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ABSTRACT

Upper and lower bounds are derived on the time and temporary storage
space needed for a number of problems, including banded matrix multi-
plication, inversion and the resolution of a banded set of linear equa-
tions. Also considered are lower bounds for certain binary integer func-
tions, such division and square roots, and for the class of transitive func-
tions, which includes sorting and matrix inversion.

RESUME

Les bornes superieures et inferieures sont obtenues sur le temps et
’espace temporaire requis pour une ensemble de problemes, en particu-
lier, pour la multiplication des matrices bandes, pour. I'inversion de
telles matrices, et pour la resolution d’'un systemes d’'equations lineaires
avec matrice bande. Des bornes inferieures sont obtenues aussi pour
certaines functions sur les entiers, comme la division et la racine carree
des entiers, et pour les functions transitives, donc le tri et 'inversion des
matrices sont des exemples.
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1. INTRODUCTION

Space-time tradeoffs are important characterizations of the limits that
exist on the simultaneous use of computational resources. They are often
stated as lower bounds on the product of space and time that must hold for a
given class of algorithms and a given problem. Their value lies in providing a
means to show for a given problem and an algorithm for it, how close the algo-
rithm is to being optimal for these two resources.

Grigoryev [1] has introduced a framework for the derivation of lower
bounds on the product of temporary storage space S and computation time T for
the class of straight-line algorithms. He has used his framework to show that
the product of two pXp Boolean matrix multiplication and of two n-degree poly-
nomial multiplication over GF(2) require ST = Q(p®) and ST = Q(n?), respectively.
Tompa [2] has applied the Grigoryev approach to superconcentrators, the
Discrete Fourier Transform, sorting and merging, and has obtained quadratic
lower bounds in each case in the number of input variables. Swamy [3] has
independently derived the same type of bound for sorting and Savage and
Swamy [4] have derived quadratic lower bounds for binary integer multiplica-
tion. Ja'Ja’' [5] has shown that, over a field of sufficiently large characteristic,
the inverse of a pxp matrix requires ST = ()(p?), solving a system of p equations
in p unknowns requires ST = ((p%), and computing the set of elementary sym-
metric functions in n unknowns requires ST = Q(n?).

In this paper we extend somewhat the Grigoryev method to illuminate the
weakest conditions under which it can be applied, which are //0C-oblivious } algo-
rithms. We also apply this method to a new class of problems. These consist pri-
marily of problems involving banded matrices, such as banded matrix multipli-
cation, inversion and the solution of a set of banded linear equations, but also
include transitive functions and certain binary integer powers and reciprocals.
The class of transitive functions is shown to include the problems of sorting and
matrix inversion. The lower bounds for matrix inversion thus derived apply to a
much larger class of fields than the class for which Ja'Ja' [5] has derived the
first results for this problem.

Banded matrices occur very often in practice in such areas as finite ele-
ment analysis, the solution by finite differences of Laplace’s equation, and solv-
ing for the voltages and currents in linear electrical networks [6, p.14]. In fact
the author's interest in this problem was motivated by a result of Eisenstat et
al [7] who show ‘that a banded set of linear equations that are positive definite
can be solved with considerably less space than is normally used. Their result is
described and improved upon later.

We show that to multiply two pxp banded matrices of bandwidth b over a
field F or to solve a set of linear equations that has such a matrix of coefficients
requires ST = ((pb*log |F|). However, to invert such a matrix requires
ST = (p®b®log |F|). We also consider algorithms for these problems and show
that upper bounds of the order ST = O(pb®log |F]).
ST = O(pbM(b)(log p/ b)?logz|F|)., and ST = O(p®*M(b)(log p/ b)?logs|F|) can be
achieved. Here M(b) is the minimum number of operations to do bxb matrix
multiplication. Thus, the lower bound for banded matrix multiplication can be
met up to a multiplicative factor, and the upper bound for the resolution of a
banded set of linear equations is weak by factors of M(b)/b and (log p/b)?,
where the former is at least b and the latter can be as small as 1 if p is propor-
tional to b. This weakness in the bound for solving a banded set of equations
reflects the weakness in the bounds for full matrices. The upper bound for

t A class of algorithms is I/O-eblivious if the sequence of input reads and outputs writes is data-
independent.



matrix inversion is weak by the factors of M(b)/b? and (log p/ b)?, where the
first may be reducible to a constant as our knowledge of matrix multiplication
increases, while the second reflects the recursive nature of our algorithms. .

