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ON QUEUES WITH IMPATIENT CUSTOMERS

Frangois BACCELLI Gérard HEBUTERNE
INRIA CNET
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BP 105 - Rocquencourt 22301 Lannion,
78153 Le Chesnay, France France

Résumé

On considére les systémes de files d'attente dans lesquels les
clients, sujets & un phénoméne d'impatience, peuvent éventuelle-
ment quitter le systéme lors de leur période d'attente. Les con-
ditions de stabilité d'un tel systéme sont établies dans le cas
GI/GI/1 pour une Toi d'impatience de répartition générale. Dans
le cas particulier ol les arrivées forment un processus de Poisson
on caractérise analytiquement la distribution stationnaire du
temps d'attente virtuel ; on montre aussi que cette derniére est
égale a la distribution stationnaire du temps d'attente actuel.
On analyse enfin un cas de systéme multiserveurs (avec une loi
d'impatience de répartition générale) dont 1'intérét pratique
est illustré par 1'évaluation des performances d'un systéme de
télécommunications.

Abstract

This paper is concerned with the analysis of queueing systems in
which customers may leave due to impatience. In the single server
case, we derive the stability condition of a GI/GI/1 queue when
the impatience has an arbitrary distribution function (d.f.). For
the case of Poisson arrivals, we also determine analytically the
stationary d.f. of the virtual waiting time which is shown to
coincide with the stationary d.f. of the actual waiting time.
Concerning multi server queues, we analyze some special cases
Linvolving impatience with a general d.f.] of practical interest
for modelling telecommunication systems.



ON QUEUES WITH IMPATIENT CUSTOMERS

I. INTRODUCTION

In most studies of queueing systems, 1ittle attention is paid to practical limita-
tions such as finiteness of queue length (limited buffer capacities) or finiteness
of waiting times (times out, or limited patience). However such a phenomenon is
often encountered in telecommunication systems.

- In a telecommunication network, a subscriber may give up due to impatience before
the connexion he asks for is completely established, resulting in inefficient use

of resources.

- In a packet switching network, the switching nodes have limited buffer capacities.
Hence, an arriving customer is accepted only if its size added to the sizes of the
packets already present in the node is smaller than the total capacity. Since the
output rate is constant, this is equivalent to a limitation on its waiting time
Systems with limited waiting times can be classified as follows :

- the limitation acts only on waiting time or only on sojourn time (waiting + ser-
vice) ;

- the customer can calculate his prospective waiting time at the arrival epoch

and balks if this exceeds his patience or he joins the queue regardless, leaving
the system if and when his patience expires.

Combining these two distinctions gives four queueing systems with “impatient
customers”

a) limitation on sojourn time, aware customers :

The entering customer leaves immediatly if he knows that his total sojourn time is
above his patience (in such a system, all server work is useful). Ergodicity condi-
tions for general single server queues are given in [ChP 791. Some special cases
are solved in [Ga 7731, [Ho 791.

b) Timitation on sojourn time, unaware customers :

This is be case if customers do not know anything about the system and are unaware

of the beginning of service (e.g.) a calling subscriber waiting for a dialing tone).
In this case service may be interrupted by discouragement. So that some server work
may be not be useful. Some special cases can be found in [Da 641, [Co 691, [(Ta 741.



c) limitation on waiting time, aware customers :

The same as a) above, with the impatience acting only on waiting time,
d) limitation on waiting time, unaware customers :

The same as b) above with the impatience acting only on waiting time.

The study of systems c) and d) can be unified through the following remark :

As Tong as we are concerned with rejection probabilities, or with the waiting time
distributions of successful customers, the finally discouraged customers (of -
case c)) do not influence the system and can be discarded on (arrival (as in d)).
The correctness of this statement will be made clear if one realizes that (suppo-
sing service in order of arrivals), the fate of an arriving customer depends only
of the unfinished work of the server, which is clearly not modified by customers
who finalTy Teave impatiently, even if they stay in queue (see the remark on
virtual waiting times section 2.1).

