Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

Multidimensional divide-and-conquer maximin
recurrerces
Laurent Alonso, Edward M. Reingold, René Schott

» To cite this version:

Laurent Alonso, Edward M. Reingold, René Schott. Multidimensional divide-and-conquer maximin
recurrences. [Research Report] RR-1701, INRIA. 1992. inria-00076938

HAL Id: inria-00076938
https://hal.inria.fr /inria-00076938
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50448044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00076938
https://hal.archives-ouvertes.fr

UNITE DE RECHERCHE
" INRIA-LORRAINE

- de Recherche
en Informatiguie

- etenAutomatiaue

* ~Domaine de Voluceau

- Rocguencourt

- BP105

78158»L@%;C_Desna§{/; X
| . Fance.
o 1)3963851

Rapports de Recherche

N° 1701

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systéemes distribués

MULTIDIMENSIONAL
DIVIDE-AND-CONQUER
MAXIMIN RECURRENCES

Laurent ALONSO
Edward M. REINGOLD
René SCHOTT

Mai 1992

A




)

Multidimensional Divide-and-Conquer Maximin
Recurrences

Relations de Récurrence Multidimensionnelles*

Laurent Alonso!

Edward M. Reingold?
René Schott$

Abstract

Bounds are obtained for the solution to the divide-and-conquer recurrence

M(n)= max (M(k)+Mk2) + - M(kp) + min(f(k), o £ (k).

for nondecreasing functions f. Similar bounds are found for the recurrence with “min” replaced
by “sum-of-all-but-the-max.” Such recurrences appear in the analysis of various algorithms.

LY

Résumé
T Des bornes inférieures et supérieures sont données pour les solutions de la relation de récur-
rence du type “diviser pour régner” :
M(n)=  max (M(k)+M(ks)+ -+ M(kp)+min(f(k1),---, f(kp))),
k1+~~+k,=n
De fagon similaire, nous donnons des bornes supérieures et inférieures pour les relations obtenues
en remplagant le terme “min” par “somme des tous les termes moins le maximum”. De telles
récurrences apparaissent dans les analyses de divers algorithimes.
A
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Abstract. Bounds are obtained for the solution to the divide-and-conquer recurrence

M) =, max | (M(k) + M(ka) -+ Mky) + min(f(ka), -, (k)

for nondecreasing functions f. Similar bounds are found for the recurrence with “min” replaced by
“sum-of-all-but-the-max.” Such recurrences appear in the analysis of various algorithms.
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1 Introduction

We consider the following four similar recurrences:

M(n) = k1+...+k,,—n p>2 (ZM(k)_*_lTlgpf( )) (1)
M =g (S g, ), @)
with M (1) given, and
M(n) = b TR _ (ZM(k + mm f(k )) (3)
14thp=n \
M(n) = k,+T$i§p=n (?M k)+ sam f(k )) (4)
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with M(1), M(2), ..., M(p — 1) given, where “sam” is the sum of all but the maximum, defined
formally as ‘
sun f(x) = Zzsf(l) max f(z).

Note that in recurrences (1) and (2) the maximum is over all partitions of n into at least two
parts, while in recurrences (3) and (4) the maximum is over all partitions of n into ezactly p parts.
Divide-and-conquer recurrence relations of these types, for various functions f, occur in a varicty
of problems in the analysis of algorithms (all-nearcst-neighbors [6], tree drawing algorithms [5],
and so on). When p = 2, recurrence formulas (1)-(4) are identical; this case has been thoroughly
investigated by Li and Reingold [4]. Our purpose is to obtain bounds for these recurrence formulas
for general p, for nondecreasing f; in so doing, we sharpen one of the bounds in [4] and provide a
solution to a problem left open there.!

