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Résumé

(VE)

Abstract

(VE)

A_STUDY ON

Goong Chen” - Ronald Grimmer™

: On présente différentes techniques de semi-groupe pour étudier

1'équation d'évolution linéaire avec mémoire

TR / B(t-s) x(s) ds + £(t)

0
x(0) = X, € X
dans un espace de Banach X.

On généralise 1'approche de R.K. Miller de maniére & pouvoir
traiter une classe plus large d'équations. Les conditions d'exis-
tence de ces semi-groupes sont données. L'existence, 1'unicité,
le bien posé et 1'approximation des solutions de 1'équation (VE)
sont alors déduites des équations différentielles et semi-groupes
qui lui sont associées.

: We present here various semigroup techniques for studying the
linear evolution equation with memory

t
dggt) = A x(t) + /B(t-s) x(s) ds + £(t)

(0]

x(o) = X, € X
in a Banach space X.

A generalization of R:K. Miller's semigroup approach is made

so that a borader class of equations can be investigated by



his méthod. We determine conditions which ensure the existence
of those semigroups. The existence, uniqueness, well-posedness
and approximation of the equation (VE) are then derived from
the associated differential equations and semigroups.

INRIA, Domaine de Voluceau, Rocquencourt, 78150 LE CHESNAY, France.
and Department of Mathematics, Pensylvania States University, Univer-
sity Park, PA 16802, U.S.A.

** Department of Mathematics, Southern Illinois University, Carbon-
date, IL 62901, U.S.A.



1. INTRODUCTION

In this paper, we shall be c%ncerned with the integrodifferential

equation x'(t) = Ax(t) + f B(t-s) x(s) ds + £(t), t 2 0
(VE) ()

x(o) = X, € X

in a Banach space X. Throughout this paper we always assume that A is the
infinitesimal generator of C0 semigroup on X and the Hille-Yosida-Phillips
conditions

[RP 3 A < WRed - )™, nz1

are satisfied for the resolvent R(A ; A) for some w = o. Also we assume
that £ is an element of a Banach spaceV of X-valued functions which are
defined for t > o, and that B(t) is a linear operator on D(A) for each
t > o such that B(.) x ¢ ¢ for each fixed xe D(A).

Equation (VE) appears, e.g., in the modelling of heat conduction pro-
blems in materials with memory, where A = A is the Laplacian and the ker-
nel B(t) is basically of the form k(t)A with k e L1 (0,#). Linear partial
differential integral equations of Volterra type associated with heat con-
duction problems have been studied by Miller [7], see also the references
therein,

In this paper, we are mostly interested in the problems of existence,
uniqueness and continuity of solutions with respect to X, and f. We are
also concerned with approximating the solutions x(t) of (VE) by solutions
xn(t) of

t
n x‘(t)=Ax(t)+fB(t-s)x(s)ds+f(t),tzo
(VE) n n'n J n n

X, (o) = X

given that Bn + B and An + A in some sense.



Questions concerning existence uniqueness and well-posedness of so-
lutions of linear Volterra integrodifferential equations in a Banach spa-
ce have been examined by Miller [6], Miller and Wheeler [8], Chen and
Grimmer [1], etc. In the nonlinear case, Crandall and Nohel [2]. Related
work concerning integral equations appears in Grimmer and Miller (31, [4].

The approach we are following is similar to that in Miller [6], where
he studied (VE) by means of the differential equation

4 [x@® ] x®) [ [a s ][xm
I =C = s t2o0
F(t,.) F(t,)| |BC) D || ECt,.)
X0 X
= ° e XX l'—f
LF(O,.) f

which is a Cauchy problem on X x ¥ . Here ¥ = BU(!‘R+ ; X) is the space of
bounded uniformly continuous functions from R" = [o,»] into X, § o is the
Dirac delta function and Ds is the differentiation operator on®¥ . Miller
proved that solution of (DE)' give solutions to (VE) ([6, Theorem 3.5]).
The choice of 3 = BU is necessary ([6, §21) since % mist at least con-
tain those bounded uniformly contimuous X-valued functions. The proof of
his theorem will not go through if the function space ®¥is chosen diffe-
rently, e.g., say F= B2 Q‘R+ ; X) (the space of Bochner square integrable
functions on‘|R+). )

.In §2, we first generalize Miller's scheme so that (VE) can be stu-
died for a broader class of function spaces ®Y . We show that, under appro-

priate assumptions on B, we have the equivalence of (VE) with a new (DE).

In §3, we compute the resolvent operator R(A ; c) and discuss some

properties of the spectrum of C.

The main theorems of this paper are given is §4-6.



In §4, we study the case when”f= BU((R+ ; X). We are particularly
interested in the case when B(t) is of the form k(t)A.

Existence, uniqueness and well-posedness are proved for such kernels
B by using perturbation and decomposition techniques for _infinitesimal
generators. We also point out an error in a recent paper by J. Zabezyk.

In §5, we study the case ¥ = B2 ¢R+ ; X). On this c51:he Dirac delta
function 60 is no longer a bounded linear operator, so it becomes more
difficult to derive existence theorems for the associated semigroups. We
have proved an existence theorem under some assumptions on the Kernel B,
- by Lumer-Phillips' theorem.

