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ABSTRACT

We consider zero-one solutions to inequality systems having inequalities
involving only two variables. Special cases include the independent node problem,
the node covering problem, and the set packing problem. We develop a unified
framework using a class of bidirected, transitively closed graphs and show
properties of the zero-one solutions in terms of these graphs. A type of clique
inequality is defined and shown to yield facets of the convex hull of zero-one
solutions, extending well-known results for the independent node problem. For
the Tatter problem, the development of perfect graphs has been important with
regard to characterizing polytopes which have only zero-one vertices. We place
our work in that setting, give some results, and conjecture some properties of
perfect graphs involving our more general graph structures.

RESUME

Dans cet article, nous considérons un systéme d'inégalités linéaires en
variables 0-1, dans lequel i1 y a exactement deux coefficients non nuls par
inégalité. Cette classe contient comme cas particuliers les problémes suivants :

- trouver un ensemble stable maximum dans un graphe

- trouver un ensemble minimum de sommets recouvrant un graphe

- problémes du type "set packing"
ainsi que quelques problémes de flot.

Nous proposons ici un traitement unifié de tous ces cas qui utilise une
classe de graphes bi-orientés et transitivement fermés, et nous montrons des
propriétés des solutions 0-1 en termes de ces graphes. Nous généralisons aux
graphes considérés ici,le concept de clique, nous introduisons une inégalité
associée et nous montrons qu'elle définit une facette de 1'enveloppe convexe des
solutions 0-1. Ceci est une généralisation naturelle d'un résultat bien connu
pour les graphes non orientés. Concernant ces derniers, les &tudes sur les graphes
parfaits ont été importantes pour caractériser des polyédres n'ayant que des som-
mets 0-1. Nous proposons ici une généralisation aux graphes bi-orientés du concept
de graphe parfait ; nous en montrons quelques propriétés et nous posons des conjec-
tures concernant les graphes bi-parfaits considérés ici.




"1, Intréduction

We consider inequality systems with zero-one variables where the inequalities
have only two variables per inequality. Without loss of generality, ~‘

there are four possible inequalities for any pair XX, of variables:
]

X, + X, 2 13
1 ]

X, = X, 2 03
i

“X. + X. = 03
1 ]

-X, - X. 2 -1,
1 ]

(]

Our main object of study is the convex hull of zero-one solutions to
inequality systems made up of inequalities of this type.

Besides being interesting as inequality systems in their own might, as
we consider them here, such inequalities arise as logical implications of
general zero-one programming problems and have been called degree-two
constraints[ 1, 7, 8, 12 ]. For example, Guignard and Spielberg [ 7 ]
build up logical inequalities of this and more general types and
exploit them in limiting and guiding the enumerative search in solving
zZero-one prob}ems. Their propogation procedure is used to fix variabies
or to finally give what we call a transitively closed graph. Hammer and
Ngyen [ 8 Jused degree-two inequalities as a key tool in their
APOSS procedure. ,

We will represent these systems of inequalities by a certain type
of graph, called bigraphs, which are similiar to the bi—difected graphs
for the general matching problem [4].

A case of special interestis the independent node problem. In that
problem, a zero-one variable X is associated with node i , for each
node i , and the inequality x; + xj £ 1 is required if the edge [i,7]

is present. The nodes i having X, = 1 and satisfying these inequalities
form an independent set of nodes, i.e. a set of nodes such that no edge
connects any two nodes in the set. Any set packing problem [ 11 ]
can formally be converted to an independent node problem on the
"intersection graph", i.e. the graph with a node i for the ith subset
and an edge [i,j] if the izl—-1 and jEE subset have a nonempty intersection.

The node covering problem involves COnstraiﬁtS xs + xj 21 for

every edge [i,j].



The nodes with ¥.= 1 form a node cover, i.e. every edge meets at least one
such node. The complement of a node cover is an independent set, and clearly
a node cover containing the minimum number of nodes among all node-covers for
a given graph is the complement of an independent set containing the maximum
number of nodes among all independent sets of the given graph.

Although a general set packing problem can be converted to a node packing
problem via the intersection graph, the same is not true of node covering. In
the case of set packing, there are many families of sets which will give the
same intersection graph. The intersection graph, and its associated
cliques to be discussed in section 3, gives a cannoniced representation of any

set-packing problem.