The paper is divided into five sections. Section 2 presents a generalization
of the Grigoryev lower bound argument, while Section 3 applies it to the shifting
function and to a large of functions defined as powers and reciprocals of binary
integers. In Section 3 we also consider the class of transitive functions which
includes sorting and matrix inversion. In the Section 4 we treat banded matrix
problems. Conclusions are drawn in the fifth and last section.

2. COMPUTATIONAL INEQUALITIES

The Grigoryev method provides a lower bound to the product of time and
the number of temporary storage locations to compute a multi-output function
from any straight-line program. In the following we generalize the result some-
what by using only those conditions which are essential to its derivation.

Definition 1: Let M = (Q,U,V.6,A.qo) be a finite state automaton (FSA) with state
set Q, initial state g, input and output alphabets UV, transition function
6:QxU - Q, and output function XM -»V. If e Q and ue U, then é6(qu) £ Q,
A(q) ¢ V. Let uj,up, ..., u, be a sequence of inputs read by M in the first through
p th cycles. Then, the succession of states entered is qoq;.....q, Wwhere
q; = 6(q_;, ). Outputs produced are vg,v), . . ., Vv, where v; = A(g;). Let £:X" » Y™
be a function with input and output variables x;, .. .,X, and yy, . .. .Ym Where
f(x3. .. .. %) = (¥1. . - - .Y¥m)- Then M computes f in an //0-oblivious manner if qo
is independent of f, U=AxD, XCA YcV, and there exist schedules
p:§1,2....p) = ({x1, . . . . %X}V A)XD, 6:§1,2,....p} » {¥1. .. .. Ymj UV such that
w; = p(i), vy=o0li) for 1<i<p and |07 '{y;....,¥m}| = m. The machine M uses
storage S = logz|Q| and /0 time T (henceforth abbreviated time) defined as the
number of cycles in which either p(i) € {x;, ... .Xa}xD or o(i) € {y1, . . . ,¥m} or
both.

Thus, and FSA M computes f in an I/0 oblivious manner if the time instants
at which inputs and outputs of f are read and produced are data-independent.
Inputs may be read multiple times, outputs are each generated once, the set of
machine instructions is unrestricted except by the bounded number of states,
and the number of cycles executed can be data-independent. The computa-
tional model also permits f to be computed from a straight-line program with a
bounded number of registers since the second component of each input to M can
be interpreted as instructions in such a program. Thus, if M computes { from
such a program, the program need not be viewed as being recorded in its state.
The above generalization of the computational model for which the Grigoryev
method applies is motivated by an observation of Valiant [8] that the Grigoryev
conditions apply to a broader class of algorithms than just straight-line algo-
rithms. -

The following is a slight generalization of the Grigoryev condition on a
multi-output function in terms of which a computational inequality will be
derived. '

Definition 2: A function X" - Y™ with input and output variables
I=§X5,....%Xn); I =¥, . . . .¥m}. respectively, is (a, I, d) - independent for
a = logz|X| if the following conditions hold: : .




(1) There existsetsIp C 1, |Ig| = ¢, Jp €7, |J§| = d, sudh that
() forallk=l,

(3) for all sets of k < ¢ indices iyiz, .. ., ik

(4) for all sets of I =k < d indices j;.j2. - . . ,ji—k ,

such that x,....X% & Ioo ¥y - ¥y EJo there is an assignment
@:fx,, .. .. %} U (I-lp) » X such that the function (¥, - - . ¥y, in the remaining

input variables contains at least 2 7%/ points in the image of its domain.

Grigoryev's original definition was stated for ¢ =n,d=m, |X| = |Y| =2 and
a = 1. Note that any function that is {a, I, d) - independent is also (a, I', d) -
independent for I' <1. Note also that ! < min(c,d). The proof of the following
result parallels that given by Grigoryev. _

Theorem 1: Let #:X® - Y™ be (a, ¢, d) - independent and let it be combuted by an
FSA M with space S and 1/0-time T. Then, S and T must satisfy

la(S+IT = —g—dl

Proof
At most one input and/or output variable of f is read or produced by M per.
cycle. Assume without loss of generality that output variables are produced
in the order y,,¥a2, . . . . Ym- Consider the set of consecutive cycles beginning :
with the production of y, and ending with the production of y,, a<b. Let
Xj, . .., X;, be the input variables read during these cycles. Then, the state

q of M in effect prior to the cycle in which y, is produced and the values of
Kijo oo oo Xy read determines the values of the t = b—a+1 output variables