We study approximations by Trotter's theory in §6.

2. THE EQUIVALENCE BETWEEN A VOLTERRA INTEGRODIFFERENTIAL EQUATION (VE)
AND AN- ASSOCIATED DIFFERENTTAL EQUATION (DE)

We consider the following differential equation

d .

a‘EZ—CZ
(DE) .
z(0) =zoeD(C)EXxXx°3’

which is a €auchy problem-in the Banach space X x X x ®¥ . Here

i
> . 2_ 2 2 2
] cxxxxF with (lel Pl (2 e (x1E - 1112
5 3
o A -0
. (o]
2.1) C= o A 8
L_o B Ds




and B is the linear transformation given by (Bx)(s) = B(s)x, A is a
closed operator in X w1th domain D(A ) £ D(A) and with resolvent
R(» AO) (AI - A ) . In our treatment 'Ao is usually a multiple
of either A or perhaps some positive fractional power of A if it exists.
Ds is the differentiation operator on °$def1ned by D f=f' on a domain
D(D ) '=°5"where f e D(D ) implies

S

f(s) = a + fe(u)du

)
for some e <°J and DS generates the translation semigroup T(t) on ®¥ given
by T(t) £(s) = £(t+s). The domain of C, D(C), is X x D(A) x D(DS). It is
routine to verify that C is a closed operator on X x X x°¥ .

We first give some definitions and notations.

Definition 2.1. By a solution z(t) of (DE) satisfying an initial condition

z(o) = 2, We mean a function z : (R+—>D(C) with z,z' and Cz
continuous and z'(t) = Cz(t) for all t e R'.

Definition 2.2. A solution x(t) of (VE) satisfying x(o) = xj is a function
X : IR+—>D(A) such that x,x' and Ax are continuous and (VE)
is satisfied for all t ¢ R .

Definition 2,3. The equation (DE) is unifonaly well-posed if for each
z, € D(C) the initial value problem z(0) = z o has a
unique solution z(t,zo) and for any T > o there is a
K > o such that :
||z(t,zo)||sKl|on for all z_eD(C) for all telQT1.

Definition 2.4. - The equation (VE) is uniformly well-posed is for each
pair (x ,£) with (o, X, ,£)eD(C) there is a unique so-
lution x(t X, ,£) of (VE) and for any T >0 there is an
M > o such that Ix(t,x,,£ )||XsM(Hx Iy ||f||C¥) for
all t ¢ [o,TI.




Notations : From now on, T(t) always denote the translation semigroup. We
use h, to denote the translated function T(s)h, i.e., h (W) =
h(s+u). x)\ denotes the Laplace transform , i.e., f 5 PE

© .
f e_xsh(s)ds. We use * to denote the transpose of an ele-
o
ment inXxXx%'.

In order to obtain an equivalence relation between solutions of (VE)
and those of (DE), we require the following assumptions dealing with B :

(H1) B(.)x(t) is continuous as a function of t on 1R+ into “Jwhenever x(t)
and A x(t) are continuous on R~ into X.
In addltlon , B(.)R(}A ) is a bounded operator from X into 031_

(H2) B(s)x is in D(Ds)x for each fixed x in D(AO).

(H3) DSB(s)x(t) is locally integrable as a function of t whenever x(t)

and on(t) are continuous.

(H4) on (t) is continuous as a function of t whenever Ax(t) is continuous
as a function of t.

‘An example of a function B(t) which may satisfy (H1)-(H3) is B(t) =
a(t)A , where a(t) is a scalar valued function. Consider ‘5-— B QR X).

If a e L (\R ), .(H1) is satisfied. If a is absolutely continuous with
a' e L (0,°), then B(s)x-a(s)A X is in D(D ) for each fixed x € D(A ) and
a' (s)A x(t) is a continuous function of t into j—when A x(t) is continuous.
So (H2) and (H3) are satisfied. (H4) is satisfied if A = —A and A is in-
vertible, or if A = A,

The following theorem generalizes [6, Theorem 3.5].




Theorem 2.5. Assume (H1) is valid. If z = (w,x,y)* is a solution of (DE),
then x(t) is a solution of (VE) with £(t) = y(o)(t) and xo=x(o) . Conver-
sely, if f € D(DS) and if (H1)-(H4) are valid and if x(t) is a solution

of (VE), then (w,x,y)* is a solution of (DE) with w(t)=wo +j~ on(s)ds

o

t
and y(t)(s) = £ (t+s) + f B(t-t+s) x(1) drt
0

Proof : First assume that (H1) is valid and z = (w,x,y)* is a solution of
(DE). Then w, w', X, x', y and y' are all continuous as functions
of t fromR' into either X or‘”fﬁ. As the equation

y'(t) = Dy(t) + B(s) x(t) ; y(0) =y, t=zo

has a solution, it follows from [9, p. 1101 or [5, p. 4881 that the solu-
tion is given by

t
Y@ =100 v+ f 160 B x() @
o}

where T(t) is the semigroup generated by Ds , i.e., T(t) is the translation
semigroup. Hence if y(o) = f, we see that

t
y(t)(s) = £(t+s) + / .B(t-T+s) x(t) dr
. 0

' As‘y € D(Ds), y(t,.) is absolutely continuous and so
t
y(£)(0) = £(t) + f B(t-1) x(r) dr

o

is continuous in t by (H1). Now x'(t) = Ax(t) + y(t)(o) so Ax(t) is con-
tinuous. Therefore t ’
x'(t) = Ax(t) + fB(t-T) x (1) dt + £(t)
)
is a solution of (VE).



