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FINAL DATA TYPES AND THEIR SPECIFICATION

Sam KAMIN

Abstract

A data type specification is a description of the properties of a
data abstraction for the benefit of users and implementers of the abstraction.
A data abstraction is a concept having realizations, or implementations, which
behave in a certain way.

It is those properties implied by this behavior which we consider es-
sential ; properties specific to some realization are extraneous. The specifi-
cation problem is : how to present all of the essential properties, and no

ext_raneous ones.

We propose a specification method based upon the notion of "final
data type". A final data type is the smallest structure having a given beha-
vior ; every other structure having that behavior maps onto ist homomorphical-
ly. This property makes the final data type specification a particularly good
source of information about the abstraction it realizes, and eliminates "imple-
mentation bias" from the method.

Resumé

Une spécification d'un type de données décrit les propriétés d'une
abstraction, et est utilisée par les usagers et les implanteurs de 1l'abstrac-
tion. Une abstraction est un concept dont les réalisations, dites implanta-
tions, ont un comportement particulier. Nous considérons comme essentielles
les propriétés impliquées par ce comportement et comme non essentielles les
autres propriétés (c'est-3-dire, celles qui sont spécifiques 3 certaines
implantations). Le problé&me en spécification est d'exposer toutes les pro-
priétés essentielles, et aucune propriété non essentielle.

Nous proposons ici une méthode de spécification fondée sur la no-
tion d'algébre finale. Une algdbre finale est la plus petite structure qui a
un certain comportement ; c'est-a-dire, pour chaque structure ayant le méme
comportement il existe un homomorphisme surjectif 3 1'algébre finale. Cette
propriété assure que la spécification finale du type rend disponibles les
propriétés essentielles, tout en &vitant d'influencer 1l'implantation.



FINAL DATA TYPES AND THEIR SPECIFICATION+

Sam KAMIN

I - INTRODUCTION

Data type encapsulation is By now a widely~accepted method of
structurng Programs-Aﬁstract use of encapsulated data types requires
that a user have not only limited access to eléments of the type, but
also limited knowledge of its intérnal details. This in turn requires an
implementation-independent preséntation of the properties of the data

type. Thus it is that data typeé specification has become an area of active

research [4,6,9,10,17,19]. This paper presents a new specification method,

and a justification of that method on mathematical grounds.

We are, properly speaking, talking about data type extensionms,
wherein a non-empty collection of known data types is extended by a new
type. The néw type communicates with the outside world by way of operations
returning eléments of the known types (as Stack-of-Int communicates via
the opérations TOP, which returns an element of the known type Int, and
ISEMPTY?, which returns a Bool). The new type is a '""black box" in that
its internal details are hidden ; there are, in general, many ways to fill

in the box while achieving the desired function.

+ The work reported here derives largely from the author's Ph.D. Thesis,
presented to the State University of New-York at Stomny Brook, and was

supported in part Sy an IBM Graduate Fellowship.



This idea of black boxes is well-known in automata theory. In
the way of introduction, we discuss briefly the problem of "specification
of finite-state automata". (A similar analysis of this special case is

given in [7].)

Suppose we want to specify the class of finite automata accepting
the language (ab)f={e,ab;aﬁa6,...} . Each such automaton F has its own
internal structuré (set of states, next-state function) ; this structure
is not important to the user, but it is important to anyone attempting

to verify that F indeed accepts (ab)* . Here are three such finite

automata :

- 3 I3 * » 3
By a "specification of (ab) " we mean a description of some

finite automaton which can be used, for example :
. *
- To check whether a given automaton F accepts (ab) .

. : ok .
- To check whether two strings u,ve{a,b} are equivalent,

i.e. '{w/uwe(ab)*}é{w/vwe(ab)*}.

We claim that F3 is inherently a good structure for these

purposes, whereas Fl and FZ are not :

- Given F, map its states to those of F3, then prove
. "strong homomorphism conditions" [11]. (By contrast,

try to prove FZ , using Fl as the specification.)



- u is equivalent tov iff u and v lead to the same
state of F3. (Using Fl’ an equivalence on states must

be defined which, in effect, reduces Fl to F3.)

Thus, we have in mind an abstraction, (ab)*, which we specify
by giving a particular realization among many ; the point is to pick the
proper realization. In this case, we find that the proper realization
is F3 ;: the reason, of course, is that F3 is reduced - no two of its
states are equivalent. This is not a question of syntax of presentations

of automata ; here is an algebraic specification of Fl :

ACCEPT? (A1) = TRUE
ACCEPT?(b) = FALSE
ACCEPT?(a) = FALSE
ACCEPT? (aa) = FALSE

ab = A

ba = b

bb = b

aaa = aa

aab = aa

Our comments on the shortcomings of Fl as a specification apply

equally when Fl is presented in this abstract form.

The problem, then, is how to present reduced finite-state automata.
But this can be done in the following way :
Let us suppose that states are infinite binary trees with nodes

labelled true or false. Define an accepting state to be a state whose

top node is labeled true ; define the next state function of any

automaton by

" nsf : {a,b} x States — States

. =
t a, N\ —> 8
81 8, 1
t
\
s

b, _/
81



. *
If such an automaton is to accept (ab) , it must have as

its start state :

true

Th1s in turn determlnes what jts other states will be The
only problem now is to descrlbe the start state finitely ; but this is

easily done using a recursive def1n1t10n :

START = ////5rqs\\\\\
false REJECT
REJECT START
where REJECT = false

REJECT REJECT



Theorem : Any automaton with infinite trees as states, and with the next-

state function nsf, is reduced.

