ g_necredR(Y' : &) thus o * o’ (since nécredR(Y;S)

‘Moreover o £ ¥ :6° and o° * Y:8 and

olY 38’1 = 6 = o’TYio). (since necredP(“) Q.extredR(MJ.)

Thus (permutétion lemma)

yi6 = o 3 (1:8)o') = o 3 Yie'] s blo’IY]]

Yﬁ’SG'(Yﬁﬁﬂcl=o;YTﬂ s §°Toly N

A picture may help :

By the simplification lemma Yol :_6[GT771 = Y2:6' thus, by induction

hypothesis Ylo”1 4 Y5, and similarly Y'[o14 Y,
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Rut since Y{o’1 = ofo’l 5 ¥ To'lel] and ¥'lol = o'lo] : ¥,lofo’ M) we
et ¥+ ¥,

Tf we let Y'1 = Y1fo’[cﬂ1 A Y2[0{0’11 (which are call-by-need

computations, bv corollary 5-1) then

y:8

o o'flol 7'1 : &MYl

=g'i0fo’1 Yoo 8o’ T YN (permutation lemma)
y :6° (hypothesis)
o'iofo’] Y'2;6'[0{Y']] (permutation lemma)

Then by the simplification lemma

¥, t LoD =Y, 67Taly )

and thus, by induction hypothesis A 7'2(7'1] is a lub of {)"1,)"2_}

whence . ;

J6 ., + v s BTN = YT s YOy T s 6

87, + ¥, 3 BlolY N =y YUY 5 87, (in fact 87, =8

Thus

Y:6 = o : o'l :AY" : Y'2[7'1] : 6§

1 1
2y 3 ¥yl 3 &

; that is ¥ 5 Y [¥) < 136 -
Now we can describe the preoder in cﬁgw(t) as :

-4 . : ; . PR ’
y <y <, Yéedh(e) : ey 2> J6 e (k) & ey & g8

where, for finite computations :

for we have :

lemma 5-3

for v,y € Ay V<
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proof: obviously it suffices to prove Y <¥” => ¥ ¢ ¥’ for Y , ¥'in (/‘/’F-
‘But ¥y < ¥Y° means that 36 Y =7 §, and , by the above 1lemma,
Y4 ¥ and ¥ : ¥YTY1 <Y . ‘Then (by permutation and simplification
lemmas) YY1 =€, Y = ¥: Y Yland YN €cf, m

(in c/"; we find the usual definition of the preorder on computations :
y<y <=y 1y &yy15€)

Let us denote for Y € (/Y'R” and § € OV; by (Y1® ‘and [§] resp. the

equivalences classes of Y and § in J: and aV;. Then we have :

theorem 5-1

(i) for all term t < (/V:(t)/a’.“ , %

<chp(trrs, £, 18D

, 7€3® > is a completion of

©(41) for all Yec:(t) ) ¥ = {[6:/66(‘/%(1:) & 6<®rt is an ideal
A
of a('R(t)/a , YE®Y° =>/)'\ = ¥ and ry'\‘” > ? is & strict continu-

: & w s a0 A
ous projection (Y < Y & Y

A
=)

proof: From lemma 5-3, one can- prove (i) exactly as we have proved the

theorem 3-2. The second point is a trivial consequence of lemma 5-2 =,

”»n
We shall ambiguously use the notation )',_ and for example call

A
Y the (greatest) call-by-need subcomputation of Y. By the

. " ,
projection Y «> Y some "bad" phenomenons disappear, as shown by :
Example 3-1 (continued) in R given by

h(a) => b n(a) -> ¢
k(x,a) => b k(x,a) =-> ¢

for the computations of t = k(h(a), a) we get the picture :

07

A 84 - S‘L A A




- 82 -

Fxample 3-2 (continued)

with R
a -> h(a)
k(x,b) => ¢

for t = k(a,b) we have

8
f’1-\‘
a3
oo S
[ | A A A
A (¥= Ya=€)
|
b &
po : _
l‘\“,"