Conversely, of (H1)-(H4) are valid and x(t) is a solution of (VE) with
fe D(D ), then x(t) and Ax(t) are continuous so that B(.)x(t), which is in
D(D ) for each t, is continuous in t and D B(s)x(t) is locally integrable
as a function of t. Thus, the equation

y'(t) = Dy(t) + B(s)x(t)

has as its solution [9, p. 1121

y(t) (s) = f(t+s) + f B(t-1+s) x(t) dt
)

and in particular,

t
y(£) (0) = £(t) + f B(t-1) x(1) dt
(o]

o)
x'(t) = Ax(t) + 8y(t)
t
Thus, if w(t) = W, + onx(s)ds, z = (w,x,y)* is a solution of z'=Cz
with z(o)=(wo,x0,yo). 0 Q.E.D.

We note that, under the assumptions (H1)-(H4), if the solution of (DE)
are unique, then the solutions of (VE) with (o,xo,f) e D(C) are unique when
they exist.*Similarly,. if the solutior_xs of (VE) are unique for (o,xo,f) e D(C}
then the solutions of (DE) must also be unique. It follows that if C gene-
rates a C semigroup, then (VE)-is uniformly well-posed. Thus we will be
concerned w1th conditions which ensure that C generates a Co semigroup in

the subsequent sections.

3. RESOLVENTS AND SPECTRUM OF THE OPERATOR C

Let C be given as in (2.1). The following computation of the resolvent




-10-

in a generalization of [6, Theorem 4.1].

exists. If R (A;C) eixists, it is given by

11 , 1 , ]
(3.1) ROGO) = | T T ARGsALB)  ARC:A¥,B) ¥,
0 R(\A+SL \B) R()\;A+of/>\B)2)\
o R(\DBR(A;A+ ¥ B) R(A ;4DS)[I+BR()\;A+J’)\B)]:§‘
- -
Proof : Assume R(A; C) exists. Then for any (f,g,h) € X x X x %, the equa-
tion
AL -A, 0] \ f
0 AL-A -60 X = g
o] -B >\I-Ds y h
_ . - .

is always solvable with solution (w,x,y). Thus

w - Ax = £
(A - A)x - 8y = &
-Bx + (AI-D s).y=h

SO

y = R(x;D,) (h+Bx)

>

f e ™ Tw) rh(s) + B(s) x] du
(o]

i.e.' y(s)

o e}

f e~ th,(s) + B (s)x] du

(o)
= f e~ [h () + B (w)x] du
6]
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Therefore

oo

(3.2) §y= / e ™ [h@) + Bwx! du = L, (h+ Bx)

0
(o]
Also, X =R(A;A) [g+ Goy]
= R(\;A) [g + ,:fk(h+Bx)] (from (3.2.))
S0 [1I - R(A;A)QZ’XB] x = R(A;A) (g+ &")\h)

the above relation is always invertible with solution
x = [1-ROGAL,BI T ROGA) @)
But (1 - ROGAEB 171 R(GA) = OI-A-FB) ™' = R(;A+%B)
Hence R(\;A+ ka) exists.
The first component w is given by

% (£ + AX)

=
"

Lo+ AROGAR,B) (g +°th)]

We note that AOR(A;A+ °Z;\B) is a bounded operator by the closed graph
theorem.

_Conversely,if R(A;A+ i}\B) exists. Because each of the above steps is
reversible, R(};C) must also exist and is given by (3.1). Q.E.D.

We note, in particular, that R(X;A+§8}\B) exists provided that :%\B is
a bounded operator on X and Rer >w + M ||¥¢,B|| . Having found R(2;C),
one can proceed with matrix multiplications to find the iterated resolvent
R*(A;C). Because Rn(A;C) does not have a simple representation, it is in
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general very difficult to verify whether the Hille-Yosida-Phillips crite-
rion is satisfied. This makes any attempt impractical to directly prove
that C is infinitesimal generator.

From the appearance of C, we know that its spectrum depends on the
spectrum of A and DS as well as the behavior of B. We refer the readers
to [10] for the definitions of resolvent and point, continuous and redi-
due spectrum, which we denote by p, po, co and ro, respectively.

Different “$s give different spectrum for DS. For example , if
X = BU€R+;X), then

p (D) = {Ae €|ReXx > o}
po(D;) = {X e C|Re) < o}
co(DS) rs(Ds) =f

but if ©F= B? (R";X), then

p(DS) = {A ¢ €|ReX > o}
po(D) = (A e C|ReX < o}
co(d) = 1A« C|ReX = o}
I‘o(DS =@

‘The spectrum of the operator C can usually be classified by a careful

computation:

. An important subset of the-spectrum of C, called the essential spec-
trum eo(C), merits special attention. There are many non-equivalent defi-

nitions of eoc. We will use the one given in [5].