Proof : Suppose two distinct states are equivalent. Since they are diffe-

. rent states, they must have different labels at some node.

N

Then the appropriate string bab...b 1is accepted by the first

state and not by the second. Thus, these states are not equivalent,

which is a contradiction. 0

Therefore, our automaton with start state START -since it does
accept (ab)*- is isomorphic to F3. Its three states are START, REJECT,

and ’//Qalqg\\ .

REJECT START

Using the specification requires knowledge of infinite trees,
recursive functions, etc. But we gain the advantages of having specified

a reduced automaton :

* .
= To prove that F] accepts (ab) , map its states onto

infinite trees and prove the homomorphism conditions.

- To prove, for example, bZaa :

START after input aa

= falge after input a

REJECT START

REJECT

START after input b.



Thus, we can exploit the mathematical relationship between the
reduced finite-state automaton and other automata accepting the language.
The question is : can the idea of reduced automata be generalized to data

types, and can the specification method suggested here be applied ?

The next section of this paper contains the definitions of
various algebraic concepts, including many-sorted algebra, data type
extension, and final data type, which is the generalization of reduced
automaton. We refer the reader to [6] for a fuller treatment of many-
sorted algebras. Section IIT extends the idea of specifying reduced
automata to specifying final data types, and section IV shows how
specifications can Be used. Finally, section V draws some conclusions

from our work.

II - DEFINITIONS

This section is devoted to techmical defin;tions. Although some.
motivations and examples are given,fuller discussions will bhe found in the
references (6, 9, 14, 17]. See in particular [6], from which our notation

is drawn.

The programmer uses a data type via certain operations, which
are'symﬁols that namg'functidns ; that is, théré is a syntax for using
the type, and a semantics estaélished either By the language or By an
encapsulated type definition. Signature and algeBra are the formal

versions of syntax and semantics, respectively.

Definition : An S-sorted signature I is a family of sets <L >  o*
w,s weS,seS

S is called the set of sorts, I the set of operators. To

denote that OeZW g Ve will sometimes write o:w>s (I being
’

understood from context) or O:>s when w=¢, the empty sequence

in §”. O

+ The reader may wonder why the expression "(ab)*" is not taken as the
" gpecification, as well it could be. The problem is that this method
depends upon the particular relationship between finite automata and

regular expressions, and therefore cannot be generalized.



Definition : Given an S-sorted signature I, an S-sorted I-algebra A

is a collection of sets <As>SES and an assignment to each

stl...5ﬁ+s of a function

o

Al As XeasX A > A O

s
1 Sm

Being interested in the situation where one type is being added
to a pre~defined collection of types, we want slightly modified versions

of these definitions.

Definition : An S=sorted data type signature is a pair <£,sN>, with I

an S-sorted signature, sNeS. . is the name of the '"new
type" or "type of interest";elements of S\{sN} are called

"known" or "pre-defined" types. g

Definition : A'<Z,sN> - data type extension (or just data type), for sNeS,

is a I-algebra. O

When I-algebra D is referred to as a <Z,sN>—data type, it is
just to emphasize the newness of sy- This definition could easily be

extended to allow a set of simultaneously-defined new types.

Example

Consider a new type multiset, i.e. set with repetitions. There
are predefined types Atoms and Nat, an operation to find the number of
occurrences of any atom in a multiset, plus several functions for building
multisets. Thus,

S ='{MSet, Atoms, Nat}

'ZMSet consists of

NULL : - MSet
SINGLE : Atoms — MSet
UNION : MSet x MSet — MSet
REMOVE : Atoms X MSet — MSet
COUNT : Atoms x MSet — Nat .



Naturally, we are interested in <ZMSe£,MSet>—data types ; this
data type signature is pictured in Figure 1. We will also assume that in

any <2Mset,MSet>—data type D,

UNION
REMOVE
COUNT
Atomas
" 'FIGURE 1
Dptoms = (8gr3ysags«--d

and . E

Dyt = {0,1,2,...}

Still, there are many poss*ilﬁilities*-for"DMset and for the functions

NULLD, SINGLED

intuition of how MSet -as a "black box''- should behave. Here is one set

, etc. Most choices would not be at all consistent with our

of definitions which is :

MSet

Let the <I ,Miet>-data type M have MAtoms and MNat as
above, and let MMSet = (M ) . Then define : C

Atoms

NULL : = ¢
SINGLE : i + <i> , the one element sequence containing i.
UNION : v,w = wWw
REMOVE : i,w +* subsequence of w obtained by removing
all occurrences of i.

COUNT : i,w > # of occurrences of i in w. O



From the "black box" point of view? the elements of MMSet can
be observed by performing COUNT operations, but cannot be manipulated
directly. (For example, the user cannot take the head or tail of an
element of MMSet’ even thoggh it is a sequence.) Although this view is
quite reasonable, and has been taken before [1,9,17,26], it is not correct
in certain circumstances : for example, when one is starting "from

scratch". In those cases, the analysis of this paper is not applicable.

