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Résumé

ALGORITHMES D'ATTENTE AVEC INTERRUPTION DE

- - —— - ————————— - —— —— . - - - —— i — - - —— -

-

Cet article contient 1'analyse de deux systémes de files
d'attente faisant intervenir des interruptions de service. Le prin-—
cipal intérét méthodologique consiste dans 1'utilisation de varia-
bles supplémentaires permettant une analyse markovienne des systémes
d'attente de ce type. Les motivations pratiques ont pour origine
1'évaluation de certaines procédures utilisées dans le contrdle de
cohérence (algorithmes des tickets) et dans le contrdle de la fiabi-
1ité (algorithmes de reprise) des bases de données.

>
Abstract

This paper contains the markovian analysis of two queueing
systems submitted to service interruptions. The main theoretical
interest consists in showing that the method of supplementary vari-
ables yields a tractable approach for analyzing such systems. The
main practical motivations are originated in evaluating some proce-
dures involved in coherence control (distributed control algorithms
using tickets) and in reliability control (checkpointing and Roll-
back Recovery algorithms) of data bases.



INTRODUCTION

This paper contains the analysis of two queueing systems with break-
downs. Each of these systems may be studied in terms of an algorithm
describing the succession of breakdowns and availability periods and the
resulting evolution of the queue. The main theoretical interest consists
in showing that the method of supplementary variables yields a tractable
approach for analyzing such systems, when breakdowns have a complex struc-—
ture. (the usual approach being regenerative theory GAV 62): In the first
system (I.1) the occurrence and the end of the service interruptions due
to breakdowns are controlled by the customer process ; In the second one
(I.2), two types of breakdowns are simultaneously considered (preemptive

resume and preemptive repeat).

The main practical motivations are originated in modelling and per-
formance evaluation of data bases. The first system yields a model for
"reordering queues" involved in some algorithms used to maintain coherence
in distributed data bases (II.1) (However such reordering queues are in-
volved in the distributed control of other systems, like packets switching
networks, for instance). The second one yields a refined model for the
static optimization of data bases operating under the checkpointing and

Rollback Recovery mode (II.2).

PART I - QUEUEING ANALYSIS

In all the models of this study, it is assumed that the arrival
Process of customers is Poisson and that the service they require is
an independent random variable with arbitrary distribution function

possessing a density and second moment.



I.1. - THE QUEUEING ALGORITHM OF FIG [1]

I.1.1. - Description of the algorithm

Consider the queueing algorithm in fig [1]. This algorithm
describes the evolution of the state vector (X, N, Y) where N ¢ IN is the
number of customers in the queue and (X,Y) are two supplementary state
variables. X ¢ {0,1} describes global properties (good or bad behaviour)
of the queue and Y is the amount of service already received by the customer
being served in the queue (0 if the queue contains no customer). When the
number of customers is at least equal to one and Y is strictly positive
the queue will be said in state X = 0 [good behaviour]. It behaves exactly
as a classical M/G/I queuel: Arrivals occur as an Poisson process of rate
A, so that N may increase during a service period. Departures also occur
(with the infinitesimal rate o(y) = s(y)/1-S(y) if Y = y, S and s beeing
respectively the distribution function and the density of the service dis-
tribution). At such departure instants N is decreased by one and Y becomes
0. If N does not become O (when decreased by one), one amongst two possible
evolutions is to be chosen by the system : either to remain in state X = O,
in which case it begins to give service to at least one of those customers
waiting ; or to jump in state X = 1, in which case it begins a breakdown
period during which no service can be delivered to any customer. This
choice has to be made by the system just after a departure instant for
which N > 0, and is assumed to be taken in function of the state (X,N,Y)
at this moment : Assume it is (X=0, N=n, Y=0), then, with probability
r (o,n,o0) 8 a(n), the transition in X = 1 occurs, and with probability

1 - a(n) the system remains in state X = O.