The -following theorem indicates the invariance of the essential spec-
trum under the perturbation by B when B and A have certain properties.
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on X x X x o:‘;. Assume that for some A , A has a compact resolvent R(};A).
If the operator @defined by? x = B(.)x is a bounded linear operator from
X into ¥, then for (i) ™% = BUR";X) or (ii) ¥ = BZ(R*;X) and X = a Hil-
bert space, C has the same essential spectrum as C1.

Proof : We want to show that the bounded operator B defined by
Bw,x,y)* = (0,0,9 ) e XxXxS¥
is C,-compact (C51).
Let {(wn, X Y. n)} be a sequence in D(C1) (=D(C)) bounded in
°3 . o
X x X x Zsuch thi.t {C1 (wn, X yn) (onn, Ax  + Goyn’ y‘n)} is boun
ded. (i) = BU(R ;X) : this implies that {Axn} is bounded in X, so
{(AI-A)xn} is also bounded in X. Hence
- _ a1 _
x = (01 - A7 (L - Ax,

has a convergent subsequence, which we still denote by {xn}. Thus

IIE(W’X Y)'E(W X,Y)H
n’ “n’” ‘n m’ “m’ ‘m Xx Xx oY

- sup, |[30x, = By = 131l gy gl x> 0 2

n, m >
Therefore B is C,-compact.

(ii) bg = BZ(R+;X) : since both {yn} and {y'n) are bounded, so is
I 2
2 |(soynl)( = | <Y'n» Y >"7§X°5|

Thus {Axn} (= {(Axn + Goyn) - Goyn}) as a sum of two bounded sequences
is also bounded. So is {(A\I - A)xn} . Hence
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- _ -1 -
x, = (I - A) (AI A)xn
has a convergent subsequence which we still -denote by {xn} as before. Now

= = 2
||B(W »y X3 Y. ) - BWw , X , ¥ )H
n n n m m m X x X X‘)#

) 2.9 2, y o
11306l 13 t < A2 (g 1yl 1% 0 a5 mm
(o]

Therefore B is also C;-compact.

Since C = C1+1§, by [5, Theorem 5.35] the proof is complete. Q.E.D.
Remark : For any bounded invertible operator, P, P"1C1P has the same spec-
trun classification as Cy, as R(A;P_1C1P) = P-1R(>\;C1)P is true
for A sp(C1) . This observation will be useful in the subsequent
proof of theorem 4.1.

4. THEOREMS ON EXISTENCE, UNIQUENESS AND CONTINUITY(I) : %EBU@'*;X)

Throughout this section we assume thatofz BU(R+;X) and AO=A. For~
this ¥, (DE) may also be treated in the simpler setting X x ¥ such as
in (1], [6]. It is easy to see in the subsequent treatment that any re-
sults valid in the setting X xc; are also valid in X x X&F, and vice

versa.

Theorem_4.1. Suppose B can be written as B = FA + K where F : X - Q-'rwith

range F = D(DS) and K : X »¥ are bounded linear operators.
Then C generates a C0 semigroup on X X X°3{.

Remark : . The above theorem holds for anyog'such that 60 is a bounded
operator from“finto X.



-15-

Proof : We first note that the operator on X x X x%)given by

[‘ _ -3
IX IX
P = Jo IX o}
(o] -F Ic;
is invertible with inverse
W
p IX IX 0
P '= }o IX
o F I
i ¥

and for any (w, X, y) e P‘1(D(c2)) = P (X x D(A) x DO,)),

P—1C2P(w, X, y)* = P_1C2(w, X, vy, -Fx +y)

p~ (0, Ax, D (-F x + y))

(Ax, Ax, FAx + DS(-Fx+y)) = (Ax, Ax, FAx -D_Fx+Dy)

Sincée F maps X into D(D ), we have P~ (X x D(A) x D(D )) =Xx D(A)xD(D )},
Also, D F is a closed operator from X into ¥ with domain X By the closed
graph theorem, DSF is a bounded operator. Thus

o A 0
“'c,P= Jo A 0
0 .FA-DSF Ds

we must remark that in general the above is not true if F does not map X
into D(D.). Now '



0o o o)
E=]o0o o 8
o)

0 DSF+K o)

is a bounded operator, so P-1C2P+E = C is an infinitesimal generator of
a C_-semigroup [9, P. 501 or [5, P. 4971 with D(C) = X x D(AJXD(DS) Q.E.D.