The present paper is devoted to the analytical caracterization of waiting times in
system c) (and hence d)). For this, we use the notation G/G/m+G : the three first
symbols have the same meaning as in Kendall's notation. The last one specifies the
impatience law. Section 2 is concerned with GI/GI/1+GI queues. Some functional
equations are established for the distribution functions of the waiting times
offered to customers. This approach was investigated by F. Pollaczek in rPo 621,
who reducesthe problem to the resolution of a set of (unsolved) integral
equations. Our contribution, concerning these general queues, consists in
determinating the condition assuring stability, by means of probabilistic
methods. In section 3 we limit ourselves to M/GI/1+GI queues, The stationary dis-
tribution functions of actual and virtual offered waiting times are shown to
coincide and are given by means of the resolvent of a Volterra equation. In the
special cases of exponential and Erlangian impatience distribution functions,
series form solutions are given, generalizing the results obtained by Barrer

(CBa 571) on M/M/1+D and Gnedenko (LGnK 681} on M/M/m+D and M/M/m#M. Multi server
queues with general impatience distribution function are considered in section 4.
Section 5 contains general relations (probability of rejection...) as well as

mean values for waiting times. Lastly an application involving the evaluation of
some major features of a telecommunication system is described in section 6.

II. ON GI/GI/1+GI QUEUES

IT.1. Assumptions and notation

In this section, we consider a first in, first out single server queueing system
in which customers are subject to impatience. More precisely, let Tn, n ¢ N be the '

arrival epoch of the n-th customer (T°=o). We define :

¢ 8 Tn-Tn_1 : The n-th inter arrival time (t, eiR+)

n .
S : the service time of the n-th customer (s, elR+)
g, : the patience time of the n-th customer (9, c RY).

Let Wos N e IN be the work load just before Tn (unfinished work). We assume the

system to be?of type a) of section I : the n-th customer enters the system only
}f the time to wait for accessing the server does not exceed his own patience.
That is : :

If 9, S W, the n-th customer is impatient and does not enter

If 9y > W, the n-thcustomer stays in queue

Remark : For system c), where all customers enter the queue, we ought to say :
9, < W the n-th customer does not modify W the work load of the server.



If 9, > Wp» the nth

customer will be served and thus modify Wi

This formulation is clearly equivalent to the previous one : the evolution of w
in .the two cases will be the same, establishing the equivalence of systems c)
and d). We make the following assumptions : {tn,neN} (resp.{sn,neN})

{s a éequence of independant and identicaly distributed rangom variables oan+

with distribution function A (x) (resp. B (x), C (x), x e R". A (x) and B (x)

are supposed to have finite first moments denoted as 1/A and 1/u respectively.

C (x) may be defective (ie, we may have 1im C (x) # 1) but we assume that C(0)=0.
X>oo

Throughout the paper, we mainly use G(x) 4 1-C (x).

I1.2. Recursive equations for the offered waiting times

We derive now a recursive equation for the sequence {wn, n € N} genzralizing

Lindley's equation ([Bo 76]1). Notice that w_ is the time that the n-th customer
would have to.wait for accessing the server if he were suffigently patient.
Hence, we call it the actual offered waiting time. Let w_ ¢ R be some initial
condition, we have for n2 0 : 0

7T ify > w

(2.1) { wn+1 [wn * Sn - tn+1 n
Woel = [wn - tn+1] otherwise
With our assumptions, {wn, ne N } is a Markov chain with state spacelR+ and

transition kernel

{ P(GA) & PLw .1 e Alw = x]
xeR s AeB(R

given by :
P(x,A) = 6(x) S, lp(Cx+y-217) dB(y) dA(z) +
IR xIR
(2.2) + (1 - 6(x)) ’£+ 1, [x - 21) dA(2)

where lA(u) =1 iff u e A,

Let wn(x), X eIR+ be the distribution function of W We therefore have the
following integral equation for the Nn's :