When in state X = 1 (i.e., as long as the breakdown has
not terminated),N =n, Y = O, transitions outside this state occur only at
arrival dates (Poisson process of rate A). Again, with'probability
r(1,n,0) 4 B(n) (which is a function of the state just before this arrival)
this transition leads to state (X = 1, N = n+l, Y = 0) and with probability
1 - B(n) to state (X =0, N =n+l, Y = 0+)(0+ because a new service begins

at once). Y
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To complete the description of the algorithm, we have now
to precise the system evolution when N = O, just after the departure of a cus-—
tomer. In that case, we choose arbitrarily to say that X = 1. Sojourn in
state (X =1, N=0, Y = 0) terminates at the date of the next arrival.
Similarly to the previous case, with probability B(o), this arrival produ-
ces a transition in state (X =1, N =1, Y = 0) and with probability
| - B(o) in state (X =0, N=1,Y =0").

I.1.2. - Kolmogorov's equations

Let {Zt = (Xt’ N Yt) t € IR’} be the state of the queueing

t’

system at time t. This process is markovian (its state space is {0,1} x IN x
+ .

IR'). Assume that the law of Zt converges to a stationary law on

{0,1} x IN x TR when t - © and consider :

p(0,n,y) = lim ?]1— P (X =0, N=n, y <Y <y +dy]
dy-o y
nz=1
(n y20

(these functions are defined at steady state and do not depend of time t).

Kolmogorov's equations at steady state yield :
g q y y

nz=22,y>0

(2)
g—yp«),n,y) = Ap(0,n-1,y) - (A+a(y)) p(0,n,y)
y >0

(3)
‘g—yp<o,1,y> = - (+o(y) p(0,1,y)

(4) A p(1,0) = / p(0,1,y)o(y)dy

0



Ap(1,n) = / p(0,n+1,y)o(y)dy a(n) +A8(n~1)p(1,n-1)
0

(5)
nz=1
p©,0,0) = [ p(0,t1,)5G) dy (1 = a(m)
0
(6)
n >l + A(1 = B(n-1)) p(1l,n-1)
Consider now for Z ¢ €, |z| < 1
(7 R (Z,y) = I p(O,n,y) z"
n=1
(8) R(Z) = I p(i,n) 2"
n=1
9 W@ = [ 1 am O,y 2t ot
0 n=1
(10) Q(z) = I g p(l,n) 2z
n=1
We obtain from (2), (3) :
SR (Zy) = - (0 (1-2) + 0(y) R, (Z,y)
therefore :
y
(11) RO(Z,y) = RO(Z,O) exp [- Ay(1-2) - ‘/ o(u) dul

0

Which yields (we note S*(u), u e ¢, Re(u) > O, the Laplace transform of S) :

(12) / R (Z,y)o(y)dy = R (Z,0) s (A (1-2))
0

(13) / ooR (z,y) = R_(Z,0) | - sTO-2)) & R (Z)
0 0 N4 0 ’ . A(]-Z) = o

Now, the remaining equations lead to the following system

of equations :



s"(Q-z) _
R (2,00 (1 - 258 —q (2) - Az Q) (2)

(14) +AZ R (2) + A -BO)Z - 1) p(1,0)

\R,(2) = Q (2) + Az Q(2) + Az 8(0) p(1,0)

Where all of the functiomsRo(Z,O), RI(Z)’ QO(Z), QI(Z) and the constant
p(1,0) are unknown.

The next sections give examples, involving constant and

geometric functions, for which closed form solution of equation (14) may be

obtained, as well as conditions for existence and unicity of this solution.