Corollary 4.2. [Hille-Yosida-Phillips'conditions). Let A satisfy the
Hille-Yosida-Phillips conditions ||RP(A;AJ|| <M(ReA-w) ™ for some wz O

and let ai, Ay, Og denote

0"1 = HF‘ |:g (X,c;)’ e‘2 = IIDSF‘&(X’C‘;)’ 0"3 = HKlL\g (X,f;j

Then the iterated resolvent Rn(A;C) is bounded by

2
Ny, M(2 +a4)
|IR (x’c)“;f(XxXxﬁg)s 1 5 = allne?
[Rex—w-M(2+on1) (1+OL2+0t3)]
if Re) is large enough.
Proof. Since R(A;P'1C2P) = P'1R(A;C2)P, therefore
Rn(A;P-1C%P) = PR (r5C,)P
and | [RPOsPTIC R s [1P7Y TIRMOGCI] P
< M(2+oc1)2 -1
. CIVANES 2+aq, P ') < 2+0.)
[ReA-w]

Now C = P~ Cp+E

From The proof of [9, Theorem 3.1.1.1, ene easily sees that

) 2
M0 )] < M2+ ey)

[ReA-w-M(2+a,) Lt ag 1"

because ||E||i(X x X% ) S 1+ a, + og. Q.E.D.
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Corollary 4.3. Suppose (H1)-(H4) are valid with B(t) = a,(t)A + a, 1,
where a1, a'1 » 3y and a'2 are bounded uniformly continuous scalar func-

tions on R'. The integral equation {VE) is uniformly well-posed for
(xo,f) with (o,xo,f) in D(C).

We remark that this corollary is essentially Miller's Theorem 7.3.
[6] which was obtained via greatly different techniques. Other results,
similar to those in [6, §7] follow in a similar manner.

Acutally, a much more general result follows from Theorem 4.1. As A
generates a Co semi-group, A has a resolvent R(A,A) = (AL - A)"1 for A
with Re) sufficiently large. As in [6, p. 1811, Miller noted that if x(t)
satisfies (VE), then y(t) defined by y(t) = x(t) exp(-A ot) (A O>o) satis-
fies the equation

t
(VE), y'(t) = @ -2 T) v(t) + / exp (-2, (t-s)) B(t-s)y(s)ds+exp(-A,t) £(t)

(o

We may then, without any essential loss of generality, assume
(WLOG,) A has a bounded inverse A'1, or
(WLOGZ) A generates a uniformly bounded semigroup. (By changing the morm on
X, we can actually assume that A generates a contraction semigroup).

Corollary 4.4. Under the convention of (WLOG1) , assume (H1)-(H4) are valid
for °}= BU(]R+;X) with A0=A and assume furthermore

IB()x]] < 8 (|Ix]] + ||Ax]]), for x e DA), B>o

Then the integral equation (VE) is uniformly well-posed for (xo,f) with
(O,Xo,f) € D(C) o

-1 -1
F + .y = Sup B(t)A 'x|| < 8(}|A x|} + |ix|])
1] gy = 2, || 1< 8 1A7x] |+ 11|
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So F is a bounded operator. The proof follows from theorem 4.1. Q.E.D.

The techniques used in Theorem 4.1. were motivated by results obtained
recently by Zabczyk [11]. In fact, it appears at first that a slight modi-
fication of Zabczyk's theorem 1 part 2 would allow us to obtain our result
even if F does not map X into the domain of D- This is not the case as
Zabczyk's result is not correct. First of all the computations at lines 18
and 19 on [11, p. 525] givesc}"a,@rather thanat@ Secondly, we have a coun-
terexample which shows that :

BN

need not generate a semigroup if F does not map into the domain of A. Consi-

[B g:l , i.e., AZB =D

which generates a semigroup on X x X if D generates a semigroup S(t) on X.

der the operator

Now consider the operator

[ 23] (5 5] =

If Zabczyk's result were correct, A would generate a CO semigroup on
X x X. Now choose X, € D(D) which has the property that S(t)DxO ¢ D(D) for
any t 2 0. Then (o,xd)* ¢ D(4)and there must be a classical solution of
w' ="4Aw, w = (x,y)* through this point if A generates a Co semigroup. This
solution must have second coordinate S(t)xo. The first coordinate must sa-

tisfy

{Y' = Dy + DS(t)x,
y(©) =y

However, as shown in Pazy [9, p.111] this problem has no solution for
if y where a solution then y(t) must satisfy
t
y(t) = / S(t-s) DS(s)x ds = t S(t) Dx,

o
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This is impossible, however, as S(t) DX differentiable would mean
S(t) Dx € D(D). Interestingly, the operator D which yields the easiest
such example is D = D on X = BUGR ; R). Choosing x o to be a function
with only one derlvatlve in BUQ‘R : R), we are clear that translating the
function will not smooth the functlon in general.

We restate a corrected version of Zabczyk's result in the following,
which can be proven as above or will follow from his Theorem 1 a(1). All
of his subsequent related results must also be modified accordingly.

Theorem 4.5. Let X and Y be Banach spaces and A and B generate C0 semigroups
on X and Y respectively. If F : Y > D(A) then

I F Ao
o I o B
Also generates a semigroup.

An additional existence theorem will be given in §6 (Theorem 6.5. ).

oy

5. THEOREMS ON EXISTENCE, UNIQUENESS AND CONTINUITY (II) : ¥= B2 (R+;X)

If the Dirac delta function is not a bounded operator on ;mto X,
different techmques must be used. This is the case whenc; B2 GR X)
of course. Our results in this direction are not as general because the
unbounded opérator §, must also be dealt with. What we have obtained here
are similar to Theorems 3 and 4 pf-- our earlier-work [1] for the case

°Y-BUR' ; X).
. Throughout this section, we will follow the convention (WLOGZ) in §4.