Definition : If <Z,sN> is a data type signature, the operators of Z

divide themselves into three classes :

- L_J{Z /weS™} is the set of input operators.
W,Sy
- L_J{Zw’s/s#sN, w contains sN} is the set of output

" operators.

- The remaining '"old" operators which we generally take

for granted. O

Example
The input operations of <£MSét’Mset> are {NULL, SINGLE, UNION,
REMOVE} and the output operations are {COUNT}. No old operations are

mentioned. o

Definition : A homomorphism h:A>B for S-sorted I-algebras A and B is
a collection of maps H=<hs>ses, vhere for each s, h_:A_~B_,
such that for each.o:s]...sm+s,
\7a]eAs ,...,ameAs .
1 m

lh.s(oA(al,...am)) = UB(hsfal)"'f’hsm(am))'

If every h is a Bijection, then h is an isomorphism. 0

A well-known example of a particular I-algebra is the word
algebra, or free algebra, of L. This has as its elements the (properly
typed) gxpressions which are formed from I. From this definition, we
will then define the important concept of a "derived operator". Again,

more explanation will be found in the references.



Definition : The I-algebra Ty has as its elements the strings formed from
symbols in I, plus " (", ")", and "," , in the following
way :

- "g"eT whenever o€l .
Z,s €,8

whenever Oe€lk
S,++45 S

- "°(tl" eest YT
m
1 m

Lys

" " 143 1"
and t eTZ,sl""’ t GTZ,sm .

Thus, the elements of TZ are just strings ; the operators take

strings to strings, as follows :

- IR [ P 1
I1f Oeze’s, then oTz.a—r foxd

- If oeX , then O
s s

off " 114 191, " "
1..,sm’ TZ' tl R thG(tl’.'.’tm) . 0

The intuitive idea of evaluating an expression is made precise

by :

Theorem : For any I-algebra A, there is a unique homomorphism

evalA_: TZ—*A. B}

Now, suppose we have a mew symbol "x", which is to act as a
variable of sort s. An expression of sort s' with one or more occurrences
of x can be regarded as a function from As to As' for any Z-algebra A.

This is justified by :

Theorem : Let Z(X) denote the signature which is the same as I except that

z(x)e,s=ze,s

carriers those of TZ(x)’ but with operators L. (That is, use x

u{x}. Furthermore, call TZ(X) the I-algebra with

to form expressions, but then forget that it is an operator.)

Then, given I-algebra A and aeA_, there is a unique homomorphism

evalA[a]:TZ(X)—+A

such that evalA[a]s(x)=a. 0



; 10

In oﬁher words, once we know the value of X, we know the value
of any expression containing x. Thus, a term of sort s' with variable x
uniquely determines a function from As to As" Such terms are called
"derived operators" and are written t[x] ; then for aeAs, we write

tla]l instead of evalA[a]s,(t).

We are only interested in those elements of an algebra which
are denotable by expressions. Since this also greatly simplifies the
mathematics, we assume from now on that all algebras -unless stated

otherwise- are prime :

Definition : A E-élgeﬁra A is prime if evalA s is onto for each seS. 0
)

Lemma : Given two pfime I-algebras A and B, if there is a homomorphism

h:A>B, then it is unique and onto.

Proof : We must have ho eva1A=evalB:Tz—+B, since evalB is unique. Since
evalA is onto A, h is uniquely determined ; since evalB is onto

B, h is also. O

On the other hand, implementations do not, in general, give
rise to prime algebras ; nor do our specifications. In both cases, it
is sometimes necessary to isolate the range of eval by a "representation

invariant " [12].

We are finally in a position to say what we mean by two data

types having the same behavior as "black boxes".

. = "The pre-defined types are equal."
That is,}letting S'=S\{sﬁ}, L'= old operations of
Z, D' (resp. E') = the S'-sorted L'-algebra obtained

By forgetting Ds (resp. ES ) and all input and
. N N -
output operations, we have D'SE'.
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- "Qutput operations work correctly."
That is, evalE,s = i.‘,evalD’S fqr all s#sN, where
i is the isomorphism from D' to E'. (We have
assumed that D' and E' are prime ; although this
does not follow from the primeness of D and E, it
is always trué in practicé, Eecause of the

hierarchical nature of data type extension.)

Example
Consider the <ZMsét,MSet>—data type M defined earlier. We have
eval : T —
M,Nat ZMset,Nat MNat
: '""COUNT (ao,NULL) " 0
'*COUNT (ao »SINGLE (ao) Yt 1
. ""COUNT (a] ,UNION (SINGLE (al) »SINGLE (al) I — 2
Any other <£Msét,MSet>—data type M' will be interchangeable with
' ' e .. y _
M as long as MAtoms and Mﬁat are (;somorphlc to) MAtoms and MNat respec

tlvely, and evalM?,Nat is the same function as eval (evalM,

M,Nat’ ,Atoms

can be ignored here, since TZ contains no new expressions.)

Msét,Atoms

For example, suppose M' is identical to M except that
UNIONM, ! VW WV,
This minor change leads to a non-isomorphic, but interchangeable, algebra.