wn+1(x) = g G(u) D(x~u) dwn(u)
(2.3) e - ) - A(u-x))di_(u), x R*
0

where D(y) 8p [sn - tn+1 <yl = [ B(t+y)dA(t)
. 0



11.3. Stability condition

I1.3.1. Sufficient condition

This section is devoted to the determination of a sufficient condition for W, to

be an ergodic Markov chain (and hence for (2.3) to have a unique stationary solu-
tion). It is based on the method proposed by Laslett, Pollard and Tweedie in
[LPT 78]. Let :

ne

Inf (t/ A(t)
sup (t/ B(t)

1)

P e N
o o
ne>

0)
Lemma 1 :

Assume b - a < 0. Then the Markov chain {wn n e N} with transition Kernel P(x,A)
(2.2) is gg-irreducible (where €y is a measure on R concentrated in {0}).

Proof : Consider

,{Zo'wo
- _ - +
z =Lz, +s -t ] nz0

when comparing with (2.1), we get :

(2.4) Wozzo ¥n e

We have furthermore : ¥ ¢ > 0,3p > 0,

Plb-a < sn'tn+1 s b-a+e]l =p >0
Let x ¢ RT and k = [Eéij (where [y1, y € R¥ denotes the smallest integer greater
than y) consider the event :
E =0;;Lk {b-a < s;-t;,; s b-ate}
We have :
E < {Zk = OI ZO = x}
Hence :
(2.5) Plz = 0]z, = x1 > pX > 0

From (2.4) and (2.5), we derive completing the proof :

PLU {w, =0]w, = x}1>0
nz0 n 0

Lemma 2 :

Assume b-a < 0. Let p =
godic.

={>

. When 0 < 1-pG(=) the Markov chain fw, n eIN} is er-

+%

Proof : For any B'e R ", let B be the interval [0,B]. We first prove that B is a
test set for the Markov chain. Then, we show that when the condition 0<1-pG(=) is



fulfilled, and for a sufficiently large B, the mean hitting time of this test set
is a bounded function, so that the chain is proved to be ergodic (see [LPT 781).

First part of the proof

Since wo is so-irreducible. B will.be proved to be a test set if one can find
N>0 e MNand § > 0 ¢ IR" such that :

CMax Py, {0}) 28, VyeB

O<nsN

(see theorem 3.2. in[LPT 78]).Consider the sequence {zn, n €N} defined in the

proof of lemma 1. ¥y ¢ B, we have :
P (y, {0}) = P W, = 0|lw, =yl 2Pz =0[w, =yl
Thus any N 2 Egﬁ matches .

Second part of the proof

Let TB be the hitting time of B :
Tp =inf {n 20/ W€ B}

g =

We have to show that :

(2.6) sup E[Tp [wy = x] < w
xeB B'70

This will be proved if one can find € > 0 and M < = such that :

"x] £ x -¢ ¥x e B¢

(2.7) E [wll o
X] s M ¥x ¢ B

(2.8) E Cwy | wg

(see th-2.2 in [LPT 78]). We first derive from (2.2) :

Elwy [w, = x] = G(x) ./ [x +s-t17 dA(t) dF(s
) 1y () e (t) dF(s)

+(1-6(x)) s,[x-t1* dA(t)
R

2 A(t)dt + g(x) p (1 - F(t-x)) A(t)dt
X

Hence for x < B , (2.8) is satisfied since

o

E Cwy [wy = x] < x+ I(L-Fu)dus g+ %

Concerning (2.7), we write :
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E[wll Wg = X1 =x - ? (1 - A(t))dt + G(x) ? (1 - F(t-x)) A(t)dt
0 X

sx-i4 Z (1 - A(t))dt - G(x) . %

Thus, ¥e >0 ]xo / ¥x > xg

Elwy | wy = x1 < x - 1- iG X v e
Assume now that the condition 0< 1 - pG(=) is fuifilled. Then there exists Xq e R
such that for x > X{s 1 - oG(x) > 2e. Hence, if B > max (xo,xl) [0,8is a test set

with bounded mean hitting time, completing the proof.