Theorem 5.1. Let X be a real Hilbert space with inner product <, > Let A
be the generator of a contraction semigroup on X and let 3 B (]'R ;X) with
the usual norm. Suppose B(.) : X +‘7§ is deflned on the domain of A at least
and ||B(. )x||2 < -M; < Ax,x> and | 1A xllX M < Ax,x > for all x e D(A)
for some positive constants b.1 s Wz Assume that R(A+o; AQO,)\B) exists as a
bounded operator on X for some A>o and some o with 20L>M1+M .Then C generates
a C semigroup [1st) || with ||S(t)|] < et




Proof : Consider the operator

-al A o
X [o]
0 A-ozIx (So
o B DS-aI -

on X x D(A) x D(DS) . We wish to employ the theorem of Lumer-Phillips [9]
for the operator Coc' We first show that Coc is dissipative. Using < , > as
inner product in each space X,°¥ and X x X x°%~, we see that if z = (W,X,Y)
€ D(COL) s

< Cuz, 2>> = < -oW + A X, W >y + < (A-al)x + 60y,x >yt < Bx + (Ds~ocI)y,y -~

o (w12 #11x112 + 111D+ <Agow + <Axxs + <8 ,yp0 + <Bx,y> +

+ <D_,Y,y>
o (Il 12 #1112+ [y *llaxl] vl + < ace + syl Tlxl] +
+ 11BN ol Iyl o
oy ey
+ <D y,y>
S
_ 2

[18x]Log 11711oy < (% ||Bx|| o &2 Iyl1%/2
Similarly ,‘
age [ Hwl] < 2 Taxl®« e Tl 1/2

Choosing € sufficiently small and o = max ((e_2+1)/2, (M1+M2+1)/2) , We
will obtain < Caz,z >< 0. So Ca is a dissipative operator.

Now consider AI-Ca . We want ‘to show that the range of AI—Ca is
X x X x “§for some \ > o. But
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AI-c)™' = ((+a)I - CT) = ROwo; C)
exists provided that R(A+a; A +Q‘,’)\ B) exists by theorem 3.1,

Therefore Ca generates a contraction semigroup and, hence, C generates
a semigroup S(t) with ||S(t)|] = ot Q.E.D.

Applying this to our original problem, we have

Corollary 5.2. Let X ,A and Dj’be as above. Suppose (H1)-(H4) are valid with
| 1B(t)x| |)2( < -b(t) < Ax,x > a.e. R for some b ¢ L'@®") and |1Ax] |2 <

- M <Ax,x > for some M > o. Assume R(A+a;A+£>\B) exists as a bounded opera-
tor on X for some A > o and some o with a > 1/2(M+fb(t)dt). Then (VE) is
uniformly well posed for (xo,f) where (o;,xof)eD(C).

6. APPROXIMATIONS

In this section we will be concerned with approximating the solutions
of (VE) by those of (VE)n. A result of this kind has been obtained in our
earlier work [1, Theorem 5]. Here we will study this problem under the ge-
neral setting of this paper. Our results are motivated by a close examina-
tion of the proofs of Theorems 4.1/and 5/1.

First, we consider the differential equations

@E), - ' = ann, z (0) = z(0)e Xx XXx ¥
where
0 An o}
*=1o A8
0 FnA],1 Ds
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We shall assume that A generates a Cj semigroup on W and F oo X~ D(D )
for all n. Theorem 4.1. 1mp11es that each operator ct generates a C semi-
group.

Theorem 6.1. Suppose {An} and A are infinitesimal generators of C, semigroups
{Sn(t)} and {S(t)} such that {An} and A are defined on a common domain D(A)
and Anx + Ax for every x ¢ D(A). Suppose there are constants M > o, w= 0

such that ||Sn(t)H < Me®t and ||S(D)] lkMe®t. Suppose further that F ' and F
are bounded linear operators mapping X into D(D ) such that F X Fx and
DFx DF 1n°§fora11>mz X. Thenw1thB_FA if z (o) z(o) Zg is in
D(C) = D(Cn), we have z, (t) > z(t) as n~+ = for all t = o and the c:onver—
gence is uniform on bounded t intervals.

. -1 -1.2
Proof_: We first note that C = P 'C,P+Q and C"'=P Pt where

o o o
CT;=

% o)

o O DS
I -I i -I o]

P= {o I , Pn= o I

o -F 1 Lo -F, I
[0 o 0_1
Q= o S s Q=10 © 8
DSF o] . K DSFno_

Our assumptions have the effect of making P, Pn, Q and Qﬂ bounded ope-
rators. In fact, by the uniform boundedness principle, P_ - P, P' > p!
and Q > Q in the uniform operator topology and there 1s a umform bound

gor |12 11,1127 11, 11,11, 11111 1Q, | landl Q] |5 call it M;.
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We choose X with ReA > w + MM3 From [9. p. 501, we see that {C_} and
{C} generates semigroups {S ()} and {S(t)} satisfying