(YaYatrr - - - ¥b)-

Suppose that k< I~t for t = la(S+1)]. Then, since f is (a, Z, d) - indepen-

dent, it follows that for some assignment to x;,...,x; the function

(Ye.Yat1. - - - . ¥p) has at least 2(t/2) points in the image of its domain, which
exceeds 25 = |Q|, the number of states of M. But given an assignment to
X, - - -+ i, it is just the state of M that determines (ya.Yas1. - - - .¥p). This
contradiction implies that k= l~t+1. Since there are at least |d/t] blocks
of t outputs in the set Jg of outputs for which the independence condition
holds, it follows that the number of cycles in which inputs of f are read, Tj,
must satisfy

T = ld/ tj(t —t+1)

Also, the number of :cycles in which outputs are produced, Tg = d, so that
the 1/0-time T satisfies T = max{T;Ty). Hence,

T = max(ld/ t|({ -t+1), d)

from which it is straightforward tc derive the desired result using the ine-
quality ld/t] = (d—t+1)/t and by considering the two cases t <3dl/8 and
t=3dl/8.

If the clasg of algorithms considered uses only operations of the type
h:X® » X to compute functions f:X" » Y™, then the above inequality can also be
derived with a = 8/logz|X|, 8= 1, and S interpreted as the number of tem-
porary storage locations or registers.



3. SPACE-TIME BOUNDS FOR FUNCTIONS

In this section the above theorem is applied to a number of previously unex-
amined problems and to matrix inversion. In the latter case we generalize a
result of Ja'Ja' [6] which applies to matrix inversion over fields of sufficiently
large characteristic. We begin with a few definitions.

Definition 3: A function f is a subfunction of a function h if it is obtained by an
assignment to some of the input variables and/or by the suppression of some
output variables.

Definition 4: The Boolean shifting function £ (%o, . .. ,Xp-1,51. . .- ,SK) =
(Yo. . - . + Yzn-2) With control variables s, . . . , si realizes the mappings
Xj-tt < j< t+n-1
Y1=1 0 otherwise
for each 0<t=<n-1 by some assignment to (s;,...,sx). The Boolean cyclic
shift function £(x;, ... . X081, ...,k = (Y1, . - . . ¥n) realizes each cyclic shift
of x;,...,Xp for some assignment to s;,...,8k The function

he(xy, .. . XnS1 ... Sk) = (Y1 . .. ¥n) X ¥ £ X, s & Z is transitive of degree m
over X if for each permutation g in the permutation group G over {1,2,...,n},

(1) thereis an assignment to s, . .. ,skxsuch that y; = xz;4), 1 <i<n, and
() for each 1 <i,j< n there exists g ¢ G such that g{i) =j.
A function is also transitive of order n if it has a subfunction of this type.

The class of transitive functions has been defined by Vuillemin [9] for the
case of |X| = 2.

Our first result concerns the shifting function.

Proposition 1: The shifting function £ is (a, n(1—1/ ), 2n-1) - independent for
a> 1

Proof
In Definition 2 let Iy = {Xg.....Xn-13}, Jo = {Yo.---.¥zn-2}. Define {a;} and {b;] by
1 iety ... iy
8y 0 otherwise
1 je b did
i 0 otherwise

Consider a shift of t places. The expression

n
me = ), a;bps
i=1

measures the intersection of selected inputs with the selected outputs that
correspond to the indicated shift. Since

n-—1
t=0

there exists a value of t, say tg, such that



My < k(l-k)/n< (I-k)l/n
Thus, for this shift at least '
(I-k) — my, = (L-k)(1-1/ n) = (I-k)/ a

of the I-k selected outputs are in correspondence with non-selected or free
inputs, where ! =n(1-1/a). Thus, £ is (a, n(1—~1/ a), 2n-1) - independent
for a > 1.

It follows from Definition 4 that if f is a subfunction of h and f is (a,
n(1-1/ «). 2n-1) - independent, then h is also (a, n{1-1/ a), 2n-1) - independent.
Since the binary integer multiplication function f{:{0,13* » {0,1{*" contains
£{m as a subfunction, by assigning one integer to be a power of 2, we have the fol-
lowing immediate corollary. It provides a lower bound that is about a factor of 8
better than that derived in [4] when a = 2.

Corollary 1.1: The binary integer multiplication function £ is (a, n(1-1/a),
2n-1) - independent for o > 1.

In [10] we show that certain powers of reciprocals and of integers represfented in
binary contain the shifting function as a subfunction from which we have the fol-
lowing corollary:

Corollary 1.2: The functions f§* and f{™* defined by
[ I
flgn.e) = |(2n/ y)e]’ flgn,e) = I22nxe

in which 1 <xy=<2"-1, e=q/ 2k > 0, k and q are integers independent of n,
and e>1 for f{me) with all integers represented in binary are
(a, ®(n(1-1/ ), @(ns) - independent! for a > 1. :

We consider next the class of transitive functions.

