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THE VORTEX METHOD WITH FINITE ELEMENTS

. * *% *k ¥
Claude BARDOS , Michel BERCOVIER , Olivier PIRONNEAU™

Résumé :
Ce travail montre que la méthode des caractéristiques est bien adaptée & la
résolution numérique des problémes hyperboliques du type transport lorsque
les coefficients des équations sont approximés par des fonctions constantes
Par morceau sur une triangulation,

On applique la méthode & 1l'équation d'Euler etuon montre que la méthode
converge en O(h+At). Les résultats supposent que les estimations de Kato

et Wolibner sont valides (pas de chocs).

La méthode apparéit comme une géndéralisation de la méthode des vortex

étudiée d'habitude dans un cadre différences finies,

Abstract :

This work 'shows that the method of characteristics is well suited for the nu=
merical solution of first order hyperbolic partial differential equations
whose coefficients are approximated by functions piecewise constant on a fi-
nite element triangulation of the domain of integration,

We apply this method to the numerical solution of Euler's equation and show
that it converges when the time step and the mesh size tend to zero, The
proof is based u%on the results of regularity given by Kato and Wolibner and
on L estimates for the solution of the Dirichlet problem given by Nitsche,
The method obtained appears to be a natural generalization of the vortex

method usualy studied in a finite difference context.

* TUniversity of Paris 13, CSP - 93430 VILLETANEUSE, France,
** University of Jerusalem, School of Applied Sciences, GIVAT RAM, Israel,
*#¥% University of Paris 13 and INRIA.



INTRODUCTION

The vortex method is based on an old concept of fluid mechanics which says
thdt for two dimensional non viscous flows the vorticity in the fluid is
transported by the flow ; thus if the initial distribution of vorticity
consists of a finite number of point vortices, the flow at later times can
be found by transport of these point vortices along the stream lines of the

flow that they create,

In mathematical terms this means that the two dimensional stream function-

vorticity formulation of Euler's equations :

g‘—:'.'.qu:O;_A\y:m;u:VA‘]{ in QX]O.T[
(1)

i) = v o0 . =y
w(t=0) == wy 6(x-xi) H YIF = YO

whnere & is the Dirac function, I the boundary of @ , is integrated by

w(x,t) =2 wg é(x—xi(t))
dx,
: ""'_':':V . ( =
(2) o = av(x; .t) ; x, (t=0) = x;
~ 5 0 . = v
| - =2 8(x-x,(t)) ; wlr =¥,

This method was first implemented by Christiansen [6] and Chorin [5] and
thouroughly tested by Baker [2] on the roll up of vortex sheets. From the
theoretical point ef view if Q@ = R2 Bald [10] showed that when (2) is discre-
tized explicitly in time, when the Dirichlet problem is approximated by

a suitable discretization of the corresponding Green function and when the
Dirac functions are smoothed by appropriate convolutions then the method con-
verges, In Baker [2] the Dirichlet operator is discretized with finite dif-
ferences and as far as we know the convergence is not established in such a

case,

The present work is based on the rather straight forward observation that the
system (2) is perhaps easier in terms of error analysis to discretized by

the finite element method than by the two previously mentioned method becguse



the equation for the characteristics x. (t) can be integrated exactly if Vaw
‘s piecewise constant on a trlangulatlon of @ X J0yT[, However the error -
' analy31s shows that in the finite element context it is no longer feasible ‘iﬁ
to work with Dirac functions ; itﬁis_better:to-use a piecewise;constant dis—e
‘eretization of wo(x). | | .
Therefore, we shall not work with point vortices but with a piecewise constant -
approximation of the vortex field :

(3) U)(X,t) = wg(i)l(x-xi(t))

™M=

i=1
where I(x—xi(t)) equals 1 if x and xi(t) belong to the same element of the
triangulation and zero otherwise, where N is the total number of elements and
where j(i) is the index of the element to which xi(o) belongs to, Therefore

we will have to compute certain characteristics backward in t in order to de=-
fine w(x.t) by (3),

Thus although in spirit identical, in practice the present method is substan-
tially different from the point vortex method of [2] and [5]. Both have the
advantage of being non dissipative, ours is conservative in a statistical
sens only in terms of wo, On the other hand we do not have to insert new Vor-
tices in some regions of the flow as in [6] and the method is more appropriate
to smooth flows, But most of all an error analysis will be given and the me-
thod is unconditionaly stable in time, This, by the way, may also be true of

the cloud and cell vortex method [5], [2] as was observed by Baker.