(w+MW?) t

(w+MM‘7’
syl <e e P sl < mé e

with the resolvent conditions

(Red - w - ME)"

2
MY,

R*; ¢ )| =
| | (Rex-w-MM?)n

RO qn)ll

Now we want to showthat for all ZeXXXXo; R(A; C) z > R(}; C)z
as n » «, Since R(};C ) =P R(X C2 + P Q P ) P? and R(A;C)=P~ R(A C2+PQP )P
this is equivalent to show1ng that R(}; Cn +P Q P )z =+ R(A; C +PQP~ )z for all

z. Let
K = R(A;szPQP'1)z . ke D)
} -1
and let z = D\I—(C;+PnQnP )1 k

From the given assumptions, we see immediately that Zy tends to z as

n > %,

. Ay o -1
: R(A,c‘2‘+PnQnPn Yz = R(A,C;+PnQnPn )z .

+ R(A; C§‘+PnQnP;11) (z-2,)
and
1im [ROGCRPQ P (z-2) |
N

< lim —2
N (R'ex-w—Wl‘:))

| 2=z | =o
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. AN -1 o1 .~ -1
Hence 1im R()\,C2+PnQnPn )z = lim R(>\,C2+PnQnPn )zn

n—o n—oo

= k = R(; Cp+PQR7 )z

It now follows from Trotter's approximation theorem [9, p. 57] or
[5, p. 504] that the proof is complete. Q.E.D.

o~

~
Corresponding to the case 7 = B2 (}R+;X) and Theorem 5.1, we consider

(DE)n z'n = ann R zn(o) = z(0)
o A(En) o]
= AL by
0 Bn Ds

and obtain the following similar result.

Theorem 6.2. Let X be a real Hilbert space with inmer product <, > . Let
’3 = B2 0R+;X) be equipped with the usual norm. Assume that all the assump-
tions of Theorem 5.1. are satisfied for each triple (An,Bn,A(gn)) and (A,B,A0)
with the same constants M1 , M 2and « . Assume furtheremore D(An) = D(A),
pA™) = D(a,) and for all x'€ DAY, Ajx = Ax, AMx ~ A x in X and

an »Bx iny . If zn(o) = z(0) = Zs is in D(C) = D(Cn), we have zn(t) - z(t)

as n—-o for all t> o and the convergence is uniform on bounded t inter-

vals.

Proof. Note first that each of the operators c" generates a semigroup Sn(t)
with “Sn(t)" < eat. We are thus able to argue as in the previous
theorem that because an-— Cz for z € D(C) that R(A;Cn)z-' R(N\;0)z
for all z°€ X x X x3 . The proof again follows form the Trotter

approximation theorem.

Theorems 6.1 and 6.2 have immediate application to our stated objective
of obtaining results which ensure that the solution xn(t) of (VE)n tends to
the solution x(t) of (VE). Corresponding to theorem 6.1. we are able to
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obtain the following result.

Theorem 6.3. Let (H1) ~ (H4) be valid for‘?i=BU(R+ X) and A =A. Suppose
A, and A are the generators of C, semigroups {S (t)} and {S(t)} respec-
tively and that HS Wl = Mewt, [Is(t)|] < t for some constants M»o,
w>0, Suppose that the operators A and A have common domain D(A) and that
A X+ Ax for every x € D(A). Also, suppose that B ( )x»B(.)x in BU(R ;X)
for every x e D(A) and that |[B_(.)x]||gy < 8(][x] |+|IA x|, 1B (x|
< B(| x| [+][Ax]]) for all x e D(A) for some positive constant B for all n.

Then for (o »X ,£) ¢ D(C) , we have X, (1) L x(t) pointwise in t for all

t =2 o. The convergence is uniform on bounded t intervals.

Proof : We first argue in a similar fashion as in the proof of Theorem

6.1., we obtain
6.1) ROGA )y > R(AGA)Y 1o yeX, Vi>uw

Now, instead of considering (VE)n and (VE), we consider (VE)rl \ and
b
O’E)n. We make the factorization

= =S = A - 3 = - .
By = e®(-AS)B, = Fy (A -AD), with F, = -B, , ROGA)
BA = exp(-As)B =F (A-AI), with F = - B,R(AA)

For x ¢ X, we have R(X;A) x € D(A), R(A;An)x e D(A) and
6.2) ||, x - Fx|lgy < ||B>\‘R(>\;A)x - B ROGA)X| | +
+ lan’A R(A;A)X-B_,, ROGA x| |

The first term on the right of (6.2) vanishes as n »«. Consider the

second term
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||Bn’x ROGA)X-B 5 R(x;z\l)xH < 8 (1] ROAX - ROGA)X|| +
+ ||ARG;A)X - ARGSA x| |