Proposition 2: Every transitive function of order n over X is (a/logz|X|.
n{1-1/a), n) - independent for a > 1.

Proof
Consider a transitive function f associated with the group G. Vuillemin
notes that the sets

Gy = {g £ Glg(i) = j}

for 1 < ij< n all have size |Gy| = |G|/n. In Definition 2 let Ig = {x,, .. . \ Xn},
Jo={¥1. ... .¥n}. Select some k variables in I and some (1-k) variables in
Jo. Let a;, bj £ {0,1} have value 1 if and only if x; or y; is selected, respec-
tively. Then, for permutation g,

n
m, = ), a5a)bs
i=1
matches occur between selected inputs and outputs. Since

H n
Y = YbiYam = (E-Kk|G|/n
geG  i=1 g

+ Two functions p,q:N - N are in relation p = ©(q) if there exist constants Ng, C;, Cz such
that for n = Np, ¢,q(n) < p(n) < czq(n). ‘



it follows that gq exists such that
mg < (I-k)k/n=< (l-k)l/n

Consequently, a correspondence can be established between (I —k)(1-1/n)
non-selected input variables and a like number of selected output variables.
Thus, the function f is (a/logz|X|, n(1~1/ ), n) - independent for a > 1.

where each variable is a binary string over {0,134, d = [logsn| + 1, and is lexico-

graphic?lly rdered, is (a/d’, n(1-1/a), n) - independent for a >1 and
*=d- IlogznT.
Proof f

Use the jlogzn| most significant bits in each input variable to control an

arbitrary permutation of the least [signi cant bits to show that fé{‘) is transi-
tive of order n over §0,1}4, d° = d—lloggn .

Corollary 2.1: The sorting function f§(x,, ..., %) = (yf, .. ..Y¥n) On n variables
l

This result provides a lower, bound on the space-time tradeoff f[or sorting of
the form (S+1)T = (3/ 32)na(d—{log:rj) when o =2 and (S+1)/ (d—jlogenl) is an
integer. This should be compared with the bound of (S+1)T = (15/1024)n?
derived by Tompa [2] under the assumption that straight-line algorithms are
used with operations consisting of comparisons, selections and Boolean opera-
tions. Here S is interpreted as the number of temporary storage registers each
capable of containing one word from {0,13¢.

Corollary 2.2: The product PAQ of three pxp matrices over the finite field F, of
which P and Q are permutation matrices, is (a/d, p?(1—-1/ ), p?) - independent
for d = logy|F| and a > 1. The inverse of a pXp matrix over the finite field F
(a/d, p?/ 4(1—1/ a), p?/ 4) - independent for d = log|F| and a > 1.
Proof
It is straightforward to show that in PAQ the permutation matrices P and Q
induce a group of permutations of components of A which is transitive of
order p?. The result for matrix inversion follows from this and the following
identity

lp B -1 [p—l _P—IBQ-l
0Q ~|o @

where all matrices are (p/ 2)x(p/ 2), and P and Q are permutation matrices.

From the above it follows that any 1/0-oblivious algorithms for matrix inver-
sion over any finite field F requires (S+1)T > (3/32)p*logz|F| when a = 2 and
(S+1)/1og;|F| is an integer. This should be contrasted with the result of
Ja'Ja' [5] for this problem. He considers straight-line algorithms with field
operations over the field of rational functions obtained by extending a
coeflicient field F by the set of indeterminates corresponding to entries in the
matrix. Such indeterminates exist only if F is large enough. He then shows by a
long proof that the graph of any such straight-line algorithm contains a p%/ 4-
superconcentrator. From this one concludes that (S+1)T =p?/32 for S the
number of temporary storage registers, using Tompa's lower bound
(S+1)T = n®/ 2 for superconcentrators [2]. Thus, our direct approach yields a
result weaker by a factor of 3 for a much broader class of algorithms and fields.

-8 -




We note the fastest known algorithms for matrix inversion use space
S = O(p®logz|F|) and 1/0-time T = O(M(p)) where M(p) is the number of opera-
tions needed to multiply two pXxp matrices.

Ja'Ja’ observes [5] that any algorithm operating with space S and time T to
solve an arbitrary set of p simultaneous linear equations in p unknowns can be
used p times to invert a matrix. Thus, (S+1)T = (3/512)p®logz|F| is necessary in
our model for this problem.

4. SPACE-TIME TRADEOFFS FOR BANDED MATRICES

A pxp matrix A has a bandwidth b if a;; = 0 for |i=j| > b. In this section we
consider the problems of multiplying and inverting banded matrices and of solv-
ing sets of simultaneous linear equations whose coefficient matrices are banded.
Algorithms as well as lower bounds are considered.