2. Degree Two Inequalities and Bidirected Graphs

A bidirected graph G = (N,E) is a set N of nhodes and a set E of edges
where each edge e € E has two ends. Each énd of an edge meéts a node i €N
and has an associated sign. The signs for the two ends of an édge need not
agree. Thus, an edge e is denoted as the unordered pair [i,j] where i and
j are the two nodes met by the énds of edge e. In addition, the signs of -

the ends of the edge lead to three types of edges:

(+,+) edges e = [1,3] with two plus ends,

(-,-) edges e with two minus ends,

1]
Lammen §
e
w
.
[S—

(+,-) edges e

i
~—
He
v
(WN
L.

with a plus end at i and a minus end at 3.

A (-st)edge of a bidirected graph G is defined accordingly. Note that edges
of the form [i,i] may present in the graph. We call such edges loops.

This definition is the same as in Edmonds and Johnson [ 4 ]. Here, however,
we have a different use of such graphs. A system of inequalities each of which
has two zero-one variables can be represented by a bidirected graph having a

node i for each variable X, and an edge for each inequality:
x; + % 21 gives a (+,+) edge [i,3];
X = xj >-1 gives a (~-,-) edge [i,j];

0 gives a (+,-) edge [i,j].

i~/

X. = X,
1 3



Thus, for any inequality system with inequalities of these types there is a
unique bidirected graph,‘and any bidirected graph represents such an
inequality system. ‘ _

A loop [i,i] of a (+,+) type corresponds to the inequality X+ %, 2 1.
In 0-1 variables, this inequality implies xi=l. Similarly, a (-5-) loop gives’
-X; - X 2 -1, or Xs =.0. A (+,~) loop does not give an inequality since it
would give X; <Xy 2 0.

Two edges e and e' may meet the same pair of fiodes [i,j] if they are
of different type, é.g. if e is a (+,+) edge and e' is a (+,-) edge. That

is, an inequality system may well include the two distinct inequalities:

X, +X.21, and
1 J
X, - x. 20..
1 J
Note that the last two inequalitics imply a (+,+) loop at node i.

Given a bidirected graph G, we form theé transitive clésure G of G,

inductively, by adjoining edges to G as follows:

if node j has two distinct incident edges e and e' with a plus end of
e meeting. j and a minus end of e' meeting j , then the new edge, if not
already in G , to be adjoined to G has as its two &nds the other end of

e and the other end of e'. To be more explicit, suppose the edge e has
other end meeting node i and edge e' has other end meeting node k. Then,
the new edge e* has one end meeting node i, with the same sign as the end
of e meeting 1i,.and the other end of e meets node k with the same sign
as the end of e' meeting k. It is allowed that i be equal to k or that
i be equal to j or that J be equal to k, but edges e and g' are

required to be distinct.

(] (]
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We need not adjoin an edge already present with the same sign pattern because
that would correspond to writing the same inequality twice. Similarly,

a (+,~) loop can be dropped because it corresponds to the trivial inequality
X; "X, 20. N

A transitively c¢losed graph is a bidirected graph G such that G is

equal to its transitive closure G¥. That is, all of the edges e¥ which might
be required to be adjoined to G are already present in G.

A 'simple bidirected graph is a bidirected graph with no loops and no two
edges meeting the same pair of nodes.

Subsequently, we work with simple, transitively closed graphs. For a given
graph, the transitive closure may not be simple even. if the original graph
was. However, a graph which is not simple can always be reduced to a smaller
graph as explained below.

First, if a node i has a (+,+) loop, then the inequality xi+xi > 1.
must be satisfied so any 0-1 solution must have X, = 1. Likewise, if a
(-,=) loop is at node i, then “X; =%, 2-1, so X; = 0 is satisfied by every
0-1 solution. In this case, the node i and all incident edges can be deleted
from the graph. Clearly, if a node i has both a (+,+) loop and a (-,-) loop
then there is no 0-1 solution to the problem. In the next section, we prove
the converse: there is a 0-1 solution whenever the transitive closure has no
node with both a (+,+) loop and a (-,-) loop.

We also show that if the transitive closure has no loops at all, then for
any node i there is a 0-1 solution with X; =0 and another 0-1 solution
with x; = 1.

Second, if there is a (+,-) edge [i,j] and a (-,+) edge [i,3] , then
x; 2 xj and xj 2 ¥X; S0 x; = x. and eliminate one variable. In the graph,
we "shrink" the two nodes [i,j] together as in figure 2(i). Likewise,

Figure 2



if there is a (+,+) edge [i,j] and a (-,-) edge [i,3] , then Xg ¥ X 21
and -x, - X 2 -1 hold and thus X, = 1- ok We can elimingte X, using
the substitution x, =1 - X Figure 2(ii) illustrates this case.

