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RESUME :

Nous montrons que le probléme du sac 3 dos avec des bornes supérieures
généralisées et des coefficients de signe arbitraire est &quivalent d un
probléme de ce type qui n'a que des coefficients positifs ; ce dernier
probléme est dit standard. Nous démontrons deux propositions qui donnent un
algorithme pour le programme linéaire (relaxé) associé au probléme standard.
Cet algorithme est une généralisation naturelle de 1'algorithme de Dantzig
pour le probléme du sac 3 dos sans bornes supérieures généralisées. Nous
dérivons aussi plusieurs propriétés de 1'enveloppe convexe des solutions
zéro—un pour cette classe de problémes.

ABSTRACT :

The knapsack problem with special ordered set and arbitrarily signed
coefficients is shown to be equivalent to a standard problem of the same
type but having all coefficients positive. Two propositions are proven which
define an algorithm for the linear programming relaxation of the standard
problem that is a natural generalization of the Dantzig solution to the
problem without special ordered sets. Several properties of the convex hull
of the associated zero-one polytope are derived.

Key words : knapsack problem, special ordered sets, GUB, algorithms, facets.
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INTRODUCTION

Consider the following problem

max 2 2 Cij

i€l jeK;
subject to

2 2 ax<a

i€l ieK;
(KPSOS)
2 X; <1 for all iel
j€K;
x. >0 for all jeK;, iel

where the K, satisfy | K;| 21 for all iel, KinKj = ¢ holds for all i # j and the data <; and a;
are arbitrarily signed real numbers. This problem has received much‘attention in recent
literature, see e.g. Zemel [6] for a survey of the literature. In this note we first show that
(KPSOS) can always be brought into a ''standard" form with positive data and prove two
propositions which define an algorithm for (KPSOS) that is a natural extension of Dantzig's
solution [2] to (KPSOS) when |K;| =1 for all icl. Note that arbitrary upper bounds u; on
the special ordered sets can be dealt with by scaling. We then consider the zero-one-variables
version of (KPSOS) and derive several properties of the facets of the associated convex hull of
zero-one solutions to (KPSOS).

1. The Algorithm

Note that any special ordered set constraint of the form X Xj = 1 can be brought to
i€K; :
the inequality form by eliminating one of the variables in such set. Next we show that

(KPSOS) can always be brought to a standard form with all data positive. Define



(1.1) a; = min {ajljeKi} for iel

and let H = {iel | a; < 0}. For all ieH we set

{aj.-aji for all jeK;—{j;}

—-a. for j=j;

) , {cj-cji for all jeK;—{j;}
(1.2 ¢ =

-c; for j=j;
1
’
a, = ao—z aj.
i€H

Let K = U K; and define aj’ = a/, ¢ = c; for all j¢K. Consider the problem
ieH

max » > cj'zj

i€l ieK;

. subject to

i€l jeK;
(KPSOS*)
> zjs 1 for all jel
j€eK;
z; >0 for all jeKi, iel.

Problem (KPSOS*) satisfies a'j 2 O for all j and the variable substitution



xj = Zj for j¢K
(1.3) xj=zj for jEKI—{jI}
. for all ieH
x=1-3 z for j=j;
j€kK;

provides a one-to-one mapping between feasible solutions to (KPSOS) and (KPSOS*),

respectively, which preserves - up to the constant term 2 cj.— the value of the objective
ieH
function.

If cj' < 0 and aj' > 0 in (KPSOS*) we set z; = 0; if cj’ > 0 and aj' = 0 for some

jeK, and some iel, it follows that every optimum solution to (KPSOS*) satisfies Z z; = 1 and
jek;
letting

(1.4) c'j_ = max {c'j | a'j =0, jeK;}

we can eliminate variable z;, from the problem. The eliminated variable is recorded and its

value determined at the end of the calculation. After this reduction (possibly used repeatedly)

we thus obtain the linear knapsack problem with special ordered sets in the following standard



form:

max E Zdjzj

i€l jes;

subject to

(KPSOSX)

> > gz <8

i€L  jes;
2 z; < 1 for all ieL
j€s;
z; 20 for all jeS;, ieL.

where dj >0, g; > 0,8, >0for alljand |S; | > 1 for all icL. Let for icL

(1.5) 1 = max {—= | jeS;}

and suppose that the special ordered sets have been ordered such that

(1.6) S > 2y  yh
g, — &, T g

where h= |L]|.