The proofs are involved and difficult in their details but the guide-lines
.are simple : we qsshme that the regularity obtained by Wolibner [14] and
Kato [11] for the solution holds., Thus to measure the error between the
exact solution and the approximate solution we measure the digtance
between two particules, one transported by the exact flow and the other by
the approximate flow, In the process ﬂx estimates of the finite element
solution of the Dirichlet problem for ~A will have to be established fol-
lowing the arguments of Nitsche [12].



For the sake of clarity and also because the method of characteristics in the
finite element context can be usefull on other hyperbolic systems, we begin

by.a presentation of the method on the transport equation, Then,'in paragraph
2 the method and the error analysis is explained for the two dimensional Euler

equation,

Finally the numerical implementation and some numerical tests are presented

in paragraph 3.

1, Pinite elements and characteristics for the transport equation

1.a, Statement of the problenm

Let @ be a bounded open set of R, let Q = @ X ]0,T[» and u a divergence free
(V.u = 0) veetor of (H'(Q) n I°(Q))™. Let £ and p, be two functions of L”(Q)

and consider the problem :

Q0

ot tuVe =f in @x Jo,o[ =a

(1.1) A ,
p(x.t) = po(x,t) for all {x,t} € S =@ x {0} Uz~

where I' is the boundary of @, v is outward normal and ¥~ = {{x,t} : u(x,t).v< 0
x €T},

I represents the part of the boundary of Q where the flow enters into Q ;thus
the boundary conditions for p are given at initial time and when the

velocity u enters intb Q.

Several physical ;henomenons are governed by this equation known as the trans-
port equation,On rectangular domains @ (1,1) is easily discretized by any upwind
finite difference scheme but if Q is complicated there are no simple non dis-
sipative finite element scheme and the method of characteristics is usually
considered as an expensive numerical method, Let us show that for first order

accurate discretizations this is not so costly.

The method of characteristics is based upon the following observation :

given {x,t} € Q define {X?.t(T).T} by




& _ | u(x(z),t) if x(z) €@

vt € Jo.t
dv o if x(z) ¢ @ Jossl

(1.2)

x(t) =x

If u is uniformly lipchitz continuous with respect to x, (1.2) has a unique
solution on ]O.t[ ; then we define

: t
(1.3) past) = op(K¥(0),0) + [ 20 () iedas

0

and claim that p is a solution of (1.1), If the data us p,s £ are not smooth
the proof is difficult [15] but if po, f, u are in C1(Q), then 6 is differen-
tiable with respect to {x,t} and

(1.8) o (0) 1) = plxst) =22 (5t)+ Vo (¥ (2)-x) +olr-t)+ olx-x)
- [ 2 e)iodas = B 49 5)(at) +o(et)
t

thus we have the following result :

Proposition 1

When w is uniformly lipchitz continuous in x, divergence free and po, u and f

are in 1L(Q) then the solution of (1.1) is given by (1.2), (1.3).

1,b. Discretization

To discretize (1.1) we choose a triangulation 3 of Q@ made of non overlapping

triangles if n = 2 or tetraedra if n =3 with the usual properties (4] :

N
a’h - {Tl }l=1
TNy = d or 1 vertex, or one side (or face), (or one edge),

(1.5)

N
y T, = Qh c Q@ , distance (Qh.Q) = O(h2), h=size of largest side
of ;h'

If At denote a time step then Q is approximated by

(1.6) Q =UB4 5 Pyy=7; X ]jAt.(;+1)At[ J= el = E(T/at).



Instead of u we shall approximate the stream function ¥ of u, i.e, the function

such that

2 1 3 2 1
- u = VAY = C——i'- . - . - ) ifn=73
K 6x2 ax1 6x3 6x1 6x1 o} >
(1.7)
oY oY
=(=,-) if n =2
6x2 6x1
Let Wh be an approximation of ¥ in the space Hh :
(1.8) Hh = {¢h PPy is continuous in x ; ¢h|P is linear in x and constant

ij
in t, Vl:] }

Then we approximate u by a function which is constant on all Pij H

(1.9) u = VAY,

and we shall denote by ph(x,t) the solution of

)
(1.10) —p+uth =f, in sahx]o.’l‘[

h
p (x,%) = poh(x,t) on Sh
where fh and pOh are piecewise constant approximations of f and pO'

Even though p R glven by (1. 10), belongs to a finite dlmenslonal function
space we approxlmate it further by choosing a point {g J tJ} in each P ]

and set

(1.11)  pylxat) = PeM,t9)  vixat) ¢ Pig V= laol 3= el

Proposition 2 @

For almost all choices of {glq.t?} € Pij’ ph ig uniquely defined by (1.10),
(1.11) and computable in a finite number of operations by the following al-

gorithm :