We are interested in these graphs because we want to represent inequality
systems. Thus, we can consider that a duplicate (+,+) edge [i,j] can be
eliminated in the same way that.an inequality X + xj 2 1 can be eliminated
if it has already appeared in the inequality system. In the same way, changing
a variable X; to xi' =1- x; does not essentially change the inequality
system. This change is represented in the graph by changing all the signs of
ends of edges at a given node. That is, changing Xy to 1-x:.L changes
each plus end meeting node i to a minus end and each minus end meeting node
i to a plus end without affecting the transitive closure of the bidirected
~ graph.

Therefore, we can say that our graphs are not essentially changed by
duplicating an edge, including the signs of its ends, or by changing all of
the signs at a node. i

The construction of the transitive closure G6f a given bidirected graph G
can be done by "scanning" each edge of the transitive closure G*_exactly once.
We fifst state what the main step, scanning an edge, consists 6F.

'Séan edge e = [i,j] : If e has a plus end at node i, look at every other

edge e' -with a minus end at i and adjoin e* , as re-
quired in the definition of transitive closure, if it is not
already preésent. If e has a minus end at node 1 , then
look at every other edge e' with a plus end at i. Do the
same for node 7J .
We can start with a list of edges in any order and start scanning each edge in
turn. New edges e can be adjoined to the bottom of the list. Terminate when
every edge, either originally present or adjoined, has been scanned.

To show that this simple scanning procedure produces the transitive closure
requires .only showing that for the graph produced, every pair of edges e and
e' meeting node i with oppositely signed ends eventually gets looked at.
But scanning the edge e or e' furthest down on the list must result in
looking at the pair because at that point the other edge is present.

Since the order of work in the scanning step can be kept down to order
n = |N| and the number of edges in G* is at most order n2 , the total work

required to get the transitive closure of a bidirected graph is at most order n3. )



3. Bigraphs

For this section we concern ourselves with simple, tansitively closed bi-
directed graphs. Call such graphs bigraphs. A 0-1 solution to the inequality
system associated with a bigraph G is called a 0-1 solution for @G .

Proposition 1 The subgraph @

S induced by a subset S of the nodes of a
bigraph G s a bigraph.

Proof. Clearly GS is bidirected and simple. G. is transitively closed

S

because every edge of the transitive closure of G. is an edge of the tran-

S
sitive closure of G . Since G is a bigraph the proposition follows.

The following two constructions are used frequently in both this section

and the next.

Construction O (Assigning a variable the value 0): For any bigraph G let

T be the subset of nodes of. G consisting of a node i and all of its
neighboring nodes j met by an edge [i,j] having a plus end at node
i and let R=N-T . For k€T we construct a partial solution xT as
follows:

0 if k=i or [i,k] is a (+,-) edge.

}QJ(:

1 if [i,k] is a (+,+) edge.

Construction 1 (Assigning a variable the value 1): For any bigraph G 1let

U be the subset of nodes of G consisting of a node i and all of its
neighboring nodes j met by an edge [i,j] having a minus-end at node
i and let S=N-U . For k€U we construct a partial solution xU as
follows:

1 if k=i or [i,k] is a (-,+) edge.

o if [i,k] is a (-,-) edge.

fa






‘Proposition 2 Let G be a bigraph and let i € N, Ty, R, S and U be

defined as in Construction O and Construction 1, respectively.
(<) If xR zs a 0-1 solution for the subgraph Gp, then

x = Cx 5L ) i8'a 0-1 soluytion for G. ’
(iz) If xS zs a 0-1 solution for the subgraph G

g then
x = (x X ) 18 a 0-1 golution for G.

Proof. We prove part (i) of the proposition; the proof of part (ii) is

similar. By construction xT is a 0-1 solution for GT' Hence it suffices
to show that the inequalities corresponding to edges e = [j,k] with jET
and k € R are satisfied by xT and, more precisely, that they are
rendered superfluous by the choice of xT. We consider the four cases that

are possible and show that only two of them can occur in the bigraph G:

(1) Xj= 0 and edge e has a plus end at j;
(ii) xj= 1 and edge e has a plus end at j;
(iii) xj- O and edge e has a minus end at j;

e has a minus end at j.

(3v) xj= 1 and edge

In case (11) the corresponding inequality is either x - X 2 0 or
x-ka 2 1. . With x fixed to the value 1,the 1nequa11ty is satisfied and
reduces to ) s1 or x 2 0. Thus in case (ii) the assertion follows. In
case (iii) the assertion follows by an analogous argument.
Suppose now case (i) occurs. Node 3j cannot be equal to the node i chosen
in Construction O because otherwise k € T holds. Since j € T, j # i
and xJ 0 hold, the edge [1i,3] is a (+,~) edge. Since the edge e = [4,k]
has a plus end at j and since G is transitively closed, it follows that
the edge e’ = [i,k] is in G and that it has a plus end at node 1i.
Hence, k € T follows, contradicting k € R = N - T. Thus case (i) cannot
Ooccur. By analogous reasoning, case (vi) cannot occur. Hence, we are either
in case (ii) or (iii) and taking any O0-1 solution xR for GR yields
a O0-1 solution for G when Combined with xT. Proposition 2 follows.