"y v = :  Fo T r =
0or, let M" have MhSet {functlong f'MAtoms—f* Mhat/f(ai) 0

for all but a finite number of ai}



and define

NULLy, ¢ > Aai.o

SINGLEMn T a,y Hﬁ-ka.;'if a.=aj'then 1 else O

f £y — Aa f (a )+f (a )

UNIONM,
REMOVEM" : al,fo—+ AaJ. 1f a.=aJ ‘then 0 else f(a )

COUNTM" : ai,f-—* f(ai).

The reader may verify that this data type extension is inter-

changeaﬁle with M, and also that there is a homomorphism from M to M'. [

We want the data abstraction to be simply "that thing which we
implement"™. So we take it to be the class of all data types having the

correct behavior :

Definition : The <Z, s8> ~-data aﬁstractlon A(D) reallzed by <2 sy >-data type

D 19 deflned to be the class of all data types E whlch are

equal to A(D) for some D, and D is said to "realize" A, 0

Definition : Given a data abstractlon A data type F is flnal in A if,

for any other DeA, there exists a homomorphism abs['D—+F ]

We will see that this homomorphism can be regarded as associating
with an element of D the "abstract" element it represents Moreover, the
functlon will be used as an "abstraction function" [12] for proving

1mp1ementat10ns.

Théorem : [5,27] Every data abstraction contains a unique (up to isomor-

phism) final data type F.

Proof : We can construct F in the following way : Let DeA be arbitrary,

= <= > D, with
s ses % 2

i

and consider the family of equivalences



13

2 trivial (i.e. just equality) for s#sN, and Es given by :-
N

4d ES d' if for any derived operator

N
FxTe
thJ.Ds +Ds , for s#sN,

N
tldl=tla'].

(We say that d and 4d' are‘indistinguishaﬁle.)

It ig obvious that = is a family of equivalence relations ; we
need that it be a congruence on D .- that is, that d, =_d',..., d_=_d’
’ 1 ) 1? ’"m"s_ m
= ' ] . .
==>'GD(dl""’duP = OD(d ""’dn9 for all ¢ : Syeee8, > S. We consider

two cases :

- - A = =
s * 5. Then OD(dl""’an = OD(dl,.dz,...,dm) oo
UD(di,..., d;), so GD(dl,..

is justified because either §;%Sys SO di=d{ and the expression

= [ '
.s dm) =N OD(dl,..., dm). Each step

is unchanged, or 8; 8y in which case
o(d;,..., di_l,x, di+l"”’

tor , and the step follows from the definition of Es .
N

d) : D —D_is a derived opera-
m s s

- s3sy. Then for any derived operator
t[x] : D —D, , s'#s
SN s
r N
tmoD(d], dysenes dEQJ
A
t[on(dl’ d2,..., dm)]

N!

t[cD(di_...., d‘;)]
S0y yeees ) 5,003 0ee, 4D

each step being justified very much as above.

The claim is that the algebra D/=, having carriers (D/E)S=DS/ES,

4 More properly, it .can Ee represented as a derived operator by finding
. = e = - » ' -
expressions dl""’di-l’di+l""’dm with values dl""’dm' Such expres

sions exist by primeness of D.
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and functions OD/E(Edl],..., [dm]) = loj@;5... d )1, is final. First,

D/= is interchangeable with D :

= (D/E)s for all SZSy s since B is the identity.

- eval D,s = 1oeva1D/E’ s for all S=Sys where
is : Ds - (D/Es) : d &[{d]_. This is, of course, an isomor-
phism.

Most importantly, we want to show that D/= is final, so suppose
EcA and consider the function

abs;: E_ —-*(D/z)s

N N
: e w>leval (t)]_ ,whereteT is some expres-
D,sN I,s Sy
sion such that eyal (t) = e,
’
N

Such at must exxst, since E is prrme 3 the. prohlem is to show
that abs is well-defined. But if t and t' are distinct terms with

evalE (t) = eval (t ') = e, then evaln’sN(t) —SN evalD’sN(t ), since

both have the same behav1or as e. Thus, [eval (t)1. = leval "l ,
D,sN = D’SN =

and abs is well-defined.
It remains to be shown only that absE is a homomorphism ; that is,

that for all eleES seevs€ eEs .

m

1 m . .
absE(G (el,..., e )) = Gb/;(abs (e ),..., abs (e )).
But if tl,..., t ETZ are such that eval (t. ) e; >

ISISm , then eval ('c(t],.;., t )") = 0 (e],..., e ), SO
”abs (0 (e],..., e » evalD/_( G(t],..., t )")
D/_( eyalD/E(" "),..., evalD/E("tm"))
/_(abs~(e]),...; "abs: (e ».

F1na11y, if F and F' are both.flnal then there exlst onto homo-

g

morphisms in Bothedlrectlons, so0 tﬁey are isomorphic.

The theorem depends 'upon tﬁe assumed prlmeness of all algebras in
A (and 1s, 1ndeed false otherw1se) Results on f1na1 algebras in larger

categories (containing non-prime algeBras) appear in [2,3].

Corollary to proof : D is final in A(D) iff no two elements of Ds are indis-

N 0

tinguisﬁaﬁle.
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The final data type is, in a sense, the "smallest'" data type ha-
ving the desired behavior. It 1s obtained by 1dent1fy1ng as many elements
as could reasonably be identified. As such, it often c01nc1des with the 1n-

tuitive picture of the data abstractlon

Examples

(1) M is not final. Cons;der, fpr example, aga, and aag € MMSet' There is

no way to distinguish these elements from the outside.