In studying M (n) as defined by the recurrence formulas (1)-(4), we will use trees to represent
the recursive evaluation. Let 7(n) be the set of partition trees: ordered trees with n — 1 internal
nodes and n external nodes (leaves) such that each internal node has at least two subtrees and
such that the subtrees are in nondecreasing order, from left to right, by the number of leaves in the
subtree. For a node N of a partition tree T', we denote by # N the number of leaves in the subtree
rooted at N. We define the functions (T) and F(T) by

T) = > f(#N),
leftmost

nodes N of T .
KT) = > F(#N).

nonrightmost
nodes N of T

If f is nondecreasing, the formation rule for partition trees makes the relationship between the
recurrence formulas (1) and (2) and partition trees

M(n) = nM(l)+Tr€n’ja_.(>51)F(T)

for recurrence (1) and )
M(n)=naM(1)+ Trerl%z) F(T)

for recurrence (2). We will, therefore, be able to bound M(n) by bounding F(T') and F(T). Similar
relationships hold for recurrences (3) and (4), respectively, but with the maxima taken over p-ary
trees.

2 Recurrences (1) and (2)

Let B(n) be the set of binary partition trees; that is, partition trees in which every internal node
has exactly two subtrees. Notice that for T' € B(N), F(T) = F(T). The following results tell us
that we need only consider binary partition trees to bound M(n) for recurrences (1) and (2).

!We note here that Li and Reingold [4] considered only the case when f is nondecreasing, claiming that the (less
interesting) nonincreasing case is easily handled by induction once a simple observation has been made. This claim

is wrong, as discussed in Alonso [1].
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Lemma 1 For recurrence (1) and f nonnegative and nondecreasing,

M(n) = F(T).
(n) = nM(1) + max F(T)

Proof. Since f is nondecreasing we know that

M(»)=nM(1 F(T).
(n) = nM(1)+ max F(T)

We will prove, using a slight modification of Knuth’s natural correspondence [3, page 333], that to
each tree T € T(n) there corresponds a binary tree B € B(n) such that

F(B) > F(T);

since B(n) C T(n),
max F(T)< max F(T)
TeB(n) TeT(n)
and we will be done.
We construct B from T inductively. If T has only binary nodes, then B = T'. Otherwise, T has
at least one internal node with three or more subtrees:

Replace this subtree with

i

Since f is nonnegative, this transformation does not decrease the value of F'. O

Corollary 1 For recurrence (1) and f nonnegative and nondecreasing, M(n) satisfies recurrence
(3) withp=2.

Lemma 2 For recurrence (2) end f nondecreasing,

M(n) = aM(1 F(T).
(n)=mn ()+r’é‘3é) (T)



Proof. Since f is nondecreasing we know that

M(n) = nM(1 ax F(T).
(n) = nM( )+Tgl;é) (T)
I'or any binary tree B, F(B) = F(B) since for binary trees the minimum is identical to the sum

of all but the maximum. The same construction as in the previous lemma shows that for any
T € T(n) there corresponds a binary tree B € B(n) such that F(T) = I'(B). Thus we have

F(B) = F(B) = F(T).

I“a a.X 7 9

and the result follows. D

Corollary 2 For f nondecreasing, recurrence (2) has the same solution as recurrence (3) with
p=2.

Theorem 1 For f nonnegative and nondecreasing in recurrence (1), and for f nondecreasing in
recurrence (2), the solution M(n) satisfies

g n] llgn]
nM(1) + Z \n/27| (29~ 1)+Zf (sz) <M(n) <nM)+ Y |n/27) f(27) +Zf(2" 1y,

Jj=1 i=1 =1 J=1
wheren =2k 422 4 ... 4 2k 0< k) <ky<---<k,andl<1.
Proof. This follows directly from the last two corollaries, together with Corollary 9 in [4]. O

Examples of these bounds applied to various functions f can be found in Table 1 in [4].