We remark that this proposition is true only because G is transitively
closed, which means intuitively, that the implications of setting x; = 0 (or 1)

have already been propogated through the graph, see [7].
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Proposition 2 does not assure that there is a 0-1 solution for G because
there may be no 0-1 solution for GR. However, the existence of a 0-1 solution
for a bigraph G is easily proven from proposition 2 by induction. In fact,

more is true. s

Proposition 3 Let G be a bigraph and k € N be any node of G. Then
there exist 0-1 golutions 2 and =z’ for G such that

xg = xj for all j ¥ k, xz =0 and xé = 1 hold.

Proof. Let W be the set of nodes of G which are not connected to node k
by an edge of G. We apply e.g. construction O to any node i € W and
continue to do so until we are left with a subgraph G' with node set N’
such that k € N' and every node of G' is linked to the node k by -some
edge.of G'. If 1€N', 1 $ k, is linked to node k by an edge having a

plus end at node . i we set X; T 1 and use Construction 1. It follows that
node k is in the set S -that results and thus remains unfixed. If i € N'

i # k, is linked to node k by an edge having a minus end at node 1 we

set X = 0 and use Construction 0. It follows that node k 1is in the set )
R that results and thus remains unfixed. In either case we can apply Construction O

or 1 again and repeat until node k is an isolated node. Thus x, ~can be

assigned arbitrarily the value O or 1 and proposition 3 follows.

Proposition 4 Let G be a bigraph and let < ¥ j be any two nodes of G.

For any assigmment of 0-1 values to ., and s which is not excluded

by an edge of G (if present) there exits a 0-1 solution for G.

Proof. Consider first the case where there is no edge [i,j] in G. Then,
we prove the proposition by first applying construction. O or 1 , as
required, for node i and following with construction O or 1, again
as required, for node j, which will be in GR or GS , as the case may be.
Since there is no edge [i,j], construction 0 (or 1) for node i will leave
node j in GR (or GS) so that either construction can then be applied to
node j.

To prove the propositibn, in general, requires considering several cases.
We consider the case of a (+,+).edge e = [i,j] and leave the other cases to
the reader. The values excluded by a (+,+) edge for[i,j] are X, = 0 and

X3 = 0 since the corresponding inequality is X, + xﬁz 1.
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Thus, we need to show that all three of X =0and x, = 1, xi = 1 and xj = 0,
]

X = 1 and xj = 1 can occur in O0-1 solutions for G. If construction 0

is applied to node i, then a 0-1 solution for G having %, = 0 and xj =1

will be produced. Applying construction 1 to node i leaves node j in
GS so that either xj =0 or xj = 1 1is possible in a 0-1 solution for
Gg- Using proposition 2, there are O0-1 solutions for G with x; = 1
and % equal to either O or 1, completing the proof.

Proposition 4 shows that the transitive closure of G gives all of the
possible implications on pairs of variables taking on 0-1 values. This
result is even stronger than saying that there are no new inequalities on
pairs of variables which can be derived as non-negative combinations of

the existing inequalities.

‘Theorem 5 The comvex hull of 0-1 solutions for a bigraph G <is a
full-dimensioned polytope inR'.

The proof of Theorem 5 follows directly from Proposition 3.
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4. Clique Facets

A clique in a graph is a maximal, completely connected subgraph of the graph.
Thus, the set S of nodes of the clique has the property that for any pair
of nodes in S , there is an edge of G meeting that pair of nodes; and ad-
joining another node of G to S would cause that completely connected pro-

perty to no longer hold.

Let G be a bigraph with node set N and let GS be a completely con-
nected subgraph of G with node set S . Define S_C S (S_ €S , respec-
tively) the subset of nodes of GS which are met by an edge of GS having

a plus end (a minus end respectively). Clearly, S = S+lJS_ holds, but it is

possible that S_NS_ £ . We call G (or simply, S) a biclique in G if:

(1) GS is completely connected;
(ii) S+nS__ = ¢ hOldS; and
(iii) GS is a maximal subgraph of G with respect to the requirements

(i) and (ii).
For the bigraph

Figure 5

shown in Figure 5, the nodes 1,2,3 form a biclique with S+ = {1,3} and

S_ = {2} . Although nodes 1,2,3,4 form a clique, they do not form a biclique
because node 4 is met by both plus ends and minus ends of edges connecting
node 4 to nodes 1,2,3. Similarily, nodes 1,2,3,5 form a clique but not a bi-
clique because now node 2 is met by both plus ends and minus ends of edges
connecting it to nodes 1,3,5. Nodes 1,2,3,6 do not form a biclique becaﬁse
they are not completely comnected. Thus, nodes 1,2,3 are maximal with respect

to the required property and do form a biclique.