On the other hand, any two functions fl R € M"MS ¢ are distinguisha-
ble. By definition, if f and f2 are distinct, there exists a; eM” Atoms with

f (a ) = f (a ). Thus, f1 and f2 are dlstlngulshed by the derlved operator
COUNT(ai,X)

(2) Finite-state automata can be regarded as SFA-sorted
ZFA-algebras, with SFA = {Bool, Stateg} and ZFA given by
START : — States
a,b : States —*> States

ACCEPT? : States —* Bool.

The <ZFA, States>- data types which interest us are those data types F such

= . 9 = 3
that FBool {tme, false}Aa:d ACCEPT? (cn(%—(l'."(cl(START)))”') true if
and only if C1€ye e Ch € (ab) . This still leaves considerable freedom to
choose FStates’ ranging from .
FStates = {a,b} -
with ACCEPT? : w + true if we(ab)
false, 0.W.
to
Fstates ={r Ty 15}
with ACCEPT? : rlH true
Ty » T3
START : | r]
a : r]|——> r

r— false

2

2,1'30'—*1‘3

rzi—> r]
r] s r3 — r3.

F', corresponding to the reduced automaton, is the final data type here. 0

T
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IIT - SPECIFYING FINAL DATA TYPES

The key to our approach is to concentrate on operations which

‘observe elements of the data type, rather than on those which build elements.

Definition : A distinguishing term for a data type signature <Z,sN> is an

element of TE(X)S , with X a variable of sort sy and sZsy

(i.e. a derived operator from sy to s). : O

Distinguishing terms may be used to observe the difference between
two elements of the new type. Whether this succeeds or not will depend upon
the term and the data type s for examplei CQUNT(a2 » X) will distinguish bet-

ween some pairs of multisets, and not between others.

Definition : A 'distinguishing set DS for a <Z,sN>-data type D is a set of

distinguishing terms such that for any two distinguishable
elements dl , d2 €D there is a t[xJeDS such that
' N
d rd
tfd, 1 = tld, 1. 0
That a distinguishing set exists for every data type is clear ;
the set of all distinguishing terms is one. Notice also that a d.s. for D

is also a d.s. for any other data type in AD).

X i .

(1) {COUNT(a, )/aeMAtoms} is a d.s. for M

(2) {ACCEPT?(xX)} is not a distinguishing set for our finite-state automata.
One d.s. is {ACCEPT?(x), ACCEPT?(b(x))} ; of course, any superset of this

set is also a d.s. g

The problem is the following : Given an algebra D of known types,
we want to add the new type sy This involves deciding upon a representation
of DS , and then defining the new operations over that representation. The

diffigulty is that we require the algebra so obtained to be final.

The trick is to recognize that the statement that DS is a distin-
guishing set amounts to saying that the eléménts of the new type are charac-
terized By their values at éach of the dérivéd opérators in DS. Then we can
simply take the répréséntation of an elément to Be the collection of all its

values for all these functions. Thus, proceed as follows



17

1. Suppose the DS is {ti[X]/ieI}.
I

2. Take the representation of the new type to be D =, D ,
SN 1el Si
where s is the sort of tifx]. o
3. Define all the new operations of the data type as functions

over Ds .
N
4. For all iel, prove that the meaning of ti[X], as given by step

3, is I. , the i-th projection of D_ .
i e

Example
From the DS {ACCEPT?(x), ACCEPT? (S(X))}, we obtain representa-

tion States = Bool X Bool. We now define the operators.

ACCEPT? : States — Bool
s Hl(s)
a : States — States
. s + <false, Hl(s)>
b : States — States
s = <I,(s); T, (s)ALL, (s)>
START : —> States
— <true, false>.

We easily do step 4 :

- ACCEPT?(s) = Hl(s)'
- ACCEPT?(b(s)) = Hl (<H2(s), H](s)AHZ(s)>)
= Hz(s). O

Now, any two different states must differ in either their first
or second projections, so By applying either ACCEPT?(X) or ACCEPT?(B(X)),
they can be distinguished. Therefore the data type we have defined , or
rather its prime part, is final.It would have been possible to give an

. o2 N . N\ * .
incorrect definition - i.e., one not accepting (ab) - but not a non-final

one.

The problem with this "method" is that it involves infinite sets
at each step. It turns out that we can give finite descriptions of d.s. s,
which in turn lead to finite descriptions of the set D and 2 fini-

te number of operations to define and prove. The key idda is to use function
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' spaces and recursive domain definitions to ayoid the infinite cress pro~

duct in step 2.

The four steps now become :

1. Give a d.s. in the following form :

DS (sN) = {tIEX]/X;esl,..., x' € s; }

U ™ 1
U{tk[x}/X? € s? yeees e s¥ }, where x is a varia-
ble of sort SN X% seees X; are all :Ee variables of ti other

than %X, and furthermore :

- For at least ome j , the sort of t,[X] is not Sy and
' ' k .
- None of S seves S seees ) seeey is sy.
1
The first requirement is justified by the intuition that DS(sN)
really describes the set of distinguishing terms formed by com-

position of t, ,..., t No distinguishing terms could be ob-

1

tained if all of t. ,..., t had sort s

1 The second require-
H

N°
although a DS such as
DS(sy) = {=(x,y)/yesy}

seems intuitively reasonable, it is not clear to this author

ment is technical

how to use it.