In fact one can say more about the structures
(0’(:,;"’&,)/5"° y ,sw , (€7 >ithey are coherent (any consistent subset-ie in
which two elements are compatible - has a lub) algebraic (with denumer-
able base) partial order, thus they are "domaines de calcul" in the
sense of G.Kahn and G.Plotkin [24]. We conjecture that these structures
are event structures (more precisely, the ordered set of configurations
of event structures) as defined by G.Winskel [U46] and concrete domains
(f[241) if R is non-ambiguous. We already have a concept of immediate
incompatibility between application of redexes, and a notion of causa-
bility by means of creation of redexes. There are ambiguous TRS’s for

which Or; (t)/=* is not a concrete domain :
Example
Let P be given by

f(b,b) => ¢
b =->a
f(a,a) => d
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then for t = f(b,b) C‘}’: (t)/=® = af/;(t)/s and if

Y : f(b,b) => ¢

o : f(b,b) -> f(a,b)

@ : f(b,d) -> f(b,a)

& : f(b,b) #> f(a,a) ->d

we get

0&\\\\ /ﬁ:::fi///////’Y\ |

> ’ ,
~ We can describe the (representant of the) call-by<need subcomputa-
‘

tion of finite computations
lemma 5-U4

for Y E.é;(t) if ¥* = Ylo] for some o ¢ necred, ()

A /\’
then ¥ = o 3

proof: let § € cd’ (t) be such that 6 < Y. Then 6 < o ; )* and by lemma
5-2 ¢+ &% ocand o; 6lc)l < o3 ¥, thus 8lc] < ¥ we have shown

A ~
Y < o ;3 Y. The converse inequality is rather trivial m

As a corollary, we can define for ¥ €& CR(t) the call-by-need sub-
R .

-computation Y of Y by :

€ if nécredR(Y) = @

"

necredP(Y) H ?’ where Y’ = Y(necredR(V)] otherwise -

This definition makes sense, since the relation

| y & )' <:>def a(w,r‘) € necredR()’) : ’)‘" = Yw,rl
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and its transitive closure \t>+ are notherian (by lemma 3-9).

To conclude this paragraph we add to the theorem more insight into maxi-

mal call-by-need computations :

H2(6) = (1Y € AT ) aVy € AT() 1y T Y Y =¥y

Firstly we show that full call-hy-need computations are terminating

(among call-by-need computations):

lemma 55

for all term t : JPR('C) < WRw(t)

w0
proof : let § € nyn(t) and ¥ € O(JP (t) be such that § ¢* ¥ .

We sketch the prbof by induction of the fact :

Vken ¥ < §1% (which is obvious for k=o0)

Assuming that YIK < élk,* there exists Y’k € oﬁ; s.t.

k k . '
81 = yiT 5y K 1 &1k :6!k t o, and 7|k+1 = Ylk ; 0 we have

k

_Y'k PO 1 o“k (by lemma 5-2, and the permutation and simplification

lemma), since § g“’ Y. The following picture may help understanding :
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Thus o k[? k) 4 o, but (corollary 5-1)

om(o”. TY” sine Full
dom(c'kA)‘r .k“g dom(O'k) since § is full

- r ’ ~|
whence o k..)’ K? c o gnd

s = yi** sy et ) s e lef Y]] -

The second property about termination is that in non-ambiguous sysé

tems, maximal call-by-need computations are, up '1;3 =®, full call-by-

need computations, and the continuous projection preserves (relative)

termination :
lemma 5-6

Let R be a non-ambiguous TRS. Then, for all term t :

Yy e J;(t) <=> § € :fR(t) : 7115” 8
o 00 . =%
<=>3J & el‘;R(t).._Y_ S

proof: for this proof, we extend necred, to infinite computations :

R

necred () = U{-necredR(S)/é € E'R ¢ 6E Y
: ‘ ¥

in such a way that for all Y there exists a finite prefix 8 of Y such
that necrédR()‘) E necr'edR(S). If, for this 6 , Y=863 Y, we denote by
)‘[necredR(Y)] the computation ' 6[necr‘edR()‘)];)", we have
y % necred (¥) : Y(necred,())].

Our first claim is

(1) Y € g:(t) =>.dom(necr'edR()')) = necoccR(t)

For, suppose that there exists w e‘necR(t) and a rule r &R such that
L (w,r)E redR(,t) & w ¢ dom(necredR()’)). Since R is non-ambiguous, we have
(w,r) T necred (7). By an obvious induction we  get
Yk e ™ Gryr) 4 Y% and Go,m)0Y5T = (wyr).