We begin with a few simple observations about banded matrices.
(a) the product of two pxp matrices of bandwidth b is a matrix of bandwidth 2b;

(b) if bis odd and (b+1)/2 divides p, then within every pxp matrix of bandwidth
b can be inscribed an mxm block tri-diagonal matrix, m = p/ ({(b+1)/2), in
which each block is a ((b+1)/ 2)x({b+1)/ 2) matrix all of whose components
are pt;tentially non-zero. (See the regions enclosed by solid squares in Fig-
ure 1.

(c¢) If b+1 divides p, then every potentially non-zero entry of a pXp matrix of
bandwidth b can be enclosed by a (p/ (b+1))x(p/ (b+1)) block tri-diagonal
matrix whose components are {b+1)x(b+1) matrices. (See the regions
enclosed by dashed squares in Figure 1.)

Proposition 3: Let A and B be pxp matrices of bandwidth b over the ring R and
let p be divisible by (b+1)/2. Then, the matrix multiplication function defined
by C=AxB is (8. (b+1)/2,d) - independent for B = 1/logz|R| and
d = (8p-b—1)(b+1)/2. Thus, the space and time required must satisfy

]‘(su)/ logo |R ||T= (3/32)(8p~b~1)(b+1)2.

This bound can be achieved up to a constant multiplicative factor.

Proof
In Definition 2 let Iy consist of the entries in the inscribed block tri-diagonal
matrices in A and B, as described in (b) above. Let Jp be the entries of C in
the same positions. Then, |Ig] =2]Jg|. ]Jo| = (3m—2)[(b+1)/2}® and
m = p/((b+1)/2). Suppress all entries in C outside of Jp and zero all
entries of A and B outside of |Ig]. :

For any k < (b+1)/2, select any k entries of |Ig| and any {(b+1)/2) - k
entries of |Jg|. These latter entries fall into at most a likez number of
columns of C while the former fall into at most k columns of A. Thus, if B is
chosen as a block diagonal matrix in which each block is a permutation
matrix, it is possible to map columns of A containing no selected entries
onto columns of C containing selected entries. It follows that the resulting
function has |R|®*1/27k points in the image of its domain, or
a = 1/logz|R|.

The standard straight-line algorithm for this problem performs in:er pro-
ducts of rows of A and columns of B. A total of at most n(Rb+1) such inner
products is computed and each consists of at most 2b+1 multiplications
and 2b additions. They can be done in 4 registers each capable of holding

-7 -



at most one of |R| different values. Thus, S = O(logz|R|) and T = O(nb?),
which achieve the lower bound up to a multiplicative constant.

Grigoryev [1] has stated a lower bound of ST = Q(p®) for the mulfiplication

of full pxp matrices over GF(2).

Proposition 4: The function defining the inverse of a pxp matrix of bandwidth b
over a finite field F is (a/d, e(1-1/a), w?e®) - independent for a > 1,
e=(b+1)/2, w=llp/el/2] and d =log;|F|. Ignoring diophantine constraints,
any 1/0-oblivious FSA for matrix inversion requires space S and time T satisfying

(S+1)T = (3/512)p*(b+1)*(logz | F})

when a = 2.
Proof

It is sufficient to consider a banded matrix in which all entries outside the
inscribed biuck tri-diagonal matrix, as described in (b) above, are zero and
the block matrices above the diagonal are also zero. If A is the pxp matrix
of bandwidth b to be inverted, the resulting mxm block tri-diagonal matrix,
m = lp/ el e = (b+1)/2, has the property that its blocks B; are zero except
for j =i, and j = i-1 for i = 8. This matrix B is invertible if and only if B;; is
invertible for 1 =i <m. Let C be its inverse, treated as a block matrix. Itis
straightforward to show that

B;;' o

. J=1

Ci,j = ("1)l+jBiTil :[l[ B]q.l.rBr’r_l J<1
o r=i—1 j>1

when B is invertible.

Consider blocks of C defined by W={{ij)| wti<ism,1=<j<w] for
w = |m/2]. Each such block contains the product Byl w+1Bws1wBrk. Let
the diagonal elements of B be the negative inverses of permutation
matrices, that is, Bj; = =P;"!. Also, let B;; =1, the exe identity matrix, for
j=1i-1, except fori = w+1,j = w. It follows that

) i w

Ci,j = (_1)i+]LH (—I)Pu]Bvﬁl.w H(—I)PVJ
=w+1 v=]
for (i,j) ¢ W. If in addition By, , v = —=H, then
Cj.j = UjHVj

where U; and V; are arbitrary permutation matrices and H is an arbitrary
matrix over F. By a renumbering of indices, we consider the space and
time to compute Cj; = UiHVjfor 1 <ij<w, w= lm/ 2).