The representation of DS is the smallest non-trivial solution
N
to the domain equation :

(*) Ds = (Ds' X, 00X DS. — DS )
N 1 n 1

1
X

X X L. X
(DS k ey DSk—* DS ) ’

1 n k
where s; is the.sort of ti[x]’ and "— " is the function space
constructor (i.e. A— B is the set of all functions from A to
B). Since s; may be SN for some i, this equation can be non-

trivial ; we discuss solutions to (*) in the appendix.

Define the new operations over D_ .
N

For each i, prove that, in the I-algebra D defined in steps

2 and 3 , we have



19

i i
. dl yeory dn-1 : :
i x? vees x; [da] = I'[.l (d) (d] seeey dni),
P a enes &y s
for all deDs , d. € Dsi . ti i is the derived ope-
NP o o
1000 %

. i .

. S . . 1 . i,
rator resulting from substituting dj for variable Xj in ti. + If,
as often occurs in practice, the term ti[x] has the form

o(x,X .,Xm), a single function symbol with one argument of

1"
sort s , Ve can take this requirement to be the definition of

operation 0 , thus avoiding one definition and one proof.
Examples

1. The last example is already almost in the required form :
DS (States) = {ACCEPT?(x) }u{ACCEPT?(b(x))}.

2. An alternative DS for finite-state automata is :
DS(States) = {ACCEPT?(x)}u{a(x) }u{b(x)}.

This leads to the domain equation

States = Bool X States X States,
which is exactly the tree repfeséntation given in the introduc-
tion. All thréé opérators in the DS fall into the special cate-—
gory of a single function symﬁol with variable, so we take the
definitions of ACCEPT? , a , and b immédiately to Be Hl . H2 s
and H3 . It remains to define the operation START, which we do
exactly as in the Introduction. The complete specification is gi-

ven in Figure 2.

3. DS(MSet) = {COUNT(a,x)/acAtoms}, from which we get
MSét = (Atoms —* Nat)
and COUNT : a,s —*>s(a).
It remains to define the other operations, which we do exactly

as for M". The complete specification is given in Figure 3. g

+ More properly, the result of substituting expression 5; e Ty Si , whose
_ . ST 3

3 . 9
value is d; , for variable X;.
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A number of other examples appear in [15].

Data type "Finite automata accepting (ab)*"
SFA {States,.Bool}
START : —> States

ZFA

a,b : States — States

ACCEPT? : States — Bool

DS (States) = {ACCEPT?(x)}u{a(x)}u{b(x)}.
START : +— <true, <false, REJECT, START>, REJECT>,
where REJECT : —— <false, REJECT, REJECT>.

Figure 2

Data type "Multisets"

sMSet = {MSet , Atoms , Nat}
= $  —
ZMSet NULL MSet
SINGLE : Atoms —> MSet

UNION : MSet X MSet — MSet
REMOVE : Atoms X MSet —* MSet
COUNT : Atoms X MSet —> Nat

DS(MSet) = {COUNT(a,x)/ ae Atoms}

NULL : Aai:.Atoﬁs.O v
SINGLE : a, +—> Aaj : Atoms. if a; = aj'EEEE 1else O
UNION : f,f'+—> Xai : Atoms. f(ai) + f'(ai)
REMOVE : ai,f — Aaj : Atoms. ii a; = aj then O glgg_f(aj).

Figure 3
IV - APPLICATIONS

Our basic argument is that the final data type is the best concrete
representative of a data abstraction. In séveral illustrations of the use of
final data type specifications, wé will show how thé promise of this argument
is fulfilled. It is particularly intéresting to contrast these specifications
with algeBraic specifications [6, 9, 10, 17, 19], which are not constrained to
define only final data typés. Oné connéction should be mentioned now : Given
a consistent, sufficiently—complété (9] axiomatization A of a data abstrac-
tion A, the fimal algébra‘of A is just the initial algebra of the maximal

consistent extension of A.
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Properties of Data Types

1. Axioms

Suppose we are given an algebraic specification of multisets :

COUNT (X, NULL) =
COUNT (x, SINGLE(y)) = if x=y then 1 else O
COUNT (X, UNION(s,s'")) = COUNT (X,s) + COUNT (%,s"')

REMOVE (%X,NULL) = NULL
REMOVE (X,SINGLE(y)) = if x=y then NULL else SINGLE(y)
REMOVE (X,UNION(s,s')) = UNION(REMOVE(x,s), REMOVE (X,s8')).

Intuitively, this specification is sufficient and correct, and
it does satisfy the technical conditions of consistency and sufficient comp-

leteness [9].

On the other hand, we can see that the two terms UNION(s,s') and
UNION(s ,8), for any dlstlnct s,s' , are not equated If they are indistin-
gulshable, then they must be equal in the final data type. So, referring
back to the final specification (Figure 3), and using knowledge of pre-

defined types, A-abstraction, and so on, we attempt to verify this

L[}

UNION(s,s') Xai, s(ai) - s'(ai)
kai. s'(ai) + s(ai)

UNION(s',s).