I1.3.2. Necessary condition

Lemma 3

If w is ergodic, then 0 s 1 - pG(=)

Proof : From equation (2.1) we get :

Woel 2 Wy + sn l(yn = @) - tn+1’ nz0
Hence :
n
el 2 W LB
(2.9) -
A
where b, = Si l(gi =c0) - ti+1

If 8 >1 - pG(x), E[bi] >0. Thus the R.H.S. converges a.s. to infinity (strong
law of large numbers) so that W is not ergodic.



ITT. ON M/GI/1+G1 QUEUES

Throughout this section, we assume that

1 - e~AX
A(x) = {
0

III.1. Functional equation for the work load distribution function

x20

x <0

We define the virtual offered waiting time (v.o.w.t.) process for M/GI/1+GI. An
integral equation generalizing Takacs equation ([Ta 62]) is then established. The
v.o.w.t. at time t, n(t), is the time a test customer of infinite patience would
have to wait before service if entering the queue at time t. n(t) will be also the
“unfinished work" of the server, and will only be modified by successful customers.
Let V(t,x) be the distribution function of n(t) and y(t,s) the Laplace stieljes
transform (L,S.) of V(t,x) :

V(t,x) = P [n(t) < x] te R, x ¢IRY
W(t,s) = 5- e 5% d, V(t,x) teR*, s e, R, (5)20
We proceed now as for Takacs equation, outlining the most important steps. Using
the Markovian property of n(t), we get :
X+4

(3.1) V(t+8,x) = V(t, x¥8) + 28 £ G(u)(L - F(x-u)) D, V(t,u) + 0 (a)

We multiply both sides by e”5Y and sum for x e [0,0]. Using the relation :

@

P(t,s) = s/ e Y W(t,x) dx

o

(3.1} becomes :
é-w(t+A,s) = eSA(EL%Li)- aV(t,a)) + o(a) -
0 X
- £ dx e 7 G(u) 1 - F(x,u)T dv(t,u)
0- 0

By analogy to y(t,s), define :

(3.2) Vg(tss) =

ol‘s 8

e 6(x) d, V(t,x)

After inveréin summations and letting A - (0, the above equation finally becomes :

$ 3= u(ts) - V(t,0) - a(s) g(tes)

. *
where {a(s) Y ilggiil

B*(s) is the L.S. transform of B.

(3.3)



I11.2. necessarx and sufficient condition for the complete convergence of the

.0.Ww.t. process

[I11.2.1. Necessary part

Assume the existence of a limit

(3.4) V(x) = Tim V(t,x)

£
¥(s), the L.S. transform.of V(x) will be solution of :

(3.5) W(s) = v(0) + a(s) ws(s), Re(s) 20
with :

a(s) = )\%ti_sl

We restrict s to take real values. In this case ¢ and wG are reai, and :
¥(s).6(=) = yg(s) = Z e G(x) dV(x) < u(s) <

or :

(3.6) a(s) ¥(s) G(=) < w(s) - V(0) s a(s) w(s)

The first inequality of (3.6) implies V(g) > O (if not, as a(s) < 1 for some
s > sy, it would mean ¢(s) =0 for s > So and thus for all s). The second inequa-

lity gives :

0 < V(0) = y(s) C1 - a(s) G(=)]
We must have 0 < y(s) < 1 and thus for al1 s : 1 - a(s) G(=) > 0.
For s - 0, a(s) - p and the following inequality must then hold :
(3.7) 1 - G(e) >0

Note that the inequalities (3.6) also imply the uniqueness of the solution of
(3.5)

II1.2.2. Sufficient part

The discrete time Markov cha1n {wn, n ¢ N} is imbedded in the continuous time
Markov process {n(t), t ¢ '} :

(3.8) wy = (1))

We use this. property to derive the complete convergence of n(t) as a consequence
of the 1imit theorems on semi-regenerative processes. Let :