Proposition 1.1: There exists an optimal solution z* to (KPSOSX) such that X z*, =1 or
kes,

an optimal solution is given by z*j‘ = go/gjl, z"'j = 0 for all j#j,.

Proof: Suppose that £ z, < 1 holds in every optimal solution to (KPSOSX). Let z be any
kes,

optimal solution and z, > O for some j#j,. Define z* by z*. =z. + ¢, z* = z.—€g. /g,
j 1 N it J | h ®l



z*, =z, for all k#j,, j where

(1.7) €= min {1- Y z, 7 g;/g;,}-
kes,

Clearly € > 0 and z* is a feasible solution to (KPSOSX). We then get

d. d.
(1.8) d, z* - d z, =d; e—dieg. /g = LI g.e20
PR (gn g )5

and thus z* is optimal as well. If e = 1-2 z, holds, then X z,e =1 Else we can iterate
‘ k€S, kes,

unless z* iy is the only positive variable and z*j] =g,/ 8j, holds since £ z; < 1 holds in every
keS;

optimal solution. The proposition follows.

Proposition 1.2: If g, 2 8 then zj = go/gjl, z, = 0 for all k # j; is an optimal solution to

(KPSOSX).
Proof: If 8j, 2 & holds, the solution of proposition 1.2 is basic and a feasible basis is

obtained by making all slack variables of the special ordered sets basic. Denoting s, the slack

of the knapsack constraint we compute

g dj dj
2 2 d; z; = dj1 —gf + 2 (dj—gj g—jl)zj - g—Jl— S,
ieL  jes; L g1t ! !
and thus the reduced cost of all nonbasic variables are nonnegative, establishing optimality of
the proposed solution. The proposition follows.

Propositions 1.1 and 1.2 define an algorithm for the linear knapsack problem with
special ordered sets which is a natural generalization of Dantzig's method for the linear
knapsack problem with variables having upper bounds. Let j;, j,,...,jy be defined as in (1.6).
If 8j, > g, holds, we are done by proposition 1.2. Else 8j, < 8o holds, thus we know by

proposition 1.1 that



(=

(1.9) Z zj = 1
j€s,
holds at the optimum. If S;] =1 holds, we fix the corresponding variable, record the

change of g and iterate. Else we eliminate from S, the variable j. defined by

(1.10) dj' = max {dj | g = g.} where g‘ = min {gj |jeS,}.

“We replace §; by the set

(1.11) S|

{jeS, 1d; > d; },

replace d; by d;—d;, g; by g;—g;, for all jeS; and replace g, by g,—8j,- If S; = ¢ holds, we

fix z;, at value 1 and iterate. If S; # ¢ holds, we record the eliminated variable and compute

dj+ d] *
(1.2) —— = max 5 |jeS; ¢.
Bj, 8j
We merge the special ordered set SI into its proper place according to the value of this ratio
among the remaining (decreasingly ordered) ratios to be worked at and iterate.
In the following iterations it may happen that the eliminated variable is set to zero if
S; is used .again for elimination or that the eliminated variable is set to equal to 1 — g,/ gj.
1
when the special ordered set corresponding to the current index i(i.e. in the redefined order-

ing) at which the algorithm stops corresponds to the original set S;. In any case, it may be

_that a previously eliminated variable may have to be reset at such fractional value if the

current index i corresponds to some other special ordered set which was used previously for

elimination and the algorithm stops with at most two variables at fractional values.



2. PROPERTIES OF FACETS FOR THE ZERO-ONE POLYTOPE
We consider again the general knapsack problem with special ordered sets and require
that all variables be zero-one variables. As we are interested in the convex hull of zero-one

solution we dispense with the objective function and consider the constraint set

(C1) > Y ax < a,
lel  jeK;
2 X; < 1 for all iel
j€K;
x;.=00r1 for all je;, iel.

Using the variable substitution (1.3) we bring (C1) into the equivalent form

2 2 aijSao

i€l jeK;
(C2)
> zj<1 for all iel
i€kK;
zj=0 orl for all jeK;, iel.

where the aj are non-negative and correspond to the a'j of (1.2).

Proposition 2.1: Let 7z < n, be a facet (a valid inequality) of the convex hull of (C2), then

(2.1) 2 (—Wji)xji + I pX (wj-v'rji)xj +.2 7iX; < my—2 i,

ieH ieH jeK;-{j}" jeK i€H

is a facet of (a valid inequality) of the convex hull of (C1). Conversely, let ux < p, be a

facet (a valid inequality) of the convex hull of (C1), then

(2.2) 2 (=n;) z; + X b (pj—p) z; + Z RiZj € po—Z By,
ieH v ieH jeK;-{j;} ! jeK ieH




"

used.