2. Finding Constructors
It is often convenient, when working with a data type, to know
that a certain subset of all the expressions generates all elements of the

’

type. (That is, that T<T s 1s such that evalD s l isg onto Ds .) For
example, it is easy to show, from either the algeg

aic or final gata type
specification, that every multlset is the value of an expression consisting
only of NULL, SINGLE and UNION operations. On the other hand, it is hard to
use the algebralc spec1f1cat10n to show that each multiset is the value of
a term of the form

UNION(SINGLE(aiR, UNION(SINGLE(ai ),
2
ey UNION(SINGLE(ai ), NULL))...),
L k
where i]sizs...s ik (The problem is that relationships among the construc-

tors SINGLE, UNION, and NULL are not glven ; even
SINGLE(a) UNION(SINGLE(a) NULL) is not d1rect1y demonstrable from

the axioms.) In the final data type, this is true, and we can use the final



data type specification to show it. Thus, by induction on terms, considering

only NULL, SINGLE and UNION, we have :

~ NULL - nothing to prove,

- SINGLE(a,) . But SINGLE(a,) =
Aaj.'ig a; = aj ‘then 1 else O

Aa.. (if a; = aj'then 1 else 0) + (0)

Xaj. SINGLE(ai)(aj) + NULL(aj)

UNION(SINGLE(ai), NULL).

- UNION(s,s') .
UNION(UNION(SINGLE(a.),...,UNION(SINGLE(ai ),NULL))...),

UNION(SINCLE(aj),...,UNION(SINGLE(ajm),NULL)...))
1 n
Aa.((if a=a, then 1 else 0)
1
+((1if a=a, then 1 else 0)
2

fl

+ooe

+(if a=a, then 1 else 0) + 0))...)
m

+ (ig_a=aj then 1 else 0)
1
+o.e

+ (if a=a. ‘then ! else 0)+ 0))...))
. )
= Aa.(if a=a, then 1 élse 0)

-1

-K(ig a=ak2'then 1 else 0)

+eoe

(@it a=a, then | else 0) + 0))...)
mén

= UNION(SINGLE(akI),..., UNION(SINGLE(ak ), NULL))...),
m+n
where k1 seeey knrm is the merge of L seeey 1 and APEFETETIN e

The manipulations in this proof are lenghy but not at all diffi-

cult.

Correctness of Implementations

If D is any data type interchangeable with some final data type

F , then there is a I-homomorphism from D to F. Then, taking "correctness"
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and "interchangeapility with the specification" to be synonymous, a comple-
te (though certainly non-effective) test for correctness of an implementa-
tion is the ex1stence of a homomorphism from the implementation to the final
data type speclflcatlon. By contrast the relationship obtaining between an
algebraic speclflcatlon and an 1mp1ementat10n is indirect, requlrlng, in ge—
neral, either an "equality interpretation’ [10] or more axioms [16] to make

the test complete.

The homomorphlsm abs t: D = F a551gns to each element of D the
abstract element it represents (Thus, it has been called an "abstractlon
function” [12].5 It is not, perhaps, too surprising that, given a DS, abs
is easily derived s it is the map. which assigns to eaeh element the col-
lection of all its values for the operations of the DS. More precisely,
suppose tﬁe DS is given py :

DS(sN) ='{t1[X]/*i € 8! ,..., X' € s; }

U

U{tkEXJ/XT ¢ s& seees K sk }

1 € ’
e %k
and that 8; is the sort of t 1<i<k. Then abs is given by :
absn,s : Ds g FS
n N N a' ar
:d +— <Ad{ seoes d; . abs (ﬁ | n, fal),
1 1 o <
HETEE TR
1
. k k
d eeey d
k k 1° ’
AT ..., db . oabs_ ( Tk [dD)>,
1 e Sk X§ yeens xtk
and a.bst,s = identity function, for S, %8

i
For example, to prove M, with respect to the specification of

MSet, we need to show that abs is a homomorphism, where :
—M,MSet

* '
é"—’-iﬂ,MSet ) (MAtoms) Atoms MNat

tw—> Aa : MAtoms' COUNTM(a,w).

That is, each string maps to its COUNT function.

The homomorphism conditions are (calling the specified algebra S,
suppressing occurrences Of.abSH,Atoms and abSH,Nat , and omitting the subs-

cripts from'abs“ Mset) :
’
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- géi (NULL,) = NULLg
- abs (SINGLEy(a)) = SINGLE((a)

- abs (UNIONM(w,w'))= UNIONS(EPEKW), EEE(W'))
- abs (REMOVEM(a,w)) = REMOVES(a, abs (w))

- COUNTM(a,w) = COUNTS(a;'éggﬁw)).

Because we derived abs from the DS, the last homomorphism condi-

tion is trivially true :

COUNTM(a,w) = (Aa' : MAtoms' COUNTM(a',w))(a)
- : ] . L
= COUNT_ (a,(Aa' & My . COUNT(a’,w)))

COUNTS (a, abs w)).