3 Recurrence (3)

In bounding the growth of M(n) as defined by recurrences (3) and (4), it is necessary to make some
assumptions about the initial values M (1), M(2), ..., M(p — 1). For example, we could assume
that M is concave (or convex) on these values; without some such an assumption the asymptotic
behavior of M would be obscured by idiosyncracies arising from these initial values. To avoid such
difficulties, we will assume that M is defined only for n such that (p — 1)|(n — 1), that is, n must
be of the form n = (p — 1)l + 1. This assumption is natural in the context of divide-and-conquer
algorithms in which O(p) = O(1) dummy elements are introduced to make the size of the input
conform to the assumption. The assumption is also natural in the context of algorithms based on
p-ary trees.

The tree transformation technique of the previous section does not work for recurrences (3)
and (4). Instead, for recurrence (3), we will use counting arguments to bound the number of
leftmost nodes with a certain range of descendant leaves. Let P(n) be the set of p-ary trees with
n=(p— 1)l + 1 leaves and let

Ri(n) = Tr;lg():l) Z 1.
leftmost nodes N in T'
with p*~! < #N < p'
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Thus Ry(n) is the largest possible number of leftmost leaves in a p-ary tree with n leaves, and 2,(n)
is the largest possible number of internal nodes that are leftmost children of their parents and have
at least 2 but no more than p descendant leaves. R;(n) = 0 for ¢ > |log, n| since a leftmost node
with pl8™) 4 | or more descendant leaves has p— 1 siblings to its right, cach of which has at least
as many descendant leaves, for a total of

p(p[logpnj + 1) — p[logan-H +p> plogpn - n

descendant leaves, which is impossible.
We nced the following generalization of the well-known observation that a binary tree with n
external nodes contains n — 1 internal nodes.

Lemma 3 A set of k p-ary trees with a total of I internal nodes contains a total of I(p— 1) + &k
external nodes.

Proof. The I internal nodes have a total of Ip children, including the I — k that are not the
roots of the k trees. The remaining Ip— (I — k) = I(p— 1) + k children must be external nodes. 0

We can now express an upper bound for F(T) (and hence M(n)) for nondecreasing functions
f in terms of R, since f(p') is no smaller than the contribution of a node counted in R;(n). Thus

KT) = > f(#N)
leftmost
nodes N of T
= 2om+ Y M- )
p
leftmost
nodes N of T

since by Lemma 3 there are (n — 1)/(p— 1) internal nodes, each of which has a leftmost child. For
f nondecreasing, f(z) — f(1) is a nonnegative, nondecreasing function of z and hence

llog, »] -1 .
A <200+ 3 R = SO+ Ryog (A Ln/o]) — S(1),

because f(#N) — f(1) < f(p') — f(1) when p'~! < #N < p' and no leftmost node N can have
#N > |n/p|. However, for i = 0, f(p') = f(1), so we have

llog, n| -1

) €20 f) 4 X RSP = F0)+ Biog, (WL /)) = F(D),

and hence

M(n) nM(1) + Anax (T)

P(n)
n—1 [log, n]-1

ST/ X R - f()
1=1
+ R[logp nj(n)[f( I_n/PJ) - f(l)] (5)

IN

nM(1) +

5



so that an upper bound on R;(n) will give us an upper bound on M(n).

Let 7 > 0. Given a tree T' € P(n), contract it by deleting all external nodes and all internal
nodes whose leftmost child is not counted in R;(n), preserving any parent-child relationships among
internal nodes that are not deleted. Then, add an external node for every missing child among
the remaining nodes so that each node is properly p-ary. The result of this contraction is a set
of p-ary trees that contain among them exactly R;(n) internal nodes and, by Lemma 3, at least
R;(n)(p — 1) + 1 external nodes. By construction, each of these external nodes corresponds to a
subtree of T with at least p'~! 4+ 1 leaves (because each subtree of a node counted in R;(n) has at
least as many descendant leaves as the leftmost subtree, which has at least pi~1 + 1). Thus there
must have been at least [Ri(n)(p — 1) + 1](p*~! + 1) leaves in T, so that

n > [Ri(n)(p—-1)+ 1P + 1), (6)
or n 1
Film) < [(p “D(pT+1) p- lJ ' ™

This bound can be strengthened when i = 1 since no subtree in a p-ary tree (except a leaf) can
have fewer than p leaves so (6) becomes

n > [Ri(n)(p—-1) +1lp,

or

B < |57 - . (8)