I.1.3. - Constant functions

Theorem [1] : Let O € o < 1 and 0 £ B8 < 1 such that oo + B < 1 and assume
+. .
that {a(n) = a, n 2 1} and {8(n) = B, n = O}. {zt = (Xt,Nt,Yt), t ¢ IR} is

ergodic if and only if p = %-satisfies

a
(15) 0<p <1 —]—-—_—-B—

When this condition is fulfilled, the generating function of the stationary

marginal distribution of the number of customers in the system Q(Z) is

given by :
1-0 1-8*(A(1-2))  aS"(A(1-2))
) 8(2) }
Z(1-8Z) - @ (Z)S (A(1-2))
(16) p(1,0y = (BI(U=p) ~ o
8(2) = 2[ (1-BZ) ((1-B)Z+a=1) + Z(1-8)(BZ-u)]
@(z) = (1-a)(1-8Z) + aZ(1-B) 0

Proof : Assume that Z, is ergodic. There exists a stationary solution to
Kolmogorov's equations satisfying equation (14). With our assumptions on
a(n) and B(n), only two unknown functions remain in (14) : RO(Z,O), Rl(z)

(plus p(1,0) which is also unknown). Direct substitutions in the system

yield :



A 8(2)
Z(1-82) - @(2) s (A (1-2))

R (z,0) = p(1,0)

*
_ as (A (1-2)) BZ - o
B2 =RE0 Sraen PO T

Furthermore :
Q(z) = p(1,0) + Rl(Z) + Rb(z).

Using (13), we see that Q(Z) must be as given in equation (16), in which

p(1,0) is determined by the necessary condition Q(1) = 1 (and 1'Hospital's

rule) :
1- 1- -0
p(1,0) = L) (1)
p(1,0) must be strictly positive. Therefore p satisfies p < 1 - 2. This

1-8

quantity being positive only for o and B such that a + B < 1.

This proves the necessity of condition (15). To prove its
sufficiency we shall show that a Markov chain imbedded in the process Z, is

ergodic when it is satisfied.

Let Zn be the state Zt at t = Tn’ just after the nth depar-
ture and before the a-test following it. We have : Zn = (O,Nn,O). Let us
show that the irreducible aperiodic Markov chain Nn is ergodic when p satis-

fies (15). Using PAKES lemma (PAK69), this will be proved if we show that :

1) [EIN,,, - NN, = 3] < vielN

(ii) 1lim sup [E Ni+

jre

| - NN =31 <o,

Consider the following expression :

N. - N. = A -D
v T, T T, T

]

Where A]s,t] (reép. D]s,t]) is the number of arrivals (resp. departures)

in interval Js,t] . We have :



Furthermore :

D = E(D ) =1
5T 40 115574y
E[A v, = j3 = ELT,, , - T.|N, = jJ.
]Ti’Ti+l] i i+l ifi
ECT - T.|N. =0] = L, 1B g ElT. - T, |X + = 1]
i+1 it A U i+l i Ti
1
ELT,,; - T, [N, > 0] = (1-0) Tt OBl - T.le+ =11
i
> 11 ! I
n- n
I e LRt ()
i

So that condition (i) is fulfilled. Now, whenever

p <1 - T%g (for o and 8 such that o + B = 1)

of N : N :

(17)

lim sup E[Ni+l - NilNi =jl=p +

j—)oo

This completes the proof.

1-8

-1<0

Direct differenciation yields the stationary mean value

N

) [(20 + A

2

s3) - p "1

2 w'z

L a(i-0) [2¢1+(1-)p)p' + (1-B)y"1, B(I-a)

¥(2)

2(1-8)2 '?

e

ne

dy(2)

a2y (2)

de

ne>

a2s* ()
dw2

|21

dz l zZ=1

0

-8y’

AZ(1-82) (Z(1-BZ) -@(Z) S*(A-AZ)).
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I.1.4. - Constant and geometric functions

Theorem [ 2]

{g(n) =R, n 2 0}. Z, is ergodic if and only if p < 1. When this condition

is fulfilled, the generating function Q(Z) of the number of customers in

Let 0 £ a <1, 0<B <1 and assume that {o(n) = an, n= 1} i

oo

the system at steady state is the following infinite product :

o PKS(aiZ) o MB(aiZ)
Q(z) = I n ——

i=o PKS(a ) i=o Ms(a )