Aleorithm 1 : computes the solution of (1.10) for one x and t.
1, Pind the prism Pij which contains {x,t} ; set {xo,to} = {x,t} and m = 0



2. Compute N € R' such that {xﬂxuh(xm.tm),tm-x} € OB, ;s the boundary of P, .

3. set x == A (7 4t7), 22 s, 10 t™ 20 or 2™ coq g0 to 4,
b

else find sz such that

m 1
(1.12) ™7™} € P,

m+1 |, m+ . S
uh(x ot )‘P points inside Pk

’
ke 4

and go back to 2 with m =m#1, i =k, j = 4.

h m+] |, M1 B A dyg,id i
4. Set p(x,t) =p o (x Tt ) + 5 £ (x,tT)(TT t7)

Oh . h
i=0

Proof :
Since w, ig piecewise constant on Qh' the characteristic that passes through
a given point {x,t} is a broken straight line ; thus to compute it it suffices
to compute the nodes of the broken line, These are located at the discontinui-
ties of W therefore- on the boundaries of the Pij‘

Condition (1.9) insures that a P, A6 satisfying the condition of step 3 can be

found, In fact in the sense of d?ﬁtribution w is divergence free, -
Therefore the normal components. of U are continuous across the sides
@f the triangles thus (1.12) can be fulfilled, However this procedure
does not give a unique solution, whenever the broken straight line
passes through a vertex, This is why proposition 2 is stated for almost

N a
all {gj.tj}.

Agorithm 1 simply states that the characteristic to be computed can be found
by starting from {x,t} and following the directions W from one Pij to the

next,

Remark : Construction (1,9) may proove to be expensive because it cost a
Dirichlet problem at each time step., In most cases w, can be discretize

directly but then the algorithm may get stuck in one element,



t.c, Implementation

In practice one usually computes ph for all {x,t} € Qh therefore it would be
too costly to compute N X M characteristics, It is more feasible to proceed
as follows : Pick one point in each element and compute the characteristic
that begin at these points forward in time, If at some time step an element
is not crossed by one of these characteristic, pick a new pointlinside the
element and compute the characteristic backward in time that ends at this

new point, At all time step make sure that no more than N characteristics

are stored, i,e. discard some characteristics if they end up in the same ele-

ment, This gives the following algorithm :

Algorithm 2 : Compites p, (x,t) solution of (1.10)-(1,11) for all {x,t} ¢ Q, -

0. Choose 70 € 7, 4 i = 1,...,N, Set t%=0, 3 = 0 ;

1., For all i = 1, to M do
R , R
With Procedure F(g'J,t9, at ,uh.1) compute all the nodes {x;‘lj,. t;q }mif of

* the characteristics solution of

(1.13) %& . w(e)ifxeq
T
0 otherwise

for all © € Jt9,t9+ at] with x(t9) = g9,

Set
(1.14) E;lé(l);+1 = XlJ N t']+1 = tq+ At
1) mj:'j_ 1
: k(1),+1 i+ Y i L,idyr,id ij
(1.15) o (& 7)) = () 3o (=2 by ) (b = ")

1

where k(i) is such that

(1.16) ak(i)fj+1 € P

k(i)j+1



2, For all i' < N such that there are no k(i) = i' do with procedure

i ! i i+ A . m
F(§1 O-t?*jutq J-uh:-1)compute all the nodes {x;q ,t;3}113 of the characte-
ristic solution of (1.13) for all =t €]o, tq+1] with X(t3+1) - glto .

and éet

itj+ i'o

(1.17) ¢ =g

e . ij C . s

itj+ L3+ _ . ij ,1i3
(1.18)  p, (€ ) —pqh(x(o)) + ;1: £, (x St )(tm.tm+1)
3, Replace j by j+! and stop if j > M, else keep only one glq per T, and g0
back to 1, ' ' '

Remark : The nodes{x;q,t;} of the characteristics are the vertices of these

broken lines,

Procedure F(g.r,At.jh.e)

Computes with the method of Algorithm 1 the intersections {xm.tm} with the
boundaries bPij of the elements of the triangulation of Qh’ of the characte-
ristic X(t) solution of :

on Jt, t#At] if e = +1
dX

it jh(X,t), or 0 if X { Qh

on [t-at, t[ if € = -1
(1.19)
with X(t) = &.
Alternatively we,may choose to use
© Algorithm '3 . Computes the solution ph(x,t) of (1.10), (1.11).
0, Choose 6 = T/r, r €N