A biclique of G with node set S = S+lJS_ is called a strong biclique

of G if there does exist a node k¢S with edges [k,i] for all 1gS
in G such that the edge [k,i] has a plus end meeting i if 1€S, and

4



a minus end meeting i

if 1€s_

- 13 -

. In figure 5, nodes 1,2,3 do not form a

strong biclique because of node 4. The strong bicliques in the gr'aph shown in

~figure 5 are

{1,3,4} , {1,3,6} , {2,4} , and {2,5} .

For a bigraph G and a biclique of G with nodes S

the corresponding clique inequality to be the inequality

Z x.
j€S+

Proposition 6:

tnequalities of G .

Proof:

Z (1-x%x.)+ T x.

3€S+

The clique inequality for S = § S_

L %53 Is,| -1

j€s_

+

5 1 L]
jes_

In order to violate it, there must be one of:

(1) %;=1 and ;=1 for i€S_ and jE€S_
(i) X, =1 and xj=0 for i€S_ and j€s, 3

(iii) xi=0 and xj

Each of these three possibilities is explicitly excluded by an edge of G

illustrated in Figure 6.

' S_ S_
Q—0
-xi-x-_‘.| 2 -1

(1)

Proposi-tion 7.
» tf T 48 a subset of S ,

jer ¢

where T _=TN0S  and T_

=0 for 1ES+

and 3Jj ES+

S_ S,

@—O

-xi +xj 20
(ii)

Figure 6

then the inequality

S,

S,US_

can be written

Sy

xi+xj =1

(iii)

For a bigraph G and a biclique with node set S = S, US

» define

Every 0-1 solution for a bigraph G satisfies the clique

» @s

of

- £ =z,z|T]|-1,
jer_ Y +
= TNS_ , is satisfied by every 0-1 solution



-ll,l,-

for G . However, this tnequality for T <s implied by the elique in-
equality corresponding to S and the linear inequalities: OSxJ.S 1, for
all JeEW.

Proof. The fact that every O0-1 solution satisfies this inequality cor-
responding to T has the same proof as for proposition 6.

The second assertion is shown by adding the inequalities

£ x,- L x,2][s,]-1
jes, 1 jes_ *
- z-1 , jes -1

XjZ o , jes_-T_ ,
to derive the inequality corresponding to T .
Proposition 8. If a biclique S of a bigraph G <s not a strong

biclique, then there exist two bicliques C; ¥ § and Cqo ¥ 5 such
that the clique constraint correspornding to S is implied by the two

elique inequalities corresponding to s and Cye Thus, the clique
constraint for S <s implied by the system of strong biclique

inequalities.

Proof. Suppose the biclique S with nodes S =S, U S. is not strong,
i.e. there exists k ¢ S such that the edge [k,i] is in G for every
i €S and has a plus end (a minus end, respectively) at the node i when
ies, (i € S_). By the maximality of S, the node k must have some

plus ends and some minus ends meeting k for edges [k,i] , i € S. Define

T, = {i €s | edge [k,i] has a plus end meeting k}
T_ = {i € S | edge [k,i] has a minus end meeting k}.
It is clear that C, = {k} U T  and C, = {k} UT_ are bicliques with
= n =ctu ¢
¢, [{k}u(s+nT+)]u[s_ T+]-C$ cl
¢, =ls,n T_TUl{k} U (s_nT_)] = ¢, U,

being partitions of Cl and C2 so that their clique inequalities are

z ;- L x.z|ct -1, and

st 3 s mm ] 1’ ?

J€C1 jec;

I, %" X, 2 ! C;[ -1,

jecs jec] ’

Adding these two inequalities gives



&
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j§s+ x; - jés_ x; 21+ [s,] - 2= [s.| -1,
because X, appears with a + 1 and a - 1 in the two inequalities.
Hence, the first assertion is proven.