(18) _ (1-p) (1-2) 8T (A (1-2))

PK.(Z) =
S $*(A(1-2)) -z
1 -8
\ 7)) = ——
Proof : Assume that Z, is ergodic. This 1implies the existence of a sta-
tionary solution to Kolmogorov's equations. Equations (14) become :
1 *
R (2,0) = 7 R (2,0) 8" (A(1-2))
1 *
(19) - Gz R, (@2,008 (\(1=a2)) + Az (1-8)(R;(2) + p(1,0))
[R,(2) + p(1,0)] A(1-82) = éz-Ro(aZ,O) s*(A(1-a2))
Let us choose F(Z) = RO(Z,O) as our main unknown function. »

(which depends of a great number of parameters : o, B, A,S*). Direct substi-
P

tutions in (18) yield that F(Z) is solution of the following key equation :

F(Z) = G(Z) F(aZ) VZ ,0<2Z<1
(20) .
o z-1 s*(\(1 - a2))
6(2) = - T = 82)

z - $*(A(1-2))

The generating function of interest, i.e. Q(Z) = p(1,0) +

R](Z) + RO(Z), is a very simple function of F(Z) :

*
(21) o) = F(zy . 2GR



- 11 -

We know from Takacs lemma (TAK 62 p.47) that, if p > 1,
3 Zo e [0,1L / Z, = S*(A(I-Zo)) ; So that the key equation has no ana-

lytical solution in the unit circle. From now, assume p < |.

Consider now equation (19) where F(Z) is supposed to be

a generating function. We have the following property :

F(e) F'(e) e + 0(¢)

Equation (19) yields :

n

Fz) = F(a®'2) . 1 clz)
i=0
* n+1
= ™z o) + 0(an+12)].P1 L(@).2, (2) 'i+§x(l"“ 2))
’ ’ a .S (A(1-Z))
(22) with
n * i n
P (z) = 1 S QU-a2)) . AT a(2)
fon i=0 S*(A(1-a*2)) - o'z i=
n i
P2 n(Z) = I — 0liZ
’ i=0 1 - o BZ

We prove now that, when P € [0,1], each of the products

P1 n(Z) and P n(Z) converges towards a limit. Because p =1, we know from

2
b s
Takacs lemma that S (A(1-0*z)) -a'z >0, ¥i =20, ¥2Z e [0,1],
the equality being only for i = 0 and Z = 1. So that Vi 2 0, Vz ¢ [0,1[,

Alog (ai(Z)). Furthermore log ai(Z) ~v a'Z. We have proved the following :

i+ SN
3P1(Z) = lim P] (2) 0<7Z <1
noo I

Simple considerations yield also

3 PZ(Z) =1lim P (2) 0 <Z<1

n-roe

Taking the limit over n in (21), we obtain : ¥ Z ¢ [O,I[

' *
@ = E@QST0 o) L@
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The unknown constant F'(0) has to be determined from the

necessary condition Q(1) = 1. This is only possible when p < 1| and yields

for Q(Z) the formula in theorem 2.

The proof for sufficiency is very similar to the one in

theorem [1]. Pakes lemma applies for the same sequence of stopping times

{Tn, n € IN} : We have :
E[T,,, - T;|N;, = 0] =
E[T,,, = TilNi =jl =
ECT,,, - Tile; =11

Condition (i) of

lim sup E[N]._+
- o

Corollary [3] : When the service

a@ - SEEEy
(23) ©
A@) = ¢ 7% 8%+,
k=1 K (1-0¥

. ¥ = B
Proof : Take S (w) = o

1, 1-B
v+t +B8ET  -T.]x =1]
T.
1
oIy L, - =
(1-a’y = + o’ ELT, TilXT+ 1]
i
1,1 I
X T8

Pakes lemma is satisfied. Furthermore :

-1 +p <0

distribution function is exponential :

)

in the last theorem.