{. For i =1 to r compute with algorithm 2 the solution of (1.10). (1.11).
over t € [(i-1)e, ie'[ with p, (.i-1)e) for initial condition,

comments : For regular fields W most elements are expected to contain one
end point of the characteristics that are computed forward in time, For those

elements which have no such characteristic at a given time we pick any point,’



here gio, and compute the characteristic that end at gio, backward time ;
last,note that it is not absolutly necessary to go back till t = 0 ; the
user may pick up a time 6 and p(t) can be computed from ph(t-e) according
to (1.18) ; this gives algorithm 3, These schemes could be made conservative
by putting appropriate weights in (1,14) (1.15) according to the number of
characteristics that ends in the same elements and starts from the same ele=-

ments , but the error analysis below would no longer be valid,

The number of operations, NX, of algorithm 3 id of the order of

2 At 6
(1.20) mxs< (&E maxL.1)+v—Uh—)c
ot h At 7

where C1 is some constant of the order of 10, v is of an upperbound on the
number of backward characteristic computed at each time step, D is the dia-
meter of Qh’

We have found that the best choice for At is the one that makes the characte-

ristics cross one element, i.e, :

(1.21) at = by

Then even for © = T assuming that v is of the order of D/h the method is in

0(1/h3) that is comparable to the work neceéssary to solve a Dirichlet problem

with a good finite element method,

1.d. Error Analysis

P
the L7 (Q) norm,
p,R ( ) or

We shall denote by ',

Theorem 1
If is computed by algorithm 2 then the ﬁw error is in 0(h+At) for smooth
Py, D

data, More precisely

(r22) o, Cotd-platdl o = 18y = 21 o+ loguegl., & Col7ay,-vne|

exp(t I\l/" IOO.Q)

Proof : Let Xz’tbe a characteristic computed by algorithm 1, Then
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%
(1.23) lph(x,t)-p(x,t)ISffhl(Xint(f;)rc)-f(xx:t(«;),'c)|d’r+
0

PNC SHORNNE SHON

t
< Jorl_ fu;-%) N SN OIS L
0

* |vpoloo.czlxi.t(°) - 0] + lPonolu,

On the other hand
(1.24)  8(z) = &) - X (x)

satisfies

{1.25) Iél = |VATh(Xh:T) - VAY(x.r)| < IVAwh. VAY'«uQ +.Iwnl |5|

oo,Q

and from the Bellman-Gronwall lemma this yields

|vay - vay|
(1.26) |o(z)] s —2——=8 (-1+ exp(v]  (t=7))
¥, g ’

Therefore
h
(1.27) o (xst)-p(xat)| = |fh-f|1’Q+ e ou=00 oyt o VA%, VA‘I’IOO,Q exgl| wn |"°°,Q t)

Now we make the same analysis with the characteristics computed forward in
time and we get. the result,

The fact that (1.22) implies an error of order h and At is classical
(see Ciarlet [4] for example). ]

It may prove to be too memory consuming to take 6 =T,

Theorem 2

For smooth data algorithm 3 yields also

(1.28) Iph(..t)—p(..t)loogs Cy (h+At) vt ; Vo =pAt ;p 1,
; , ‘
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Proof

As for theorem 1
J ij . ij gij Jat gij jat
g = loy (& vaat)=p(2™ ), a08) | < [op (7 "9 ((3-p)at))=p(x> *3%¥(3-p)at))|

jAt iJ . : ij ..
[ 1, 08 TR ) ) (6 b ) )

(j-plat

ij . id .
< |py (CaCa=p)at)-p (L2 (G-plat) | + |vp] IXf1 I ((epdat)-x® TP ((p)at)]
+ |g-1, | ot

Now we make use of (1,26) with © = (j=p)At and t = jAt to find that

|va, - vay|

eg < Py |vo ]

*5Q "
h (exp (|§’ Ioo

PAt) - 1)

o] 2

oo,Q

# |o-£ | et

It remains to sum up the above inequalities from j = t/At to j=p ; it
yields ' '

|ph(,,t)- p(,,t)'m’g < || (n+at) + lpoh-po|°° + |f_fh|°°.

exp(|¥"]  pAt)-1
+ || |vag, - vay| o 2,0 . =

: lv| oot

A
oo,Q P

emark :

Thus from the point of view of error estimates it does not seem necessary
to go back very far in time along the characteristics to compute Py - From

the point of view of numerical test however there is much less dissipa-

tion when 6 is large.
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It is interesting to note that the present frame work is well suited to
show the convergence of the classical method of characteristic, To obtain

a scheme in O(h+At) it is sufficient to use Euler's method to compute

()

(1.29) Xi't(t—At) =X - uh(x,t‘)At

However Py must be interpolated from its values at the vertices of 35.
piecewise linearly in x, Also Xh might not be in Qh thus w nust be extended
(smoothely) outside Qh. For simplicity but without loss of generality we

assume u,nlr =0,

Proposition 3 :