Ky (x,B) x], B €3(RY)
x] . PLTy >t In(o¥) = x]

PCn(t) € B, T >t In(o*
PIn(t) ¢ B T, >t n(o™)

G(X,t)+ (B) e



where :
B) =1ifueB ueR"
0if u g8, BePR)

Gu(

When pG(w) < 1, W, is an ergodic Markov chain. Therefore, if (3.7) holds, there
exists a non defective distribution function W(x) on R* such that :
3Tm W (x) $H(x)  ¥x IR

n-<o

with Tim W(x) = 1

X0

Let J(x), X ¢ R', be the distribution function of n(Tn+)

X
J(x) = S (G(u) B(x -u) + 1 - G(u)) dW(u)

0
The limit theorem on semi-regenerative processes yields :

31im PCn(t) 8= T}.l—] f3(dx) S K(x,B )dt
0 0

t0

© t
= Uo J(dx) é (1= A(t)) 8, gy B

A (1 - (L)) J(tex)dt

(3.9) V(x) 0 tax

(1 - A(t)) [W(tsx) - F  G(u)(1 - B(x+t-u))dW(u)Idt.
0

1}

X

o 8

' To prove the complete ccnvergence of n(t),we remark that because W(x) is non defec-
tive, V(x) is also a proper distribution.

III.3. On the stationary distributions of actual and virtual offered waitjnq time

In this section, we extend Khinchin's theorem in proving analytically that the
stationary distribution fonctions of v and n(t), W and V, coincide in M/GI/1+GI
alsc. If (3.7) is fulfilled, w, is ergodic. Hence W(x) 8 1im wn(x) is the

N->co

unique solution of the invariant measure eguation derived from (2.3) :

W(x) = ? G(u) D(x-u) duW(u)
0
(3.10) e (L - 6w e U4y du(u)
0

oo

with D(y) = A S B(t+y)e'xt
0

Furthermore, we get from the semi-regenerative approach (equation (3.9) in which.
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we take A(x) = 1 - e™) .

V(x) = A ? e-A(u'x)W(u)du

(3.11) X

A feXux) | 6(t)(1 - B(u-t))dH(t)
X 0

Some inversions in the right hand side of (3.10) show that the right hand sides of
equations (3.10) and (3.11) coincide, completing the proof.

ITI.4. Resolution of the functional equation

II1.4.1. The density of the stationary v.o.w.t. distribution function

Let us assume the existence of a stationary solution. To prove the existence of a
probability density function for the v.o.w.t. distribution function, we use the
following lemma (see for instance [Fe 711).

Lemma 4
For ¢ to be of the form

-]

W(s) = S e 3% f(x) dx where 0 < f < A

0

it is sufficient and necessary that :
n

-S (n) A

(3.12) 0s {8y (s) < A

for all s > 0 and all n, where w(n>(s) denotes the n-th deriVative of w(s);

We apply the criterion to y(s) - V(0). Let ¢(s) be the L.S. transform of V(x) -
V(o) : we_have :

(3.13) ¢(s) = y(s) - V(0) = a(s) wG(s) from (3.5).

At this point we note that a(s) is the Laplace transform of the "unfiﬁished work",
and as such has a density :

a(s) = f e a(x)dx, a(x) = A [1 - B(x)].

o 8

Thus a(s) satisfies the conditions of the above lemma ; let D be the maximum of
its density. For n = 0 we use the simple bound :

(%) = £ e G0V (x) s u(s) s 1
0
and so : '

0 < ¢(s) < g

0. For n 2 1, (3.13) above gives :

1]

satisfies (3.12) for n

jgo e y{(s) almi)s)

oM (s)
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a(s) is the L.S. transform of a density :

0< (-1)* a(l)(s) < E%éf
Therefore :
n . .
1" oM (s) I om0 ufs) Mozl
: D! n - j j
-1)" 6(M(s) s o L;erga_ns)