The stationary mean value, N is given by :

_ o a. bi
N= Z 1i + T
i=0 PKS(a ) MB(G )
(24) _d i
a; = 5= PKs(a Z)|Z=]
_d i
b1 —d—z- MB((I Z)lZ=l
in the exponential case :
o k k
N= 3 2 +E
k=1 1 -«
(25)
8 op of . 1
VT P TR T Tap T Ta8 if o <<
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1.2. - THE QUEUEING ALGORITHM OF FIG [2]

I.2.1. - Description of algorithm

The state variables are {X,N,Y} ; X € {0,1,2} is the system
macro-state - O for availability, 1 for type l-unavailability, 2 for type

2-unavailability.

When the system is in macro-state O, type l-failures (resp.
type 2-failures) occur, independantly of the other state variables N and Y,
as an independant homogenous Poisson process of parameter Y, (resp. Yz).
N € IN is the number of customers in the queue and Y ¢ IR" is the amount of

service already received by the customer being served (0 if N = 0). When

a type l-failure occurs, the actual service (if there is ome) is interrupted.

The system jumps in state (X = I, N = n, Y =y) in which no service can be

delivered. Transitions from this state occur either with a new arrival

towards state (X = 1, N = n+l, Y = y), or with the end of the unavailability

period (which is an independant exponentidl r.v with rate 11) towards state

(X =0, N=n, Y =y). In the last case, the amount of service already

received by the customer when interrupted is resumed and its service restarts

immediatly from Y = y. Type 2-unavailability periods have a similar struc-
ture but the amount of service already received by an interrupted customer
is destroyed so that this customer has to restart from Y = O after the end

of the unavailability period.

I1.2.2. - Kolmogorov's equation

+y . .
{Zt = (Xt’ N,» Y), t e IR } is a Markov process with state
space {0,1,2} x IN x R'. Assume that Z, converges towards a stationary

process when t > @, Consider, at steady state :

>
. IR : y e
(n p(i,n,y) = lim a;—P[Xt =j, N =n,yc< Y, Sy o+ dyl] =n 2
dy-o j =
. * A . .
(2) p(3,n,0 ) = P[Xt = j, Nt =n, Y_= 0] n=20,3j=0,1,2

Kolmogorov's equations yield :

O — O
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Figure 2
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» % %§'P(o,n,y) = (v #+7,+0(y))p(0,n,¥) + Ap(0,n-1,y)

(3) + T]P(l,h’Y)

y>0

%; P(0,1,¥) = = (A+y *y,*+a(y))p(0,1,y) + 7, p(l,1,y)
4) g

y>0

p(0,n,0) = / p(0,n+1,u)o(u)du + T p(l,n,O*) + T, p(2,n,0*)
5) § 0

n2

p(0,1,0) = /0 p(0,2,u)o(u)du + Ap(0,0,0*) + T p(l,l,O*)
(6) N

+ 1, p(2,1,07)

p(0,0,0*) ()\+Y]+Y2) = I p(0,1,u)o(u)du + T p(l,0,0*)'

@ ° \
+ T2 p(z’o’o )

(A+1)) p(l,n,y) = 2 p(1,n-1,y) + v; p(0,n,y)
(8) g

nz2, y 20
(9) (A+1)) p(l,1,y) = v, pO,1,y) , y20
(10) p(1,n,0") () = A p (1,0-1,01, n 2 |
(11) () p(1,0,0%) = v, p(0,0,07)
(12) (A+1,) p(2,n,0") = Y, /- p(0,m,y)dy + A p(2,0-1,0"), n 2 |

0

(13) (M+1,) p(2,0,0%) = v, p(0,0,07)

Let, for Z ¢ C, lzl <1



(14)

We have :

(15)

(16)

Furthermore :

(17)

We have :

(18)

G, (Z,7)