Under the above assumptions, if ph(,,t) is piecewise linear on Sh and ¥x

vertex of I, ¥t € ](j-1)at,dat]

p(xst) = ph(x;f'tfl @) e (rat)at

where Xh is computed by (1.29) then for smooth data (u and its extension

and £ in £7(Q), p(.st) in W *(Q))

le,= el = c(h+at+n° /at)

Proof

We proceed as before :
lo, (gadnt)-p(2,38t)| < [y (L ala=1)at)-p (La(a=1)a8 )]

+ IVp|w|xE'jAt((q'-1)At) - BB ((gat)at)| |2~ £l at

From (1,29) we get
) . At
|X%"?At((a-1)At) - x5 at < luh- u|_ At
which yields the result, because

lo, (it )p(Laitt)| < max |g(223at) - o(gsint)] + |v]  n°
: : E vertex : :

Remark :

Therefore from the point of view of error analysis it is not necessary to
compute the characteristics with the accurency chosen but from the numerical
point of view (1.29) (as well as © = At in algorithm 3) introduces a lot

of discretization errors,
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Theoretically the method ié non-dissipative ; for example if Q is a duct

and i 1 for x < 0 and Py = 0 for x > 0 and if u = (1,0) then p, can take
only the values 1 or O, But nevertheless the method will distort the shock
so in a statistical sens it is dissipative,

Let us give a euristic argument to estimate the statistical dissipativity of

the method,

Bquation (1.10) can be viewed as

"

h
v —_— i
5t (umh) p £ +mn! in Q X Jo,T[.

(1.30)
h -
where Ny nﬂ. nﬁ are the errors due to the discretization,
Assume that each triangulation is taken with a given probability ; then the
. h
errors become zandom variables or process;p can be seen as a random process

solution of a stochastic partial differential equation,

It is known that if n, m', m" are Gaussian processes with zero mean then the
expected value p of ph will satisfy :

%% +u¥p -9V (c%) =f in @ x ]0,7[

(1.31)

where ¢ is the variance of Ny e

In our case of course it may be difficult to show that ny, is Gaussian when

the triangulations J are choosen with equal probability but if it were then

h
o would be proportional to h2 so that in all likelyhood there exists 04 such
that p satisfies (1.,31) with o = C n?,

4
o . . . 2
Then we may says that statistically the order of dissipation 18 o(n).




2. Application to the Fuler Bquation in two dimensions : construction of the

approximate solution and Error Bounds,

2.4, Construction of the approximate solution

. . - 2
Q will denote a simply connected smooth convex and bounded open set of IR .

In this open set we consider the solution of the Euler equation :

du

(2.1) L +uWu=-Yp, Vu=0 in Q x Jo,1[
(2.2) u(x,t)n(@)|yy = 0 s

n(x) denotes the outward normal to dQ, boundary of @ and (2.2) means that the
" fluid is tangent to the boundary of @, Non homogeneous boundary conditions can
be handle but we restrict ourselves to this case for clarity., When the initial
data u (x) or w (x) VAu (x) are known the solution of (2 1) and (2 2) is
completely determlned Indeed using the stream function ¢ or the vortlclty

w = VAu, one can show that (2,1) and (2,2) are equivalent to the equations

(2.3) '2% +We =0 in @ xR,
_.(L). _ %

(2.4) = (3 - ox, )

(2.5) ~Ap =W s ¢le= 0

1

We will introduce the P1 approximation of (2.4) and (2. 5). We will denote by
Qh a convex polygonal approximation of Q, constructed with a regular triangu-
lation J, as in § 1.0, We-will assume that the boundary vertices of I

belong to GQ N oQ. We will denote by Vh the space of continuous functions
on Qh which are linear affine on each triangle 3 and which vanish on the

boundary th.

The discretized problem

uh(x,t) is choosen constant on every prism P,, = T, X (kat, (k+1)at]

it is defined by the relations :

(2.6) w (x,t) = VAq,}l; for t € [kat, (k+1)at[
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Kk Kk ik
(2.7) ¢, €V, and qu,h Vo, = I w (¢ ,kAt)feh(x)dx, Ve € V.

T. €3
Qh i h T

Wy satisfies the transport equation :

dw.
(2.8) h

. — v = = v

5ty Ve, 0 » w(x,0) (Auo)(X)

and glk € P., are chosen according to algoritm 4 which constructs an exact

ik
solution of (2.6), (2.8).