From the definition of wG’ we write :

n J o n o i
68 & L ylis) = 5 s e grx) av(x)
j=0 9 =0 o ¥
© n . J -
s sz A7 e g dv(x)
0 j=o ¥’

and finally :

§ < [ G(x) dV(x) s1
0
which puts ¢(")(s) above in the desired form (it is easy to verify directly the

positiveness. This completes the proof. So, when it exists, the Timiting distri-
bution function may be written as :

{ Y(s) = V(0) + % v(u) e%Y du
0<v(u)sD

Hence V(x) is composed of an absolutely continuous part and a mass at the origin.
In this case (3.5) may be inverted as follows (with v(x) the unknown density func-
tion) .:
X
v(x) = AV(0) [1 - B(x)] + [/ v(u) G(u) [1 - B(x-u)] du
(3.14) 0

o

V(o) + J v(x) dx =1

IIT.4.2. Resolution of the functional equation for M/GI/1+Gl

In this section we derive the general solution of equation (3.14) when (3.7) is
satisfied so that V(0) > 0. (3.14) is shown to be a Fredholm integral equation of
the second kind. The method of the resolvent yields integral series for the desired
density function. In the following sections, further results are obtained concer-
ning the special cases of Poisson and Erlang impatience distribution functions, in
terms of series for the Laplace-Stieljes transforms.

Consider the following functions :
f(s) = ALl - F(s)]

(3.15) K(s,t) = G(t) [1 - B(s-t)] i
¥(s) = v(s)/V(0).

v v
o
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From equation (3.14), ¥(s) is solution of :

V(s) = f(s) + A 3 J(s,t) v(t)dt
(3.16) { 0
s 20

Oue to our assumptions concerning the existence of the first moment of F, f(s) and
K(s,t) are both square integrable functions ; thus (3.16) is a Volterra equation
for which the method of the resolvent applies. Let :

s
gn(s,t) = € K(s,x) Km_l(x,t)dx
(3.17) mz 2
Kl(s,t) = K(s,t) s20, t=20

An induction yields the following expression :

3
('Km(s,t)x= G(t) { G(Xm-l) (1 - F(s-xm_l)).
dxgoy I 60k p) . (1= F(x, - X o))

(3.18) dx, , ..

. X
dx, {2 6(x1) « (1= Flxy = x)) . (1= Flxg-t))dx,.

In this case, the solution of (3.16) always exists, is unique and is given by
(see {Mi 571).:

o S

(3.19) VW(s) = f(s) + £ A" 7 Ky(sat) F(t)dt
s+0 m=1 0
The results of section III.2.1. yield the following : when pG(«) < 1 : we have ne-
cessarily V(Q) > 0 and s wv(s) + V(0) = 1 (equation (3.14)), so that the unknown
0 .
constant V(g) is ’
(3.20) V(0) = (1+ s 9(s) ds)”}
0

[I1.4.3. Resolution for M/GI/1+Er

The following results are directly obtained from the preceding section. The M/G/1
queue with Erlang (N,y) impatience distribution function always has a steady state
and the L.S. transform of the stationary v.o.w.t. distribution function is given
by : :

W(s) = V(0) C1 + a(s) zleé(s)J
Re(s) = 0 i

od
where : R} = £3¥l—



o~

13

| (m-1).(N-1)
(3.21) R}(s) = g g1 wm1s)

= m=2
k=Cg+l-NTH KK

min (k,Jj) o (ked J-i
M) = T e a7 (sam) Iy
GITT T jaggent K J-T)

a(l)(r) denotes the %-th derivative of a(s) at point r, Re(r) 2 0.

o =t1ve T Ré0)17?
2=

The assertions concerning stability are obtained from the results of section III.2
and from G(») = 0. Theseries are obtained either by direct transformation of
(3.19) or by self-iteration of equation (3.5). The convergence of the series is
assured because (3.7) is satisfied.