This is  trivial for k=o. Assuming = that (wy,r) % )’Ik and

k+1 .
et *T 2 ) and YT 2 1Y o we nave
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(u,r) T 0',; since (w,r) J’ok would mean W € dom(crk) (for R is i;lon-
ambiguous) and thus w & dom(necredR()'). By corollary 5-1 if )’|k : t -Rbt’
we have w € necq(t'), thus w cannot be covered by a redex of Ot
thus (w,r)‘[o*k] = (w,r).

the
: k
Now if ¥ is the lub of C-increasing sequence ((w,r);(YI )I,'_w,r'])kmN

we have (w,.r)e‘nec.redR(Y') , and Y <*® Y°. But since Y is maximal

Y 2% Y thus (w,r) € necred.(Y), a contradiction =

For ¥ € 5: (t), let us define
§ =€ Y =Y
o o

S =8 necredq(Y I 4
R ‘n

a1 T an.necredn( )’n)]

“and let § be the lub of the £ -increasing sequence (6n)neN

Our second claim is

(ii) ¥ € E;"(t) => & € c?"'R(t) x 6%

To show this point, let us remark that an obvious consequence of
the simplification lemma is that any suffix of terminéting computation

is a terminating one :

L vo 00 2 00 v
it >t & A c-:- CR(t) => (set’n (t*)

Here we have, for alln : ¥ =% 6n : Yn. Thus if Y is maximal, then )’n
is maximal and by the first claim § is full. ' |
A .A ~ A

Obviously & gw Y thus & 5“ Y but § = § and by lemma 5-5 § =° ) =

Now we get the lemma (by means of lemma 5-5)

s - A
yed ) =>]r e 2‘2:“—,) t Y <Py YT Y thus ¥y =* Y

. ’ . : P
and we just have seen that 3 6§ & Dap(t) : YV ETE =

There are ambiguous TRS’s for which these properties are false :
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Txamp'le
1f R is given by

Flajb) -> e
b => a

+hen«for t = f(b,b) we get
*.ﬂEfn(t) = {t 4> f(a,a)} whereas oI:”(t) contains t -> f(a,b) -> c

(and any computation is a call-by-need one).

Remark: we could have take extR instead pf necR without affecting any of
the results of this paragraph _(except lemma 5-1 ') But in general,

extR(t) is not computable.
. N f

Example

Let R be given by

k(x,a) => ¢
# =D eun

'-. *® ) :
then k1_¢ extp(k(x,«ﬂ)) <=> ¢ ra and this is undecidable (even in our

TRS’s : in the monadic case, one get the Post’s correspondance problem).

5-2 Sequential systems : the correctness theorem.

As we have seen (the variant of Berry’s example), we may have, even
in non-ambiruous systems necoccp(t) = ¢ and occR(t) # ¢,‘thus the call-
by-need computation rule is incorrect in general. Some other difficul-
ties (of the same nature, however) come from theAﬁaéﬁ that we do not

have restrict ourselves to finite termination :

. Example ¢ -
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T¢ we have in R (determipistic)

g(by,c,x) => k
g(x,b,e) => k
h(x) => h(h(x))
% -> a

then in the term t = g (¢,h(x),#) the only strongly needed occurrence of

a rule is E? since in R we have :

g(l,l,x) > 1
g(x,l,4) > L

And the only full call-by—need'computation of t is :

n+1
b ?g(sb,h (x),%) e

and we cannot get the result g(a,Ll,a) of

R

1 .
t «g—»g(a,h(x),a‘) > ... -{q’ﬁ;(a,hr1+ (x),a) S (terminating).

In some sense, strongly needed redekes have to be "uniform", at leat
along unnecessary rewritings. This means that rewriting a non~necessary.
redex, we cannot create the necessity of another one (which is the case
in the above ~example, for t > gla,h(x),#) and
£q € necR(g(a,h(k),¢)).)or cannot create a needed redex, as in the ambi-

guous TRS :

flg(x,b)) ~> ¢
gla,b) > ¢
h <> a

in  which for t =  f(g(h,b)) we have fig ¢nec (t) and
f 2 t £ dr .
f ¢.occR(f) but t = (g(a,h)) an f, € necoce, (f(g(a,b)))

Tn fact we have alreadv seen in the preceeding paragraph that we cannot
actuallv treat the ambiguous case. Thus a suitable restriction on TRS's

should be something like the followine definition :
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a TRS R is sequential iff

(i) R is non-ambiguous

(11) Vt € ¥ (X) : w ¢ nec (t) &t (—‘“’g{‘—"l)t" =>

. ( - ’
'negoccR.t) negoccR(t )