Algorithm 4 : Construct a solution of (2.6), (2,8).
0. Choose glo € T, i=1,,,,sN, Set to =0,k =0,
set w, (£79,0) = vau (£'0).

1, For i =0 to N do
. compute the solution of (2.6), (2.7)

ik k ik ik, ik
. with procedure F(g ot ,At.uh.1) compute all the nodes of {xm ,tm }1

of the characteristics solution of

(2.9) 2 = u(x0)

for all v € Jt%,t% at] with x(+%) = 1%,

set gd(i) ik =x;k S
: ik
i(i) .k k+ ik |k
ay (1)1 gty (g3 k)
where j(i) is such that gJ(l)’k+1 €P

j(i ) sK+1

2, For all i'< N such that j(i) #i' , Vi do

3t
with procedure F(gl O, tk+1,tk+1, - uh-1) compute all the nodes
ik
{x

m
ik
-, t]n[‘l}1l of the characteristic solution of (2.9) for all
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K PR 7v"". , - - -,
16 Jo, £ with x(+5'7) = £1'0, and set gr'UE! o gi's0

K]
w. (gl sk +1 ntk+1 ) = w (

£s0
b L E7)

where £ is such that X(o) € Pz o
L]

‘Remark 1 : Algorithm 4 proceed exactly like algorithm 2 to integrate (2.8).

The fact that w depends upon wy is not a problem because w,- can be compute

on [kt(k+1)at] if u is known on [0,kat].

Remark 2 : As before one could choose a © and compute the characteristics
backward, On a time interval © only.

2.2, Error bounds

The equation (2.8) is a transport equation therefore the sharpest a priori
bound for the solution Uys Wy is given by the L~ norm of Wy . Namely we have

=< |w0(.)|

(2010) |mh(o‘t)| o oo .

1 () L (Q)
The situation is similar when one tries to prove the regularity of the exact
solution of the Euler equation in two dimensions, From the relation (2_10 )
one deduces that w is bounded uniformly in ﬂx(Q).

Therefore u‘solutian of the elliptic systenm

VAﬁ.=w. V,U.:O' = Q0

%V o

is uniformly bounded in ﬁwCB+ H W1'p(9)).

for 1< p < = but not for p = «, and it is not possible to prove directly
that the higher order derivatives of u remain bounded.
This fact is related to the nature of the green function of the Laplace equa-

tion : the solution of the equation

—A(p=(.0 = 0 ,

' ?laq
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U given by the formula :

Y
u="Vva¥ = Q;; ) - 3% )
2 1

is not lipschitzian, but satisfies the following a priori estimate.

: : D
(2.11)  |u(x) - u(@)| s ¢|z-y| Losg Te=s] |ol,,
where D denotes the diameter of the open set Q. Now let x(t) and y(t) be the
trajectories of two particlesof the fluid and denote by ¢(t) = |x(t) - y(t)l
the Euclidian distance between x(t) and y(t). Since x(t) and y(t) are the

solutions of the differential equations :
(2.12)  =x(t) = u(=x(t),t), y(t) =u(y(t),t) ,
one deduces from (2, 11) the a priori estimates

(2.13)  o(t)] = Ju(x(t),t) = uly(t),t)]

< Cp Log 'f |w|a).

By a comparison argument one finally obtains :

eChﬂ“} e—Chﬂq}
CRPINCC M T =

= 7 =

The first 1nequa11ty of (2.14) is the corner stone of the proof of the regu~
larity of w (1n c 'a(Q)) Then one obtains easily that u is bounded in ol
(see Wolibner [14], Scheaffer [13] and Kato [11]) for details), but the

bounds involve constants, like those in (2.14), rapidly growing with %,
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Nevertheless for smooth data we have :

1
u €W ()
To get an error estimate on |w—wh|°° we shall need the following lemmas :
Lemua 1 (TARTAR)
Ifo<a< and if
| 4 8(z)] s ¢ 0% ¢ 8(0) +c 8(z) W'E]o't['
dt 4 5 6
(2.15)
8(t) = c7(h+At)
then
(2.16) 5(c) < c8(h1"“ +4t) v o€ Jout[

. Proof : .
Note first of all that if (2.15) was an equality then

c c. -ec.t c -ec t ¢ (t-t)
(2.17) §(t) = [ EA'h1-a[1 4.;5{6 % - 1] +_;5_(11_%1;)076 €% ](eE 6
' 6 6 6
gc_(t-t)

- 1) + (n+at) c, e 6

with ¢ = + {1 ; therefore the result is reasonable, Now to proove it one has

to use the Bellman Gronwall lemma on time intervals of length 6 such that

(2.18) e = T 1og(141/c,) .
' 06 5
Indeed on Jo,0[ (2.15) implies

c 6 c 0 c._ 6
(2.19) 8(0) .[1-c5(e 6°_1)/ e < 5(9? . 6 v (6 6 =1) C4h1—a/ ‘.

and (2.18) yields then

c .0 c_©

6 5(e) +2(e 6 -1) c4h1_a

(2.20) 8(o) < 2¢,0

In turn (2.15) and (2,20) imply



- 18 =

c,0 6
(2.21) |§Tc' 8(1)] = °4h1-a[1+ 2(e © -1)e] +2¢c 0 R s(6) +¢c. 8(c) .