This will always hold for the functions appearing in the DS, when
" abs is derived in this way. There remain but four conditions to verify ; we

give two of the proofs :

- abs (NULL,) = abs (e)
= Aa : MAtoms' COUNTM(a,e)
= Aa.0
= NULL

- abs (REMOVE(a,w))

‘abs (w with all a's removed)

= Aa'. COUNTM(a', w with a's removed)

Aa'. if a'=a then 0 else COUNTM(a', w)

Aa'. if a'=a then 0 else abs (w)(a')

REMOVES(a, abs ).

The reader can readily fill in the two remaining proofs.

The finite-state automaton specification (Figure 2) requires
induction on the structure of the domain. Suppose we wish to prove the fol-

lowing automaton correct :
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Recall that the DS was‘{ACCEPT?(X)}U{a(x)}U{B(Q)}, so the abstrac-

tion function is :

’ absstates : {s] » 8y 2 S35 8, } — infinite trees
: 8 —> <ACCEPT?(s), aBsStates(a(s)),
>,
Cabsg, .o (b(s))

As mentioned, it is not necessary to verify the homomorphism con-

ditions for ACCEPT?, a, and b. All we need to show is :

absStates(s ) = START.

The proof is by fixpoint induction [20, 23] ; namely, we show that

”abs(s]) satisfies the recursive definition of START :

<true, <false, REJECT;'aﬁs(s])>, REJECT>.

abs(s)) =
abs(s;) = <ACCEPT?(s|), abs(a(sy)), abs(b(s;))>

]

<true, abs(sz), abs(s )> )

<true, <false,’ abs(sa), abs(s )>, abs(s )>

So we need only show that'aﬁs(s4) = aBs(sB) = REJECT, which we do
similarly, show1ng '

abs(s ) = <false, abs(s4), ahs(s )>.

Indeed, this is 1mmed1ate, and the s, case is identical. (What
this actually shows 1is that’ abs(s]) is an extension of START, but since

START has no proper extension, this giveS'abs(s]) = START.)
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Of course, our ability to do such procfs in general is limited by
our knowledge of recursive functions. However, in practice, the proofs which

arise are well within the power of a system such as LCF [8, 21].

V - CONCLUSIONS

Specifications of data types can usually be regarded as specifying
particular algeﬁras. Algéﬁraic spécifications always specify prime algebras
(as long as "hidden operators” aré eschewéd). Final data type specifications
always spécify algéBraS whosé primé part (i.e. smallest sub-algebra) is fi-

nal. This situation is pictured in Figure 4.

H'stbfﬁs
describe d
by Sinn\ data

Prime nlgzbros

h!.x"roc.t
Smallest
Sub- algebra

= olagbras
described by

Q‘sebrnfc, spec's

“w

type spec%

Final data types

Figure 4

We have argued that the final data type is the most abstract re-
presentative of any given data abstraction. That is, the final data type
contains the "essence"” of the data abstraction, and, as such, has a parti-
cular mathematical relationship with other representatives of the data abs-
traction. (In denotational semantics, the analogous property of semantic do-
mains is called "full abstraction” [22, 24].) By exploiting this relation-
ship, we have given the first data type specification method which is - in a

mathematical sense-entirely free of implementation bias [13, 19].

VI - APPENDIX

To define the method fully, we must say what solutions to domain
equations of the form (*) are assumed. For purposes of explanation, let us

consider the equation
A=Bx (C—A).
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By a solution, we mean a complete partial order A with least ele-
ment L , together with (continuous) functions H} : A — B and
M, : A — (C—4), and (continuous) bijection <.,.>: B X (C— A )— A,

satisfying the projection and tupling laws :

Vb eBYEe (C— A). I (<b,£5) = b
and H2(<bgf>) =

i
Hh
.

L}
[

Va e A. <nl(a), I, (a)>

To use final data type specifications, one need only know that
such solutions exist, as follows from [18, 25]. To be more concrete, we give

a construction ; assume B and C are cpo's with least elements, and define

*
A=2C -*.L B’
* ’ . .
where C = {sequences of elements of C, ordered componentwise, with sequen-

T . .
ces of differing lengths incomparable} U {lc*}, and C — B is the set of conti-

. * .
nuous functions from C to B taking Lo* to L.

Then define
Mm e ( C*-alB)-* B
: a v a(e)
M, : ( C"— B)—> ( C—A)

arr Ac: C.Xc* ) C*.a(c.c*),

* *x . . . - . . -
where « ¢ CXC® =+ C is a concatenation operator which is strict 1n 1ts se-

cond argument (but not its first). Finally,
*

<.,.> 1 BX(C—A) = (C e B)
* * *

: byf=>Ac :C . ¢
*

L= 1y,

e — b,

£(FIRST(c*) ) (REST(c™)) .

i

The reader is invited to verify the projection and tupling laws,
and that <.,.> is a bijection. Also, this solution is minimal in that for
any other solution D, there is an injective homomorphism (with respect to

Hl s HZ , and <.,.>) from A into D. It is easily seen how this solution

extends to equation (%).

Notice that every element of the space A is infinite. In parti-

cular, there is no distinction between 1y and the element L such that
. _ N

HI(HZ(Hz(...(HZ(L)(CA))(CZ))...(cn)) =1 for any sequence C,C,...C € c.
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This is required by our view that an element is characterized by
its behavior, and is why we chose the equation we did in preference to,
say, A= (Bx (C—A))u {1}.
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