Let P denote the polytope defined by all clique constraints and the
constraints 0 § xj £ 1, j €EN. By theorenm 5, P has dimension n because
P contains the convex hull of 0 - 1 solutions. Consequently, every facet
of P has dimension n-%.:Let ax 2 a8, be an inequality corresponding to
a biclique which is not strong. By the first part of the proof, there
existstwo clique inequalities cx 2 ¢, and dx 2 do such that a = c + d
and a, =c  * do. Hence, ax = a, 1if and only if cx = c, and dx = do'
Furthermore, the 2 x n matrix with rows ¢ and d has rank 2. It follows
that ax = 3, defines a face of P of dimension at most n-2. The second

assertion of the proposition is, thus, proven.

Proposition 6,7, and 8 prove the following result.

Theorem 8.  For a bigraph G the set of 0-1 solutions to the inequality

system
O_S.xj51 s JEI

(4.1) L x.- I .2 fT+[ =1 forall TEC and for
jer. 9 jer 9 .
+ = all C, C a biclique

in G.
are exactly the 0-1 solutions for G . Furthermore, the inequality sy-
stem

ngjsl s JEW

(4.2) L x,- & z.2 IC’+[ -1  for all strong bicliques
jec, ¢ gec_ Y ,
+ - C in G.

has the same (real) solutions = R as the (5 in general, considerably
larger) system (4.1).

Proof. By Proposition 6 and 7 we have that every O0O-~1 solution for G

satisfies the system (4.1). On the other hand, since every edge of G is
contained in some biclique of G it follows by the second part of Proposi-
tion 7 that every 0-1 solution to (4.1) is a 0-1 solution for G . Again
by Proposition 7 it follows that in the inequality system (4.1) we can ve-
strict ourselves to considering bicliques only without changing the real so-
lution space. By Proposition 8, if a biclique C is not a strong biclique,
then the resulting inequality is implied by the clique inequali-

ties associated with the Strong bicliques. Thus Theorem 9 follows.
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When the bigraph G has only (-,-) edges the original inequalities

i
usual meaning (and vice versa), and the form of the clique inequality system

are all of the type -x, -~ xj 2-1 , the strong bicliques are cliques in the

is of the form related to graphs. With respect to graphs it is known [5 ]
that all clique inequalities define facets of the associated O -1 polytope.

For general bigraphs, we can ask the question whether any strong biclique
inequality can be omitted without changing the solution set in R®. The

next theorem answers the question in the negative.

Theorem 10. The strong bielique inequalities‘ are facets of the convex
hull of 0-1 solutions for the bigraph G .

Proof. The proof follows the lines of the proof for undirected graphs

[10] but is more difficult.

We must show, by Theorem 5, that there exist n affinely independent
0 -1 solution vectors satisfying the strong biclique inequality with equa-
lity. Let C=C_uC_ Dbe the node set of a strong biclique and let él=
|C+| » Cp = IC_I and c= |C| . Assume without loss of generality that C-=

{1,...,¢} . Construct c¢, affinely independent O0-1 solutions for G by

1
setting X; =0 for exactly one 1€ C+ at a time using Construction 0. By

Proposition 3 such 0-1 solution exists. Construct ¢, affinely indepen-

dent O0-1 solutions for G by setting X = 1 for exictly one ieC_ at
a time using Construction 1 and invoking Proposition 3. The resulting ¢

0-1 solutions for G satisfy the clique inequality with equality and are
affinely independent among themselves as follows by construction the cxc

matrix on the first ¢ columns corresponding to the nodes in C .

To complete the proof we construct 2(n-c) O-1 solutions for G satis-
fying the inequality with equality as follows: Since C 1is a strong biclique
for each node k §C there exist at least one node i€C such that either
iEC+ and there is no edge [i,k] with a plus end at i , or 1i€C_- and
there is no edge ([i,k] with a minus end at node i . In the former case,
set xi: 0 and use Construction O3 in the latter case, set X = 1 and use
Construction 1 In either case, the construction fixes all xj with jecC
so that the clique inequality is satisfied with equality and so that the node

k satisfies k€ R in Construction O or k€S in Constuction 1 .
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By Proposition 1, the resulting subgraph Gy (GS » Pespectively) is a
bigraph and we can apply Proposition 3 to GR (GS respectively). Combi-

ning the statements it follows that for each k§C “there exist two solu-
tions x° and x! each satisfying the clique inequality with equality and
such that x? = xj% for all jtk , x]C::O and xi=1 hold. We li;t the
2(n-c) O0-1 solutions for G thus obtained pairwise and observe that by
elementary row operation we obtain a (n-¢) x (n-c) identity matrix in columns
ct+l,...,n. Consequently, by cdnstruction, we have n affinely independent
0-1 solutions to G satisfying the clique inequality with equality and thus
Theorem 10 follows.