The second point is not exactly a kind of restriction allowed, as we
have said above, since it is expressed by means of the rules of R, not
onlv there 1eft-han¢ sides. Nevertheless : can we "localize" the pro-

perty, and is sequentiality decidable? Obviously a stronger condition is

(ii)' VYt e MF(Y)'w é:necR(t) => ¥t’ necR([t'/w]t) = necR(t)

(which, in non-ambiguous systems; is equivalent to :

Yt Yw Q € occR(t) & w ¢ necR(t) => Vt’ necoccR(t)z necoccRF[t'/w]t).)

and with this last‘hypothesis'(together‘with non-ambiguity) we get sys-
tems which are "strongly sequential" as defined by G.Huet and J.J.Levy
[231. Thus in this case, one has a'nicé efficient algorithm to compute
necoccR. These definitions does not coincide however since for example
"strict sequentiality" ((i)+(ii)") and "simple sequentiality" of [23]

are incomparable properties :

e (h(é,b,x)) > e
£ (h(b,x,a)) => ...
g (h{x,a,b)) > ...

is "strictly Sequential" but not "simple sequential", whereas

g (byeyx) => ...

g (x,b,e) => ...
is "simple sequential® hut not "étriclty sequential",

UYere we left open numerous interesting questions which actually
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concern implementation (such as :. is there an efficient way to build ‘the
matching dag of (237 for a "strictlv sequential” system ?). Can we, at
least in the deterministic case, support the definition of needed
occurrences by some semantical considerations ? Let us only point out
that the non-deterministic recursive definitions (2,33]) are trivially
("étrictly") sequential, and for these TRS’s, the call-by-need is
eiactlv the "parallel outermost" computation rule (necoccR(t)is allways

a set of mutually disjoint occurrences, if R is non ambiguous).

Our (last) aim is now to prove the correctness of call-by-need for

sequential svstems, for which the continuous projection Y =>Y preserves

the result of computations.

We have (lemma 5-1) localize the cause of non-necessity to the pro-
perty of being covered by an instance 0f an element of"ER. In non-
ambiguous systems, left-hand sides of the rules cannot "non-trivially"

overlap the elements of ER :

Lemma S5-7

if R is non-ambiguous then for all 6 € dom(R) and t € Fp *
8 At = 3 w €ocec(t) ¢ (t/w) is an instance of ©

proof': by 1nd?ct10n on n such that t g En.

(1) if n=o then 2] 8" & dom(R) J s permutation of X : t £ s®(¢) and

non-ambiguity insures in this case ©:z0° (and t = s® (9))

(ii) t= [@°/wlt’ for some t° G,En-, @’ € dom(R) and (t°/w)=l. We left

the reader find the suitable argument in each case :
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in these three cases At &t'er

o

in  these three cases 6 AQ° & 0'€ E -

Corollary 5-2

LLet R be sequential svstem, t ﬁi,’?LLt’ and ¥ € CR(t') Then :

necre‘dR(-(w,r):)‘) =4 = necredp()‘) = ¢

- proof: let us assume that _necredp((w,r);)') = ¢ and (u,r’) e necredq()’)_

Obviously w ¢ necR(t)
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(1)  4if w _{_pr u’, then u ¢_ nec (t7) (for u=wv

ef :
and [t"7/ult = T{t" /vl rhs(r)/wlt bHut w ¢necp(t))

and this is a contraliction.

(i1i) if u # w then, since P is non-ambiguous, (u,r')Er'edR(t) and,

since R is sequential, u € necoccp(t), thus (u,r’)e necredR((w,r);)'), a

contradiction. .

{iii) if u < w, one has two cases :

pref

(iv) (u,r)e redp(t) thus, since R is non-ambiguous,
(uy,r”) 4 (w,r) and (u,r)lw,r] = (u,r’).

Here again : (u,r')&necr-edp((w,r);)‘) a contradiction.

(v) (u,r")¢ redq(t) ((u,r’) is .created by (w,r).)