Thus (5), (7), and (8) combine to give us

iog, 7]
n—1 n 1 n 1
M(n) < nM(l)Jr(p—l—[p?—p_P—l}— ; [(P“‘H)(p—l)_p—lj)f(l)
llog, n]-1
n 1 P n 1 ;
+lp2—p_p—1Jf(p)+ ,};; l(P"“H)(p—l)_p—lJf(p)

n 1

- n . 9

+\\(p[logpnj—l+1)(p_1) p_lJf(I. /p_l) ( )

To obtain a lower bound for M{n) we will construct a tree T, € P(n) for which F(T,,) is large.

Let n be of the form (p— 1)l + 1; the tree T), is defined recursively as follows. T} is the empty p-ary

tree consisting of a single leaf. Given n > 1, let m = |log,n| and r = n — p™; T, is formed by
combining p — 1 copies of T,m-1 on the left with a copy of T,m-1,, on the right:

Tpm-—l Tpm—l o Tpm—l Tpm—l+r
We have
M(n) 2 nM(1) + F(T%), (10)



so we need to compute F(7),).
Let Si(n) be the number of nodes N in 75, for which # N = pf; clearly,

-g,‘(])m) — ,J)m—iJ .

Also, let $;(n) be the number of nodes N in 1), for which #N = pi, but that are not on the
rightmost boundary of 7,. We prove by induction on n that for n. > p*,

Sin) = (p-1) l(P "’;])J (11)

As the basis, observe that for n = p* the formula correctly gives 5',-(71) = 0. Now suppose n > p'
and let m = |log,n| and 7 = n — p™. Since n > p*, we know m > 1. For m = i, (11) correctly
gives S;(n) = 0, so assume m > i and we have
Sin) = Si(p™+7)
= (p-DSE™ N+ 5™ +r)

= - D"+ (p-1) [—————”m'l pa ”'J

(p-1)p
_ m—1-—1 pm—l +r _pi
= (p-1)p +(p-1) [—‘(—I)—_I)T‘J
C (1) |- P TP
= (-l { (p—-1)p! J

= (-1 [(1)— 1)p'J’
as desired.

Let v; be the highest node along the right boundary of T, such that p* < #v; < p'*!. We have
n = #vi + Si(n)p'

because the leaves of T}, appear in subtrees of v; or in one of the $;(n) subtrees of size p'. So (11)
gives us

#v; = n—S‘i(n)pi

n—p i
n—(P—l){mJl’
_ - p' _ n—p i
n-(p- )((P 1)pt {(p—l)p‘})p

; n—p _ i
p+ {————(p_ 1)pf} (p—-1)p

where {2} = z — |z] is the fractional part of z.
Now any node u of T}, not on the right boundary of T}, and hence any leftmost child of a node,
has #u = p* for some <. Hence we can write

[log, n]
number of leftmost nodes i
F(Tn) = Z; ( N in T, with #N = T)i ) ('), (12)



and the coefficient of f(p') splits into two parts—the leftmost children whose parent is not on the
right boundary of T;, and the remaining leftmost children (that are in the subtree rooted at v;4;).
A node not on the right boundary of T, has p equal-size children, so the parent of such a node
with p' descendant leaves must have p'*1 descendant leaves. Thus there are S;,;(n) such parent
nodes and hence that same number of leftmost nodes N in T,, with #N = p* and the parent of
N not on the right boundary of T,. The remaining leftmost nodes N in T, with #N = p* have
their parents on the right boundary of T, so that these parent nodes each have p children, p—1 of
which are not on the right boundary. Each of those p — 1 non-right-boundary children is node with
p' descendant leaves—we know there are 5’,-(#1);“) such nodes, by definition of S;, so we have a
total of $;(#vi41)/(p — 1) such parent nodes on the right boundary, each of which has a leftmost
child N with #N = p'. Therefore

number of leftmost nodes
N in T, with #N = p

_ & Si(#vig1)

= Sipa(n) + Tl“, |

B ) n— pit] P4 {GE%;-‘IH}(?’“ 1)pit! - pi
= (= {(p— 1)1)‘*‘J ¥ [ (p— 1)p'+!

n — pitl n — pit!
v-1) {(p— ll;p"“J ¥ H(p— ll;p"“ }p+ 1}

B n n — p'tl
B .