111.4.4. Resolution for M/GI/1+M

The M/G/1 queue with exponentially distributed impatience of parameter y always
has a steady and the L.S. transform of the stationary distribution function is
given by :

p(s) = V(@) [1 +a(s) T b,(s)]
i=j
Re(s) =0
i
with b,(s) = T a(s + Jjy)
(3.22) i j=1
Furthermore
V(0) =f1+p £ b0
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IV. ON M/M/m+GI QUEUES

IV.1. Introduction

For the m-servers case, we consider exponential service times and Poisson arrivals
(B(x) = 1 - e HX, A(x) =1 - e'Ax). The system is defined as in section 2. Consi-

der the following process : {N(t), t e RY} is equal to n when the number of custo-
mers in the system at time t is nand 0 < n < m-1. N(t) is equal to L when the
number of customers at time t is greater than m-1. The v.o.w.t. n(t), is equal to
zero when N(t) ¢ L and is strictly positive otherwise. Clearly, {(N(t), n(t)),

t ¢ R*} is a Markov process with state space [{0}, {1}, ..., {m-1}, L] x R*. Con-
sider the following functions (when they exist) :

v(x) = Tim Tim PCN(t) = L, x < n(t) s x + dxJ

(4.1) x20 tso dx-+Q

PJ. = 1im PIN(t) = j, n(t) = 03.
O<jsm-1 toe

Kolmogorov's - equations for (N, n) at steady state yield the following relations
between these functions :

(WP = Py
(A + UJ)PJ = Apj-l +(J+ l)uPJ.+1 0<j<m1l
v(0) = (X + (m-l)u)Pm_1 - APm_z

X
v(x) = AP, e ™X L/ G(u) v(u) e M (x-u)y,
\ x>0 0
We obtain from this :
ANJ o1 .

P. = (=) J=0, ..., m-1
(4.3) {J W 1o

v(0) = Apm-l
Furthermore, H(x) = eMHX v(x) is the solution of the following equation :

+ A ? G(u) H(u) du

H(x) = AP
{X>0 m-1 0
which yields :
X

(4.4) v(x) = Apm-l exp {A é G(u)du - mux}.
The normalizing condition is :

Com-l ®
(4.5) I P+ [ v(x)dx = 1.

=0 3 o

That is : ol
= Am=1- 1 -1
ws) {PO-£1+U+.;‘.+(“) W[1+AJ]
: s oexp{r £ (G(u) -L")\E)du}
0 0
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For stability, one can..check that the normalization is possible if and only if the
integral in (4.6) converges, which is equivalent to the condition :

(4.7) AG(°) < mu

Lastly, the result of section III.3. can be extended to the considered multi server
queue.

V. PROBABILITY OF REJECTION, MEAN VALUES

V.1. Single server gqueues

In this section, we derive further relations between quantities of practical inte-
rest. Let I be the probability of rejection of customers at steady, i.e., the pro-
bability that an arriving customer decides not to enter the system. For GI/GI/1+GI
queues we have :

(5.1) I = Z_ (1 - G(u))dW(u)

where W(x) is the Timiting distribution of wn which exists when 0 < 1 - pG(~). In
the M/GI/1+GI case, we obtain from the result of section III.3. and III.4.1. :

(5.2) "I = ? v(x) [1 = G(x)] dx
0

From (3.5) we get, for s =0 :

]

1 =V(0) + 0 J v(x) G(x) dx
0
Thus :
(5.3) (1 -)p =1 - V(0)

It is interesting to compare this relation with the one obtained for the M/G/1
queue with a limited capacity N :

(1 - PN)p =1- P0

(In this system PN is the probabi]ity of rejection).
We now derive some relations between mean waiting time and mean queue length.

Little's formula applies (since the beginning of busy per1ods are regeneration
points for all of the defined stochastic processes). Let W 1 be the mean wa1t1ng

time spent in the queue by patient customers and L1 be the mean number of patient
customers in the queue. For the case d) (defined in the introduction), let WZ be

the mean time spent in queue by all customers (those rejected after their time
out, the impatient ones, and those served the patient ones), and E be the mean
number of customers in the queue.