Since W ¢necR(t )y by lemma 5-1 3 t"" €y -] w’

JvE oce(X,t”") : (t°/w’) ‘is an instance of t°° and w'v < w
-pref
Thus u < w” or w < u but we cannot have w’v < u since
-pref —pref : —pref

uenecq(t'). If w = uu’, we must have u’€& int(lhs(r”)) for
(u,r')¢redR(t). Thus lhs(r’) must overlap t°’.
" But by lemma 5-7 there exists a subtree of t°° which is an instance of

lhs{r°) and this contradicts u & int(ihs(r’)) or w'v -<-pr'ef‘ w for some

veocc(X,t"') m
This property allows to prbve that in sequential systems, the con-

tinuous projection from (::R: to 04/*“’ preserves results :

R

lemma 5-8

if R is a sequential system then for all termt and ¥ € t? (t) :

Vel
resR()‘) = r‘esR()')

proof: we only have to estéblish the lemma for finite computations, in
which case we proceed .by i -noetherian induction (see lemma 5-4) :
for ¥ € tp(t) :

A A A
(1) if necred (Y) = ¢ then Y = € thus res () = ’D’R(t).

By induction on the size || Yl we prove res,(y) = W.(t). This is trivial

if YN = o. Otherwise, cancelling the empty steps and applving the
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vermutation lemma, we mav assume that

Y = (u,r) 1+ ¥ where w ¢,necR(t)

{(wyr) . . ‘ ,
. Sar (t) =
TF t -—#t then " w 94, necR(t) >t wR(t)

since (bv corollarv 5-2) necredR(y')‘z ¢ we have by induction
hypothesis _ resw‘( YY) = WR(t ) = Wn(t) “and by definition
resR(Y) = resR(Y )

(ii) If neeredR(Y) £ 4 then Y E'necredR(Y) D where

Y o= anecredP(Y)7_‘ and Y IS Y. But resR(Y) = resR(Y') = resR(yz)

(induction hypothesis) and {(1emma B5-L)

A ’ A ~ A .
Y = necredp(Y) : Y thus resR(Y } = resR(Y) =
Putting alltogether the results. of this section, we get :

Correctness theorem 5-2

If R is a 'sequential system then the call-by-need computation rule

is uniVersally corredt, that is

Vte VF(X) VA VGDR : Comp (t) = {r'esA()’)/)' € pr(,’c)}‘

<R,A>
proof: one has only to prove this for the symbolic interpretation. But
. . - ’ . ”~

we have seen (lemma 5-6) that, since R is non-ambiguous, ¥ => Y is a

surjection from C‘;(t) to Jz(t) which, since R is sequential,

preserves the (symbolic) results w=a

6. Conclusion

To'conclude this work, let us take'again and try to extend the
historical picture. At the present time, we know that for our semantics

of non-deterministic recursive definitions, to find an adequate
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denotational aporoach is far from being trivial. There are various con-
structions of vowerdomains [ 35,42,18,197 each suited to some formal or
informal operational point of view, but w.r.t. our computational (and
aleebraic) approach, thev are not adequate, see [7,8]. For example with

the recursive definitions :

P(x) => or (x, @lalx)))
#(x) => or (5 @ (x))
€ - a(?)

we have to distinguish ?(x) and #{x)

Thé status of the full abstraction problem is somewhat analogous : we do
not have a ciear understanding of what is allowed to be finitely observ-
able. For example, if the choice operator or iS'actual]y‘an explicit
non-deterministic function, may we allow hardly discriminating contexts

such as operators selecting "left choice” and "right choice" given by :

Y (or(x,y)) -> x & 6 (or(x,y)) ->y 2

(with this non-deterministic context, we can finitely distinguish

@ (x) and #(x) of the above example).

At least we may say that our computational approach gives some framework

to understand these problems.

The future takes the form of a wide range of gaps (the reader might
have yield some open questions aiong the lines of the paper). Here we

just briefly look oht some of them. .

Certainly our notions of call -bv-need and sequentiality are too
restrictive. Technically it seems possible to include as sequent1a1 some
overlaping TRS’s (a good closure property w.r.t glb in the subsumption
preorder have to be found). From a semantical point of view it remains
to investigateAthe well-foundedness of these concepts. In the coﬁfluent
case, do we define oniy stable functions [3] or even sequential algo-
rithm (67, and again is there any proper extension to model non-

determinism 2 About imolementation, all has to be done, with the
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underlying question of optimality, as in [44,47..

Finallv the most interesting prespective opened to the computa-

tional approach is perhaps to trv to extend what have been done here to
condit.ional rewriting syvstems : these are some kind of Horn clauses,
which may be found when preconditions are required (e.g. in abstract
data types) but above éll they ‘seem espeéially wel1-suitéd to specify

operational behavious, as shown by the nice lecture of’G.Plotkin [361.
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