6 5
So by repeating the same argument on T € ]6.29[ and so onone finds
eventually

] N - o X
(2.22) Id'r s(x)| = S h + c1o(h+At) + o 6&7:,)7.':.: .

' v
. . .

which yields (2.16).

Lemma 2

Assume that Q is a bounded convex open set, let Th denote a regular triangu-
lation of Q, We will assume that Qh =Uk k€ Th is contained in Q and
that every interval belonging to OQh has it vertices on 0Q .
4As usual we will assume that the diameter of k is of the order of h and that
there exist a constant C independant of h and k, that one has, for every

h
triangle kh € Th :

(2.23) (diameter of kh) < ¢ (diameter of the circle inscribed in kh).

For every function w € LOO(Q). we introduce the functions ¢ and ¢h by the

relations :

1 . .
v =
(2.24) ¢ € H (), fvw o fw odx Ve, €V, .
. Q Q
(2.25) by € Vo fVc»hveh = fwehdx ve, €V, .
& N
Then we have for any p, 1 < p = @
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(2.26) | I - 1/pl |
2.26 ¢ - ¢ <Ch W
LA () 12(0)

In (2,26) C denotes a constant independant of h and w,

Proof : The proof follows with slight modifications the line of the proof

given by Nitsche [12 ] which is also described in the book of Ciarlet (4 1.
First we notice that any e € V can be exented by zero in Q —Q and defi-
nes a function still denoted e Whlch belongs to H (Q) Therefore V is a

closed subspace of HO(Q) Conversely let HhQ be the P, Lagrange 1nterpolate

1
of any function ¢ ¢ H (Q) nH (Q) (¢ being continuous this expression make

sense), IL¢ vanishes on 8Q, therefore Il { € V, and we have : (cf. ciarlet [ 4 ]
(3.1. 39) chap, 3, § 3.1., p. 123)

| 2<k-2/p
(2.27) |¢ - Hh¢|wk,oo < Ch o

Q)

(e, v (e,)
Using (2.24) and fhe fact that w is uniformly bounded in I®(Q) we deduce from
(2.27) that we have for k = 0,1

2-k-2/p
(2.28) ¢ -1 Iwk’m(gh) <Ch ey

(As usual (2.25) is valid only for p { +—a9,

Next on the space Hé(Qh) N W1'“KQh) and on the space Vh we will use the

weighted norms :

1) v - h%ﬂm2+MLwM|VM@@
and
(N2) v - Ilogh’ lVIO'm}’Q + h|VI1'°°’Q

From (2.25) we deduce that ¢h is the projection of ¢ : PhQ (for the scalar
product j~ Vu Vv dx) on Vh. Therefore we have (Ciarlet [ 4] (5.3.6.1,),

Q
page 163).
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!
(2.29) |10g hl lPh¢IO,m,Qh + hlPh¢|1n°°th

s C(Mo.w.sz;hlmg a| 1‘1’|1,°°,Qh)

Next we have

41
2|¢-q}hIOl°°)Qh + hlq)-d)hl 1 ‘oo'Qh

(2.30)  |1og n|~

1
|Log n|™2 I(I'Ph)¢'0,w,9h + hl¢—¢h|1a“h9h

=3
|10g b|™Z I(I'Ph)(“""h)lo.oo.gh + by, |

1;°°.-Qh
- + —
< c (o vnlo.oo,ga h|log h| |¢ vh|1,oo,Q )
h h
where C denotes a constant independant of h for h small enough, and vh any
element of Vh. Now taking for vy the interpolate Hh¢ and using (2.27) we
obtain :

3
(2.31) l"’""hlo.oo,sah +hlog h|? |¢_¢h|1’°°‘9h <

2-2/ 3/2  1=2
(|10g 1| 8272/® 4 n|10g n|?/2 u1=2)|y |
Wz'p(Q )
h
and now we can use the fact that Q is smooth and w = A¢ is bounded in

ﬁ”(Q) to obtain an estimate of the following type.