Using (6.1), we see the vanishing of the first term on the right as
n-+ oo , And

[|A RO;Ax = ARCADXI| < ARMGAX = ARGA) x|| + [[AROA)x - ARCGA)x]
n >
= ||AROGA)X = ARG;A)X] [+ | [AR(; A)x- AROGA X[+ o
We thus obtain Fn'x + Fx for every x € X.
Similarly, we can prove that Dan > DSFx vx e X,
By theorem 6.1, the proof is complete. Q.E.D.
Theorem 6.3. has an interesting application to integrodifferential equa-

tions arising in the study of heat conduction in materials with memory. In
particular, Miller [7] examined the equation

t
(HVE) 8'(t) = c A8(t) - a(o) 8(t) + ¢ _[ b(t-t)A8 (1) dT -
' 0
t
f a'(t-1) 8(1) dt + £(t)
(o]
6(0) = @,

where Ais the Laplacian, c > 0, a' and b are continuously differentiable real
valued functions in L (Rf) Assumptions made regarding the set & on which
the Laplac1an is considered and on the boundary conditions make A = ch-a(o)1
a generator of a Co semigroup on P (€), 1<p <= If instead of (HVE)

we consider
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t
(VE)  0',(8) = a0, (t) - a ()0 (1) + ¢ [ b (t-)ae ()dr -
0
t | | |
- a' (e (Mdi + £(0)
0

6 (0) = ¢

we see that Theorem 6.3. can be immediately applied. If the assumptions
bn-+ b, b'n-+ b', a > a' and a"n + a" in BU(R+) are satisfied, we see
thaten(t) converges to 6(t) unifqrmly on bounded intervals. In particu-
lar, if b= b' = a' = a'" = o, then en(t) converges to eo(t) which is the
solution of

(HE) e'o(t) = cAeO(t) + £(t)
6_(0) _
0 = ¢o

We thus conclude that if a and b are small (in the sense of Theorem

6.3), the solution 6(t) of (HVE) differs only slightly from eo(t) because
of the memory term.

The above discussion leads us to consider a related problem. If x(t,e)
is the solution of the equation

: t
(VE)e _ x'(t) = Ax(t) + € j. B(t-s) x(s) ds + £(t) , x(o) = X,
. o‘
we would like to compére x(t,e)lwith x(t,0), the solution of
(VE),  x'(t) = Ax(t) + £(t) ’ x(0) = x_

The corresponding differential equations are

(DE)e z' = C(e)z
and
(DE)O z' = C(o)z

where
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o A o o o o© o A o

Cle) = o A 60 +elo o oland C(o) = |o 60
o o D o B o o o D

[ . [

If we assume that B = FA where F : X +”¥with Range F & D(DS) is a
bounded linear operator, we may apply the argument in the proof of Theo-
rem 6.1 to show that for ReA » 0y

HRnO\;C(e))H < MZ/(RéX— w1)n

for some constants M, and wy which are independent of € as long as |e| < 1.
As an immediate consequence of these observations and [5, Theorem 2.19, p. S07]
we obtain the following result.

Theorem 64 Suppose B = FA where F : X ~ D(DS) is a bounded linear ope-
rator. Let z(t,e) be the solution of (DE)€ with z(0) = Zy € D(C(e)). Then

z(t,e) = z(t,0) +€ 29 (t) + o(e)

In addition, if x(t,e) is the solution of (V‘E)E where (o,xo,f)*e D(C(€)) s
then
x(t,e) = x(t,0) +e X, (t) + o(e)

Theorem 6.1. can be modified in another way soO that we may obtain a
more general existence theorem for (VE) and (DE). In particular, it re-

moves some restriction that F must map X into D(Ds) .

Theorem 6.5.  Suppose {A } andfA}are infinitesimal generators of C, semi-
groups {S n(t)} and {S(t)} such that {An} and {A} have common domain D(A)

and Anx +» Ax for every x ¢ D(A). Assume there are constants M > o, w20
such that HSn(t)Il < M and ||S(D)]] < Me“t. Suppose R(A;A+RB)\B) exists
for some A with ReA>w and that {Fn} and {F} are bounded linear operators

with Fn mapping X into D(Ds) and Ex~ Fx incg'for all x ¢ X. Suppose fur-
ther that there exists positive constant N so that HFnH + HDanH < N
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for all n. If B = FA, then C génératés a Co semigroup.

Proof : It follows as in the proof of Theorem 6.1. that

R s < My/ (Rex- w)™ Re)> o,

for some constants Mz, W, indepéndent of n,k. Also, as the Fn are uniformly
bounded, C*z + Cz for every z € D(CY) = D(C). It follows from Theorem 3.1.
that R&A;C) exists and so C must generate a semigroupJ (t) with lIJ(t)H <

w1
Me '[9, p. 901, Q.E.D.

A special case of theorem 6.5. applied to (VE) yields the following
result,

Theorem 6.6. Suppose B(t) = a(t)A where a : R" >R is bounded and uni-
formly Lipschitzian. If the solution of (VE) are unique when they exists,
then (VE) is uniformly well-posed.

Proof : As B(t) = a(t)A with a(t) bounded, R(A;A+38>\B) exists for all A
with ReX sufficiently large. Furthermore, as a(t) is uniformly
Lipschitzian, it is the uniform limit of a sequence of functions
an(t) where a' n(t) is bounded and uniformly continuous. Hence,
we take B'n(t) = an(t)A and Fn = anI in Theorem 6.5. to get that

- (DE) is uniformly well-posed. As the solutions of (VE) are unique,
thé‘résults follows. Q.E.D.
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