We note that - like in.the case of set-packing polyhedra, see [10],[111],[13] -
it is natural to look for other facet-defining structures in a bigraph
G - generalizing the notion of cdd cycles, webs, etc. Another avenue
for research is a generalization of the "lifting procedure" for facets
to the case of bigraphs. These possibilities are at present left for

future research.
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5. Biperféct Graphs

In this section, we define the notion of biperfect graphs, give some
examples and simple results, and make several conjectures. The principal
conjecture is that the class of biperfect graphs is really the same as the

class of -perfect graphs.

whose rows consist of the coefficients of the strong biclique inequalities.

Define the clique polytope of G to be the set of x € R" satisfying

0 3 x S 1 and satisfying.the clique inequalities for strong bicliques of
G . We are interested in the question of when every vertex of the clique
polytope is a 0-1 vector.

Another way to view the clique inequalities is to start with an

inequality system of the form:

where every ai:.| is 0, 1l or -1 and P; is equal to the number of +1's
among @ s..+58; - When all aij are 0 and -1, we have a set packing
problem, and we wish to generalize the clique approach and perfect graph
framework [ 5] Ffor that problem. Given an inequality system with 0, 1, -1
coefficients we can form a bidirected graph G by making a biclique

among the nodes N = {1,2,...,n} for each row of A = (aij)' That is, put

in G an edge [j,k] of type (a,. ) whenever there is a row i with

53,
aij $ 0 and A $ 0. Then the lgillzolutions for this bidirected graph G
are the same as the O0-1 solutions for the original system. The particular
right-hand side, P; - 1, required in the original system is critical here.

The original inequality system cannot have a polytope with only O0-1 vertices
unless every strong biclique inequality is among the rows of A , that is,
unless the clique matrix M of G 1is included as a submatrix of A . In
general, that inclusion is not sufficient to assure O-1 verices, but the ~
clique matrix M does give a smaller polytope of solutions, or a tighter
linear programming relaxation than the original system of linear inequalities.

We could thus define biperfect graphs in terms of polytopes of 0-1 vertices,

but we instead follow the classical approach for perfect graphs [5 ].

»
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First, let us .discuss what it means to bidirect an undirected graph G°.
An undlrected graph has no sign, + or - , assigned.to the ends of edges.

To bidirect 'G° means to assign a plus or minus to each end of each edge,

giving edges which may be of type (+,+),(+,-),(-,4) or (-,-).
To bidirect 6° ‘to form a bigraph G means to bidirect ¢° to give a

bigraph G , that is, to give a bidirected graph which is simple (which is
sure if 6° is simple) and which is equal to its transitive closure. The
latter condition is rather stringent since, for example, we can only
bidirect a grah ® toa bigraph G having only (+,-) or (-,+) edges if
c° is a comparability graph [ 6 1. Any undirected graph c° can, however,
always be given some bidirection just by making every end a plus end or by
making every end a minus end. Then, the resulting bidirecged graph G

is a bigraph provided only that c° was simple. We allow other bidirections,
one could say, in between these two extreme cases.

Given a bigraph G , we consider optimization problems of the form
xj =0orl, j=1,...,n ;

L x, - 'Z xj 2 |S+| -1 , all strong bicliques S = S4 UsS

jes, J jes_ -
T xj - I x. = z (minimize),
jez, jez_ 9

where Z, and Z_ are disjoint subsets of N. In other words, we consider

optimizing O-1 solutions for G with objective functions z = by cixj
having ci =0, +1 , or -1. Then,

Z+ = {3 ,I C- = +1},

-=4{ , c = -1},

Zo {J l C = o }9

and ZO,Z+,Z_, form a partition of the nodes.
The linear programming relaxation replaces xj =Qorl1 by 0% xj < 1.
We form the dual linear program and consider the optimization problem of
finding integer answers to it. This dual problem has a variable e for
each strong biclique and a variable Gj for each node. The constraints
me 2 0 and integer for all strong bicliques ;

6j 20,3 =1,...,n H



- 20 -

0, i € 24
z Mg - & Te = 6. 3 1, ez
. S . £ j ? +

S:j€Ees S:j€ES : .
I=54 1= -1,3 € 2.
n . .

T (!S+‘ - l)TrS - L 4§, = v (maximize).
S J=1 ]

The summations over S are sums over all strong bicliques S =S U S_. In
general, the objective v of the dual problem satisfies v =z for z the
objective fo the original problem for G. We say a bigraph G has the
(strong) max-min property if these two objectives are equal, vide
Fulkerson [ 5,p.172].

Define an undirected gr»aph.‘Ge to be'bioevfect.if every bigraph G formed
by bidirecting c® satisfiew the max-min property.