< C ol

(2.32) _i¢|2,p,9 L(Q)

These estimates remain valid for domain Q with corner of angler Oi’ provided

one has

(2.33) max <§—q < p.

With the relation (2.21) and the Lemma 2,1 we can give an error estimate :
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Theorem 3 :

Assume that Q is a smooth regular convex open set ofIR2 and that the
initial data uo(,) is a smoofh function, (uo(,) belongs to CZ(Q) for
instance) then the solution of (Ph) : (2,6). (2.7) and (2.8) converges to
the solution of (2.1), (2.2) (or equivalently to the solution of (2,3).
(2.4), (2.5)). More Precisely, denoting by At the time step and by h the

parameter of the triangulation, we have :
Ve € J0,1[ there exists h°, at° such that

(2.34) o, (x3t) = w(zat)| = c(t) 0"+ at) o, At < At
Remark :

In (2.34) c(t) denotes a constant depending of uo and t, but not of h, At,
furthermore C(t) is rapidly growing towards C(T) when t increases, As we

mentioned in the vegining of the paragraph C(T) may itself grow very fast
-&
with T. Nethertheless theorem 3 shows that the method of order hint

Proof of theorem 3 ;

By construction :

ij .3
(2.35) oy (et )u(xatd] < Loy, (75 (0))-u, (F72(0))|
ij |3
< lagymay o + 17 | | xZ7%0) = 24%(0)

: ij .3
where the second inequality was obtained by adding and substracting wo(xﬁ it (0))

in the first one.

Therefore

(2.36) lu, Cot)=w(l0t)]_< C, b+ IVwOIOO ;us Ixﬁij(x)’tj(o)-xx't(o)l
Now by construction of Xh and X we have

(2.31) | & (Xﬁij'tj(T)_xX't(r))l - Iuh(Xflij'tj('c).t) - u(x(2) )|,

13 .3
< Jw Card-u(l )|+ IVulwIXE ot (v)-x"*%(c)|
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iJ .3
(again to get the last inequality one adds and substract u(XE ’t (t),z)).
Let a be the solution of

(2-38) - A‘T’ = wh in @ , Jllﬂ =

Then according to lemma 2 :
(2,39) |uh(.17)-u(.s17)|°°5 IVAQ)h(.:t)-VA‘IJ(.at)IOO*' IVAd':(..t)-VAd»(.at”m

- ,
< 012 n'"¢ Iwh("t)'oo + 013|wh(.at)-w(.ot)lw

1’°°

the last term comes from the continuity of -A from ﬁ”(Q) into W (Q). Thus

(2.35), (2.37) and (2.39) yield
ij 3

(2.40) | S0E ~'t'('c)-xf1’t(r))| < ¢, loy(t)] B! c1-<|woh.wo|w+ %,
sup lxh (X st (t)( ) - :t )|) + |Vu| Ixh at (= )—XX’ (T)I

* *
If we take x =x ,t =t where the * denotes the values for which the sup

in (2,40) is attained then Lemma 2 gives

*

|X lJ(x ),t‘](t )( ) oL (O)l < C . (h1—8+ At) ;

then the Bellman éronwall lemma yields the result, (]
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2, Numerical experiments

Test 1 : we have solved problem (2,3) (2,5) with
a=Jo[°
10 in [,22, ,33] x [.11, .22]

1 elsewhere,

and we have triangulated @ with 3 families of parallel lines h = 1/9. at =1,
At later times u can only be equal to 10 or 1, Therefore the initial spot,
u = 10, is expected to turn with the flow and the area of {x : u(x,t) = 10}

remains constant,

Since our scheme is conservative in a statistical sens only the area mention-
ned above is not constant, but it fluctivates around the exact value, The

spot can be seen to turn with the flow,

Test 2 : Similar problem in a ring.

These problems are particularly difficult for dissipative numerical methods,

Test 3 : This test simulates the dispersion of a pollutant (cheminey smoke )
by a wind, The pollutant comes out of F1 a part of the boundary I with initial
velocity 27 times the initial velocity of the wind and a vorticity of 10,
while the wind has no initial vorticity ; Q@ contains a hump (hill) to il~

lustrate the feasibility of the finite element method,

Therefore we have solved

Q * -
5t (A = o
w(t =0) =0
wl =10 , wl = 0,
F1 F2
- AY =y
o = - le =2,7 » YI = constant,
oy'Tur *Toalr Tq
273 1

The triangulation shows 225 nodes and At = .2,
Computing times are 30" on an IBM 370. 168 for tests 1 and 2 and 1 mn for
test 3, The plottings of the vorticity (shaded area on the figures) are done

by hand because it is piecewise constant on the triangulation,
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