* A
6,(z,0)=

- 16 -

r z" p(kyn,y) Yy 20, k =0,!
n=>1

£ z" p(1,n,0")
n=1

GZ(Z,O*) 8 1 2" p(2,n,0%)

n=0
a . -
3y Go(Z:¥) = = QU-2) + vy + 7)) G (Z,y) y >0
+ T Gl(Z,y)
1 ® *
G (2,0) = = / ¢ (z,y)o(y) dy = p(0,0,0 )(A(1-2) + v *+ ¥,)
o Z 0 o] 1 2
+ T][G](Z,O*) + p(1,0,091 + T, GZ(Z,O*)
Yy
G,(Z,y) =G (Z,y) . CAERYeE)) y=20

* * *
GI(Z,O ) + p(1,0,0 ) = p(0,0,0 ) T+

*
GZ(Z’O )

Let :

A(Z)

E(Z)

Gy (2,¥)

6, (2,0)

Y
[+ A (1-2)

.Y (=]
- 2 *
=TI {p(0,0,0) + ‘/ GO(Z,y)dy]
2 0
2 T
"-) = By (O ey
i=1 1

i

A12) vy + vy O - eyt

+

y
GO(Z,O).exp[—E(Z)y + / og(u)dul
(¢

[><]

L[ e,@motmiy - 4@ 20,0,09
0

&) - A(Z))/ G, (Z,y)dy
0
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Consider now :

B, @ = [T e @yay + p(0,0,09
J

(18) yields :

(1-2) E(2) . S*(E@))
(1-2)E(2)$ ¥ (E(2)) - Z A(Z) (1-8™(E(Z))

(19) H,(2) = (0,0,0)

So that the generating function of the number of customers

in the system at steady state Q(Z) is :

2 Y;
(20) Q@) = B (@) [1 + T sy

I.2.3. - The equivalent service

Let w € €, Re(w) > O and :

e(w) = w + Yz + Y1 (a1 - T]+w)

(21 2 T
alw) = o + .E Yi (- T.+w)

i=] i

We call equivalent service law the distribution function

on R' with Laplace transform T*(w) :

5 () e(w)

*
T (w) = -
e) = (1 = 8% (e(w))) (e(w) = a(w))
(22) Y Y
(1 =+ 25 (1 -8%r,)
t = - T'(m)lo = l. *2
Y2 S (Yz)

Theorem [3] : {Z,, t ¢ R'} is ergodic if and only if :

t’
(23) At < ]

When this condition is fulfilled :
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(24) Q(z) = PK.(2) . %%%%— zecC, |z] s 1

with :
*
R (2) - (I-Ati (1-2) T"(A\(1-2))
T (A(1-2)) - Z
(25) 2 Y.
1
L(Z) =1+ I ]

Tt 2(1-2)

i=1

Proof : From (22), one obtains S*(A(I-Z)) as a function of T*(A(I-Z)). Using

this in equation (19) yields :

(1-2) . T"(A(1-2))

T (A (1-2)) - Z

*
p(0,0,0 )

H_(2)

*
_ p(0,0,0)

R . PKT(Z)

The necessary condition Q(1) = 1 in equation (20) gives :

* 1 - At
(26) p(0,0,0) = T

The necessity of condition (23) for ergodicity is also pro-

ved. Pakes Lemma, applied exactly as in section II, proves its sufficiency.

0

Remark : In each of the queueing systems we analyzed, the stopping times

of intrance in state N=0 are regeneration points for the stochastic process

Nt' Therefore Little's formula is valid.
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PART I1 - APPLICATIONS TO DATA BASES MODELLING

II.1. - PERFORMANCE EVALUATION OF SOME COHERENCE
CONTROL ALGORITHMS IN DISTRIBUTED DATA BASE

II.1.1. - Mutual coherence control in fully duplicate

distributed data bases

A fully duplicate distributed data base includes four elements
(fig. 3)

A data base, (i.e. a collection of data units) duplicated

over several devices.