We now show that the function consisting of the set of products
{UHV; | 1 =i,j=< w ] where U; andV; are permutation matrices and H is an
arbitrary matrix over F is (a/4d, e?(1-1/a), w?e®) - independent for
d= logg IF ' .

In Definition 2, let Iy be the components of the matrix H and let J; be the
components of the block matrices C;; for 1 <i,j<w. The correspondence
with the original elements of A and C is obvious. Select any k elements of I,
and any l-k elements of J,;. Let



1 hpgselected y 1 (Cyprs selected
8rs= |0 otherwise rs= |0 otherwise

Now let U; and V; be cyclic permutation matrices that provide cyclic shifts

by amounts @; and $;, respectively, 0 < 8;,%; < e—1. If the indices of matrix

elements are drawn from the set §0,1,2,....e—1}, then the (r,s) component of
UiHV; is (Cij)rs = hrig,e+¢, When addition is modulo e. The number of

matches between selected inputs and outputs through these permutations

is
mes = EEbr*:La”el,m,
ijrs
Summing this over all e*™ values of (8,8) = ((8;,...,0,),(®). ..., %y)) for

0<0;%<e—1and 1<ij<'w, we have
2 Mg s = k(l —k)ez("l)
X

from which we conclude the existence of @p,&psuch that
me, 8, < (I —K)k/ e? < (L-Kk)I/ e?

Consequently, for this assignment (@%,) the function has ‘at least
(1 -k)(1-1/ e?) selected output variables that can be identified with unres-
tricted input variables. This establishes the desired conclusion.

The following corollary results from the application of an observation of Ja'Ja’, as
described above.

Corollary 4.1: The function whose value is the solution to a set of p simultaneous
linear equations in p unknowns over a finite field F when the coeflicient matrix is
banded of bandwidth b requires a space-time product which satisfies

(S+1)T = (3/512)p(b+1)*(logz | F|)

when diophantine constraints are ignored.

No algorithms are known which achieve the stated lower bounds within a
constant multiplicative factor for banded matrix inversion or for the resolution
of a banded set of linear equations. Such a result is not expected for the latter
problemm because of the difficulty of achieving the lower bound for the non-
banded case. We now present some good algorithms for these problems. We
begin by presenting an LU decomposition for a banded matrix.

Lemma 1: Let A be an mxm tri-diagonal matrix whose entries are exe matrices
over a finite field F. Then, A can be written as either of two products of upper
and lower block diagonal mxm matrices U, L and U*, L* where

A=LU=0UL’
and
I J-_-l
Li;=1 a1 %} j=i-lfori=2
0 otherwise



X j:i
Ujy=1 @444 J=itlfori=sm-—1
0 otherwise

where x; = a;,;, ¥; = 8j; — &j;-1Xj—18j-14 for i=2. Also,

d; j=i
Lj=1{ aj1 j=i-lfori=2
0 otherwise
1 j=i
Uy ={ aigadisl  jeitlfori<m-1
0 otherwise

where dp = amm. 4d;= 85 — a,,,“dj:‘laiﬂ_i fori<m-1. The matrix A is non-
singular if and only if each of the exe matrices x;, d;, 1 < i < m, is non-singular.

Given a pXxp matrix of bandwidth b, inscribe it in and mxm block tri-
diagonal matrix A of exe matrices, m = p/e, e = b+1, as described in (c) at the
beginning of this section. We now show that standard Gaussian elimination with
forward elimination and backward substitution on the block matrix can be
reduced to computations for which efficient space-limited algorithms are known.

The object is to solve the set of equations
Az =8 (1)

for A as described above and z and 8 two "block” mX1 matrices whose com-
ponents are exl matrices over F. Let these "blocks"” be {z, ; | 1 =i<mj. The
algorithms to be developed can be used with the p = me unit vectors to invert
the matrix in question. Let y satisfy

Uz=y ()
Then, to solve (1) we first solve
' Ly=8 (3)
and then solve (2). The solutions to (3) are
' =1 ¥i= By — &y-1Xi1Yi- fori=2. (4)
and the solutions to (2) are
Zm = X' Y, zj = Xm' (¥j ~ ajj+1Zj+1) for j<m-—1. (5)
Combine the computation of x;! with that of y; in one step s;. Then, this step

requires one matrix-inversion at a cost of I(e), two matrix multlpllcatlons at a
cost of M(e) each, one matrix-vector mult1p11cat10n at a cost of 2e? operations,
and one matrix subtraction at a cost of e® each, for a total incremental cost As;
of at most

As; = I(e) + M(e) + 5e? (8)
Each z; can be computed in a step r; at an incremental cost of at most Ar; where
Ar; = 5e? (7)

Since matrix inversions are no more costly that some constant multiple of
M(e)[11], it follows that both costs are O(M(e)). In both cases, temporary
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storage is needed for two exe matrices and for two eX1 vectors to do the incre-
mental computations.