For GI/GI/1+GI, we have :

(5.4) W=T X G(x) dW(x)

5 | !

(5.5) Wzéfdww? G(t)dt
0 0

Let v be the first moment of C(x). We get for instance W2 = Wl + vII for GI/GI/1+D
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and Wz = yII for GI/GI/1+M. We also obtain from Little's formula :

(5.6) [ =21-m &
(5.7) [, = AW,
Consider now v, the mean v.o.w.t. in the M/GI/1+GI case

V= Jxvx) dx
0

Differentiating equation (3.5) at point s = 0 yields :

2

- 0 A
(5.8) V= ol + 5 (1 -1 ECsS)

which is a Pollaczek-Khinchin mean value formula for queues with impatient custo-
mers. :

V.2. Multi_server queues

For the queueing system of section IV, we get :

m-1
= - -
(5.9) I = ) [1 jEO Pj] +Poy

The equivalent of relation (5.8) is :
m-1

(5.10) V=2 g ﬁ%-tl - U(0)1, where Vv(0) 4 I
J:
For M/M/m+D, we obtain the following :
m-1 m
- Ko P (A-mu)y _ -1
PO {1+ kiop /k! +W!- (De m)]
oM
= mT P0 exp(A - mu)y
(5.11) n .
W = Py - %T . %4% {1 +Cyp(p- m) - 1]eXY"™v,
’ 1
F M o, :
or M/M/m+M, let o T We have
m-1 pm o/m -1
P0»= {l1+p+...0 “/(m1)! + aT (1+ Tt ee)
: m-1
- - P [ p/m
(5.12) H-POW[1+(m 1)(1+m+ vea)]
wz =yl

VI. APPLICATION TO THE MODELLING OF A TELECOMMUNICATION SYSTEM

We consider the behaviour of customers and operators in a PABX : In such a system;
operators receive calls from the public network, and switch these calls to the
appropriate called subscriber. Thus, from the telephone network, a PABX can be
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seen as a GI/GI/m queueing system, m being the number of operators. In fact, calling
customers waiting in the queue can leave impatiently. Hence the real model to be
used is our GI/GI/m+GI queue. The phenomenon can be of great importance, for both
calling and called subscribers (these last cannot be reached, without beeing aware

of it), and also for telephone administrations (the network successfully routes
the demand using resources for this, but an unanswered call gives rise to no reyenue).

Some measurements, performed on various PABX'S have shown that, for such a system,
the impatience distribution (1-G(t)) is approximately Erlang-3 (the curve in Figure
1 may be found in [ROB 791).

Pr(<t)
'y
1.
o —
-
Er1-3 s~
Observed
g1
72
7
/2
.5 | 72
/4
4
/4
.3 /
.1
: . —» t(S)
50 100

10

~

Estimated customers patience d.f.,

fitted with Eri-3

Figure 1
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Accordingly, we take : )
G(t) = e¥8 (14 g + EL?J,G = 17 sec.
26

Assuming Poisson arrivals and exponentially distributed service for the system,
we can then use the results of Section 4 (eq 4.4)

m-1 , X
W(x) = A &—r P Exp {A S G(u)du - mux}
m-1yT "0 0
o1 L 2,07 =
P0 ={l1+p+ ... wT)T (1 + Le g Exp {-(3+2u+u”/2)Le™™ +
~1

+ Lmu/p du)}]

with' p = A/u,L = 20

In Figures 2 and 3, we plot T (probability of rejection), vV (0), probability of no
waiting, and WZ, mean waiting time of all customers. The latter measures the in-

effective occupation of telephone lines. The curves show that a fast degradation
when o/m approaches 1 : -For %-= 0.8, m=2,v(0) = 0.6, the operators are not

overloaded but I = 0.25.

Y
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—> p/m

Evolution of I and y(o) with p and m

Figure 2
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» o/m

Mean waiting time (in units of service time)

Figure 3
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