A set of §torage processors, (one per device), responsible

for physical data handling on these devices.

A set of processors called producers, in charge of running

updates submitted by users accessing the data units.

- A transmission medium (for instance a packet switching network).

Updates may be submitted from any producer and have to be pro-
cessed on each of the storage processors. The mutual coherence require-
ment consists in having the same sequences of updates processed on each
of the storage processors. This may be achieved by many types of algo-
rithms [ELL 77j, [{GEL 78], [LEL 781, [HER 79]. Section I.l is devoted
to performance evaluation of those algorithms involving reordering pro-

cedures.

II.1.2. - Example of reordering queues in coherence control

algorithms using tickets

We sketch as example the principle of one of the algorithms achiev-

ing coherence by mean of ticketing and reordering procedures [LEL 781.

'
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This algorithm is using a virtual ring configuration in which
each producer has an identity i, a predecessor of identity (i-1) and
successor of identity (i+1). A unique particular message, the control
token, circulates on the ring. It transports morked tickets : 0,1,2...
when a producer has the control token, it picks up enough tickets and
supplies each update with a ticket before sending it through the trans-
mission medium towards each of the storage processors. One can check
that a strategy of updates consumption of each storage processor realized
according to a strict increasing order of tickets insures mutual cohe-
rence in the data base. We call reordering queue any queueing system

with marked customers and such a scheduling strategy.

II.1.3. - Markovian approximation for M/G/1 reordering queues

A formal definition for the queueing system described in Section
IT1.1.2 would be the following :

Let {Cn, n ¢ N} be the nt customer arriving in a queue during
the time interval [0,~]. Let d, be a bijection N >~ N called the disorder
function, which assigns to customer Cn an integer valued mark kn = d(Cn).
A reordering queue with disorder d is defined by the following scheduling
strategy : when the customer with mark k has completed its service, the

next customer to be served is the one with mark k+1,

However, this formal approach has two major inconvenients for
our purpose : Firstly a queue defined as above can not be analyzed in
terms of usual priority queues, even with an infinite number of classes
(Clearly, because of disorder d, customer k may be absent and even remain
absent after new arrivals. In such a case, the server must suspend its
service and wait for k. Due to a such a non—availability phenomenon, re-
ordering queue may not be analyzed as usual priority queues). Secondly,
it is very difficult to determine the analytical properties of a disorder
function resulting of transmission delays (the problem of determining
the joint distribution of the delays of several customers, even through
a simple Jackson network is an open question. LEM 77, MIT 79). Therefore,
we propose an heuristic approach, based on a "markovian approximation",
which consists in looking at the reordering queue in some "aggregated

state space" (which does not include the set of all the marks present in
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the queue) and in taking into account the first order effects of dis-

order on the evolution of the queue in this sate space.

Let Z = (X,N,Y) be this aggregated state vector in the M/G/I
+ . .
case; x € {0,1}, Ne N, Y ¢ R are defined as in section I.l.] (part I).
Consider now the intervention of disorder in terms of the answers

(with state space Y,N) to the following questions :

Ak : Customer k-1 has just completed its service;

Is customer k among the queueing customers ?

Ak was negative sometime in the past.

Bk

A new customer arrives; is it k ?

Our approximation consists in the following two assumptions

- Conditional independance assumption : Given the present
state of Z (i.e. the state of Z when the question Ay (resp. Bk) is
asked), the answer to Ak (resp. Bk) is independant of the past of Z.
We shall note ak(n) (resp. Bk(n)) the conditional probability of a
negative answer to Ak (resp. Bk) when this state is Z = (0,n,0)
(resp. Z = (1,n,0))

- Stationmarity assumption. The ak(n) (resp. Bk(n)) do not
depend on k.

Let us remark that these assumptions are the largest ones
which allow a markovian stationary evolution of the M/G/1 reordering
qQueue in its macro-state space. This approximation reduces the ana-
lysis of reordering queues with unknown disorder function, like those
involved in the algorithm of section II.1.2, to a tractable queueing
model (analyzed in section I.1 of part I), the parameters of which may

be obtained by the easy measurements of & and 8.