Proof: The variable substitution (1.3) can be written as x = f + Az where f is a zero-one

vector and A is a nonsingular matrix. On the other hand one verifies that z = f + AZX holds as

well. Validity of the respective inequalities follows from the fact that the variable substitution

provides a one-to-one mapping of feasible solutions. The facet defining property of the

respective inequalities follows from the non-singularity of A and thus the proposition follows.
We assume now without restriction of generality that «; < a, holds for all j. It

J

follows that the inequalities

>z <1 for all iel
(2.3) ek,

-z < 0 for all jeK;, iel

define facets of the convex hull of (C2). We call those facets the trivial facets. Due the
non-negativity of the constraint system (C2) we know e.g. from [3] that every facet 7z < 7,

of (C2) which is not a non-negativity condition satisfies 7 >

0 and 7w, > 0.

Proposition 2.2: If a; = 0 M for some jeK;, i€l, then 7; = 0 in every nontrivial facet

7z < m, of the convex hull of (C2).
Proof: Suppose the proposition is false and let 7z < m, be a facet which has ™ > 0 for some
jeK,, iel, with aj = 0. Since mz < = is nontrivial there exists a feasible solution z* to (C2)

such that #z* = 7,and = z; = 0, since otherwise we have 7z = I z; and 7, = 1. But then
i€K; j€K;
z** defined by z**, = z* for all k # j and z"“"j = 1 is a feasible solution to (C2) satisfying
mz** =7+ T > T, contradiction.
Consequently, we can purge all zero a; in (C2) and assume that @ 2 a; > 0 holds for

all jeK; and all iel.

Assume next that the K; are indexed such that



K; = {jpj + 1,..j; + 4}

(2.4)

aji < aji+1 <...% aji_,_ti

where t; > 0 holds.

and jeK; we have =; > 0, then

(2.5) 'ka 2 ﬂj for all kﬁKi, k > ]

holds .

Proof: Suppose the proposition is false. Since mz < = is nontrivial, there exists a feasible
solution z* to (C2) with #nz* = = and z*, = 1 since otherwise #z = —z;, and =, = 0 holds.
Since a; < a it follows that z** defined by z**l, = Z*l' for all /#k,j and z**, =0, z"”“j =1

is feasible for (C2) and that wz** = 7 + T—m > T, holds, a contradiction.

To state the next proposition we need the following auxiliary problem: For kel and

leK, let
]
§, = max 2 2 aj z;
iel  jek;
ik
subject to
2 E ajzj < a,—a,
i€l  jeK;
ik
(AUXKT)

> z; <1 foralliel, i%k

zj=0 orl for all j



=<

Proposition 2.4: If §j ={, for /#j, eK,, jeK; and some kel, then =, for every

Proof: Suppose the proposition is false and let 7z < =, be a facet with kT, Without
restriction of generality let m; < m,. Since mz < w, is a nontrivial facet of the convex hull of

(C2) there exists a feasible zero-one vector z with z; = 1 and =z =z, Define z* by

z*, =1, z* = 0, z*|, = z, for all h#/,j. Then

2 2y + =+ <

i€K  heK;
holds and thus z* is feasible. But #z* = To + Tpmm > T, holds, contradiction. Thus the
proposition follows.

The assumption of proposition 2.4 is satisfied e.g. if i =9 holds. It follows that we
can purge all but one of the variables in any special ordered set which have identical coeffi-
cients when we are interested in finding a minimal linear constraint set for the convex hull of
(C2). We initially conjectured a stronger property, namely that all facets of the convex hull of
(C2) could be obtained by "lifting" facets from associated knapsack inequalities with all
special ordered sets consisting of singletons. While the conjecture is true for facets derived
from minimal covers, see [3], [4], and from (1,k) configurations, see [5], the following
example shows that the conjecture is false in general.

Example 2.5: Consider the inequalities

5Xp 4 3%y +3%3 + X4+ 2x5< 7

X +Xx, <1
0 < x; £ 1 and integer, i=1,...,5.

The inequality 2x, + x, + X5 + X4 + X5 < 3 defines a facet of the corresponding convex hull
none of whose projections into a lower-dimensional space, however, defines a facet for the

associated lower-dimensional zero-one problem.
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The algorithm for the linear knapsack problem with special ordered sets as well as the
properties of facets of the convex hull of (C2) are currently used in a cutting-plane-based

approach to large-scale zero-one programming problems [1].
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