A biperfect graph is obviously perfect because Qné way of directing an
undirected graph is to make all ends be minus ends, and then the max-min
property becomes the famous relation (maximum number of independent nodes) =
= (min number of cliques needed to cover all nodes)[ 2].

We conjecture that a graph is biperfect if and only if it is perfect.

Some reasons for thinking that the conjecture may be true will be given.

Proposition 11  Bipartite graphs are biperfect.

Proof. A bipartite graph has no triangles so has no cliques other than

the edges themself. For a bipartite graph GO, the dual linear program

S . o .
for some bidirection of G is:

."e 2 0 and integer, all'edges e ;

§; 2 0, all nodes 1 ;

E . "e T L . "e T Gi : 1,1€2,
e meets 1 e meets 1 1 i ez
with a + end with a - end Bl -
n
T L - T LA z Gi z v (maximize)
e has two e has two i=1
+ ends - ends

A linear program of this type has integer answers to both its primal and dual
whenever there does not exist any odd circuit [u4] , where here an odd

circuit means a circuit with an odd number of edges having either two
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Plus ends or two minus ends. We can obV1ously bldlrect a bipartite graph
with a circuit to have an odd circuit just by making all ends plus ends

except one (see Figure 7).

Figure 7

However, doing so causes a triangle to be formed in the transitive closure
so that the resulting bidirected’ grah could not be transitively closed since:

we ‘'started with a gipartite graph, which has no triangles.

In general, any bidirection of a’ bipartite graph in order to be transitively

closed will have to make both ends meeting a node in any circuit either
both plus er both minus ends. Then, the resulting circuit will not be an
odd circuit as can be seen by a simple parity argument. Therefore, any
blpartlte graph is biperfect.

This proof suggest the next proposi~ion. First, define an odd-dihole
to be a hole (i.e. a circuit with no chqrds) having an odd number of
edges with either both plus ends or both minus ends. An odd hole in an
undirected graph is a hole with an odd number of edges. Any bidirected graph

with an odd-dihole does not satisfy the max-min property.

Proposition 12  4An undirected graph ° with an odd hole has an odd-dihole

in every bigraph G formed by bidirecting ° . Conversely, if a bigraph
G has an odd-dihole, then the wndirected graph ¢° formed by just
dropping the + or - sign on each end of edges has an odd hole.

The proof is essentially that already given in proving proposition 11.
What proposition 12 says is that if a graph is not biperfect because some
bigraph formed from it had an odd-dihole, then the original graph was not
perfect because it Had an odd hole. However, it says something in the
other direction as well; namely, if a graph is not perfect because it has an
odd hole, then every bigraph formed from it will not have the max-min

property because of an odd-dihole.



We conjecture a converse of the previous conjecture: if some bigraph G
formed from G° has the max-min property, then ’Gé is biperfect. That is,
all bigraphs formed from'-Gé have the max-min property or none do.

~ An interesting example is given by comparability graphs. A comparability
graph is an undirected graph such that directions can be assigned to each -
edge so that the resutling directed graph is acyclic and transitively
closed. The ordering then given by 1>j if an edge has a plus end meeting i
and a minus end meeting j 1is a partial order. Such graphs (the original
undirected versions) are known to be perfect. The strong max-min property
for such graphs says that the maximal number of pair-wise incomparable
elements in ‘a partial order is equal to the minimum number of chains
(linearly ordered subsets) covering all elements. Although a comparability
graph may have several partial orders which can be formed by directing the
edges, the incomparable elements and the chains are the same in all éuch
partial orders. -

We do not know if comparability graphs are biperfect. We conjecture that
they are. However, one way of bidirecting the edges, othér than making
all plus ends, that works is to direct the ddges so as to give a partial
order. Thé max-min property holds because the resulting matrix is totally
unimodular, being a network flow matrix. The max-min property has an
interesting statement here. First, define a node with a +1 cost coefficient
to be a source and a node with a -1 cost céefficient to be a sink.

Define an upper dominated set to be a set S of nodes such that if j € §

and i >3J then i € S. The primal problem is to find an upper dominated
set with the largest surplus of sinks minus-sources. The dual problem
amounts to finding pairings of sources to sinks by directed edges so that
each source is'paired to only one sink and the fewest number of sinks are
left unpaired. The max-min property is easy to show from linear programming
duality and total unimodularity of the coefficient matrix.

If perfect graphs are perfect it suffices to show the max-min property
for the directed version of the problem. The reason that this could not be
used for graphs other than comparability graphs is that only comparability

~ graphs gave a directed version which is simple and transitively closed.
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