The graph of the dependence between steps {si. vy} is a ladder network, as is
shown in Figure 2. Note that reads of inputs 8, a;;-;, and a;_,; are not shown
explicitly but are subsumed in the individual steps. The ladder network
corresponds to a computation on a stack in which the results of computation
steps s, Sz, . . -, Sy are pushed onto a stack in this order and popped in reverse
order to compute the results rp, ry-y. . . ., ry. If insufficient storage is available
o hold albthe entries in a stack, it is possible to save certain positions in a stack
as starting points to recompute virtual stack elements. Of course, this recom-
putation requires time and the possible trades of stack space for time are of
interest.

Chandra [12] and Swamy and Savage [13] have considered space-lime
tradeoffs for the graph of Figure 2. Space is modeled with "pebbles”. A pebble
is placed on a node to signify that the results of the corresponding computations
are held in a register. A pebble can be placed on an empty node only if all nodes
with edges directed into it contain pebbles. It is possible in this case to cover
the empty node with a pebble from one of its predecessors, which corresponds
to re-using a register. The graph in question, the ladder network, can be peb-
bled with just two pebbles, one for the upper spine and one for the lower. How-
ever, when just two pebbles are used, the number of moves required is propor-
tional to m*. This yields a space-time product of ST = O(p*M(e)logz | F|) which is
much larger than the lower bound given in Corollary 4.1. Swamy and
Savage [13] determine the optimal placement of a given number of pebbles p, on
the ladder network of depth n sot that the number of moves M(n,p) is minimized.
For large n, they show that

O(pn'*'/P) p = o(log n)
M(n.p) = | O(nlog n/log p) w(logn)
O(nlog n) @(log n)

Thus, if p = Vn, which represents a dramatic reduction in space, the number of
moves remains proportional to n.

The value of p that minimizes the space-time product is p = O(log n). This
implies that space for ®{log n) exe matrices is used and on the order of nlogn
node computations are performed, each at a cost of O(M(e)). This yields the fol-
lowing result. :

Proposition 5: The solution of a banded set of p linear equations in p unknowns
with bandwidth b over a finite field F can be obtained as a pebbling of a ladder
network of depth p/(b+1). A space-time product of

(S+1)T = O(pbM(b){log p/ b)?*log |F|)

can be achieved. Inversion of a banded matrix can be done with the following
space-time product:

(S+1)T = O(p2M(b)(log p/ b)*log |F|)

!

Proof
The upper bound for the problem of resolving a set of equations follows
from the above discussion.

The upper bound for matrix inversion is obtained by noting that the algo-
rithm for the above problem can be used p times with the p unit vectors.

-11-



This, however, leads to a bound which is larger than the quoted result by a
factor of b. The elimination of this factor is obtained by noting that if we
solve e sets of equations simultaneously, and in parallel, the cost of steps s;
and r;, as stated in (5) and (6), increase to I{e) + 4M(e) + e? and 2M(e) + €%,
respectively, when e matrix-vector multiplications are done as exe matrix
multiplications. Storage space increases to space for the exe matrices
from that for one such matrix and two ex1 vectors. Thus, the space-time
product is on the order of p/e times larger than that for the solution of a
set of equations.

The upper bound for matrix inversion demonstrates that the lower bound of
Proposition 4 is smaller by two factors, M(b)/ b?, which reflects our ignorance of
the cost of matrix multiplication, and (log p/b)?. The latter term reflects the
recursive nature of our pebbling algorithm. If b = O(~/p), as it is for many prob-
lems, such as for the solution by finite differences of Laplace’s equation, this
term is much smaller than b?. We note that if a given problem, as represented
by a banded pxp coefficient matrix A, is to be solved ©(b) times, it is more
efficient to combine operations in (5) and (6) above than to solve 8(b) individual
problems. We also note that in the limit of b large, these bounds reduce to those
for the general case. -

Before closing we return to the result of Eisenstat et al [7] that motivated
the author's interest in banded matrix problems. They present an algorithm for
the solution of a banded set of equations whose matrix is positive definite and
which uses time O(pb?(log p/ b)) and space O(b?*(log p/b)). (The latter factor of
(log p/ b) was not reported in their paper and is necessary to implement their
recursive algorithms.) We give a block version of their algorithm.