II.1.4., - Overhead due to Reordering in Distributed Control

using Tickets

Clearly, the use of tickets for achieving the distributed control
of a distributed data base determines 3 types of delays, the sum of which

yields the system response time from the request point of view :
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—~ the delay for getting the control token (i.e., its ticket)
- the transmission delay

- the response time of the end processor.

The overhead due to the last type of delay is now evaluated
by means of the markovian approximation of reordering queues analyzed
in section I.l. On the curves of fig. 4, we just apply Little's formu-
la (which is valid for this type of queueing systems) to get the ave-
rage response time from the average queue size at equilibrium. These
curves are concerning the average response time of a M/M/! reordering
queue in a simplified DDSS model, the transmission medium of which is
a Jackson Feedforward Network. Simulation results, given in appendix,
are showing that in this case, the functions a(n) and B(n) might be
chosen as constant. The average response time of the markovian appro-
ximation of a M/M/! reordering queue with a(n) = a, B(n) = Bn is also

given in fig. [51].

II1.2, — CHECKPOINTING AND ROLLBACK RECOVERY IN CENTRALIZED DATA BASES

IT1.2.1. - Description of checkpointing and rollback recovery (CRR)

The aim of the CRR method is to increase reliability by means
of software redundancy (BOU 79). Roughly speaking, it consists in
making frequent copies of the whole data base on secondary devices
(suppose to be unfailable) — this is the checkpointing procedure -.

So when a failure occurs, one may recover by coming back to the copy

of the most recent checkpoint and reprocessing all the transactions
since this most recent checkpoint - this is the Rollback Recovery Pro-
cedure. Clearly too frequent checkpoints waste time making unnecessary
copies, and too distant checkpoints waste time reprocessing a great num-
ber of tranmsactions for each failure. CHA 75 defines the static opti-
mization of CRR as the determination of the checkpointing frequency

which minimizes the average response time of the system at steady state.
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II.2.2. - Queueing Algorithm N° 2 as a refined model of CRR methods

In this section, we analyze the basic model proposed by
Gelenbe - Derochette (GEL 78) when removing the exponential assumptions
on request completion. In this model, the data base, when available, is
considered as a queueing system processing requests on a FIFO basis (the
system is said in state 0). Two types of breakdowns may occur correspond-
ing to the situation when the system is unavailable for requests due to
checkpointing (type 1 breakdown in our section I.2 model) and due to
recovering (type 2 breakdown). Furthermore the system evolution in state
space {0,1,2} is assumed to be markovian. Clearly, taking into account
the real statistic properties of transaction completion demands further
description of the types of interruptions : those service interruptions
due to checkpointing decisions are to be considered as preemptive resume
(because it is not necessary to reprocess all the requests of the inter-
rupted transaction after the end of the checkpoint). On the contrary,
those due to failures are modelled as preemptive repeat (this distinc-
tion collapses for exponential laws). The results of section I.2 are
used to derive the checkpointing frequency which minimizes the average
response time at steady state (fig. [6]) for Erlang distributed request

processing laws.
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APPENDIX

A simulation program has been written in order to determine
which assumptions are more consistant, concerning the functions
a(n) and B(n), in a feedforward Jackson network, and to evaluate
the values of the involved parameters. The results are showing that
constant functions yield a good approximation in that case : the
following tables give, for example, a typical a(n) function (NB(n)

is the number of breakdowns which occured in state n; N(n) is the
- NB(n))

number of visits in state N=n ; o(n) N (o)

" o(l) = .23 NB(1) = 8956 |
a(2) = .31 NB(2) = 2086
a(3) = .33 NB(3) = 683
a(h) = .34 NB(4) = 259
a(5) = .27 NB(5) = 89

| a(6) = .30 NB(6) = 25 |
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