Represent the matrix A as suggested in (c) at the beginning of this section.
Let e = b+1 divide p and let m = p/e. From Lemma 1 we can write

Az=LUz=U'L'z=8 (8)

and
Uz=r, Lr=g8 (9)
L'z=s, U's=§8 (10)

From these equations we can solve for ry, x, and sk, dy4; using the following
identities:

_ _ -1 -
ry =8 =i —ai1X_iri-;, < <i<=m

—_ — -1 :
X = ), % T A~ aii-1X-18i-,n e <1i=m
- — -1 ;
Sm = Bm: Sj= B — 8541931541, 1=<j=<m-23
— — -1 5
dm = amm. d.i =a aj.j+1dj+laj+l.j' 1=j=m-2

using O(M(e)m) operations over F and space to hold O(e?) elements from F. Then
using (9) we have

B

which can be solved for zy and z,, in O(M(e)) time and O(e?) space. Substitute
zx and 2z, back into (B) to divide the original problem into two problems
corresponding to block matrices which are (k—1)x(k—1) and (m—k~1)x{m-k~1).

[ Xy Ak k+1

aperk Ay
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Thus, the problem can be solved by recursion. If we choose k = fm/ 2], the time
involved satisfies

T(m) < T(Im/2] - 1) + T(m - Im/ 2] ~ 1) + O(M(e)m)
which satisfies
T(m) < O(M(e)mlog m)

The space required is O((e®log|F|)log m) since space of 0{e®log |F|) is required
for each of the O(log m) levels of recursion. Thus, a space-time product of the
order as indicated in Proposition 5 is used. The reduction of the time by a fac-
tor of M(e)/ e by comparison with the Eisenstat et al result is possible because
of the treatment of A as a block tri-diagonal matrix.

5. CONCLUSIONS

In this paper we have extended the conditions under which the Grigoryev
method for the study of space-time tradeoffs can be applied and we have used
this method to derive lower bounds for several problems. A lower bound for the
shifting function implies a lower bound for certain binary integer functions
including integer division and square roots. A lower bound for the class of tran-
sitive functions implies lower bounds for sorting and for matrix inversion over an
arbitrary finite field. Problems having to do with banded matrices, however, are
the principal topics treated in this paper. Lower bounds have been derived for
the multiplication and the inverse of banded matrices and for solving a banded
set of linear equations. Upper bounds for the banded multiplication problem
match the lower bounds up to a multiplicative constant. The upper bounds
derived for the other two problems are less good, with the bound for matrix
inversion being closer to the lower bound than that for resolving a set of equa-
tions.

The lower bound on space time exchanges for resolving a full set of linear
equations in p unknowns over a finite field F is ‘
(S+1)T = (3/512)p°logz|F|
when diophantine constraints are ignored. The best known upper bound, how-
ever, is
(S+1)T = O(M(p)p®logz | F|)

which is achieved by the LUP method outlined in [11, p.233]. There is an impor-
tant gap here that needs to be closed. The lower bound for matrix inversion is p
times as large as the lower bound for resolving a set of equations. The best
known upper bound for inversion is that given above for the problem of resolving
a set of linear equations. Thus, the ratio of the two bounds in this case is
M(p)/ p?, where M(p) is the number of operations to multiply two pXp matrices.
This ratio may in fact be a constant.

The lower bound for the resolution of a banded set of linear equations with
bandwidth b is :

(S+1)T = (3/512)p(b+1)*(logz | F|)
while the best known upper bound is
(S+1)T = O(pbM(b){log p/ b)?log |F )

The gap is measured here by a factor of O(M(b)/b) which is at least linear in b.
The upper bound for banded matrix inversion is

-13 -
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(S+1)T = O(p*M(b)(log p/ b)%log |F|)

and the gap here is measured by a factor of O(M(b)/ b?), which may in fact be'a
constant, and a factor of (log p/ b)?, which can be small if the ratio p/b is not
too large. It remains to be seen if the lower bound for the resolution of a set of
banded linear equations is tight or not.

The upper bound derived by Eisenstat et al [7] has been improved. Theirs"
was originally derived under the assumption that the banded matrices were
positive definite. This condition is not used here in the derivation of upper or
lower bounds. It is of interest to extend the upper and lower bounds to this
case. It is also of interest to treat the large class of special problems that are
often encountered in practice.
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Figure 1. A Banded Matrix with Inscribed and Super-

scribed Square Matrices
Figure 2. Ladder Network
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