(p=Dlz] + Uzlp+1] = Up - Dle) +{e}p+ 1= l(p - Dz + {z} + 1.
Combining (10), (12), and (13) gives

because

llogyn] | L .
M(n) > nM(1)+ Z [;,;WL{ﬁ’;}J fh, (14)

which we combine with (9) to give

Theorem 2 For f nondecreasing, the function defined by recurrence (3) for n of the form (p—1)I+1
with M(1) given satisfies

Liog, ] ;
nM(1) + S L-}ﬂt{—l}J [P < M(n)

=1 (P—‘ l)p'
n—1 n 1 Liogy ») n 1
n 1 [log, n]-1 n ) '
+LJ2——P_PT1Jf(p)+ ; l(p‘—‘+1)(p—1)_p_1Jf(p)
n 1
+ “(p].]ogpnj—l + 1)(]"‘ 1) - p— 1‘} f('_n/PJ)

o«



For example, when f(2) = z, Theorem 2 tells us that

In log,n - O(n) < M(n) < d " log,n + O(n).
p

p-
Similarly, when f(z) = log, z we get

1 3,1
(p—1)? (p—-1)2 p(p-1)3

We can compare the upper and lower bounds on M(n) in general for f positive. Let U(n)
and L(n) be, respectively, the upper and lower bounds in Theorem 2. For convenience, assume
M(1) = 0 since the M(1) term occurs with the identical coefficient in both U(n) and L(n). Then,
from (9) and (14) we have

(M(1)+ )n—O(l)g M(n) < <M(1)+ )n—f—O(l).

[log, n] -1
n ; n o
U < Y e O g e o e
[log, n]~1 n .
OIS S ES
Using
(7] 2 g
we obtain
2p* nf([n/p))
U(n) < . 1L(n) + 5§ D(p 1)
2 2 2 oz nl f
e
2p’ p’ f(ln/p))
< p—_—lL(n) + ? lL(n) f(pUOSp"’-J"l)’
and so

U(n) _ P f(In/p))
L(n) s p—1 (2 ¥ f(p“%’”“)) '

For n = p™ this can be improved to

4 Recurrence (4)

_As in the previous section, we will assume that M is defined only when (p—1)|(n — 1), that is, only
for n of the form n = (p — 1)l + 1.

A lower bound for M(n) as given by recurrence (4) follows directly from our analysis of F(T%)
in the previous section—in that analysis we counted the leftmost children of a node; here we need



to count the nonrightmost children and hence p — 1 times our value for F(T,) gives a bound for
F(Ty) here. Thus (14) becomes

M(n) = aM(1)+ Tlgg();) F(T)
> nM(1)+ F(Ty)
nM(1)+ (p— 1)I(T)

|log,, 1] n n— p '
nM(1) +(p—1) Z [7_’;+{ﬁ}J fh), (15)

\Y

To obtain an upper bound on M(n) as given by recurrence (4), we will follow the strategy used
in the previous section and use counting arguments to bound the number of nonrightmost nodes
with a certain range of descendant leaves. Let

Ly(T) = > 1,
nonrightmost nodes
N in T with #N > ¢

(the root of the tree is considered a rightmost node) and let

Li(n) = Trgg()sl) Li(T).

Notice that P(n) is nonempty only forn =1 (mod p — 1), so that L;(n) is defined only when
(p - 1)|(n — 1). We need the value of L;(n) in what follows; to compute it we first observe,

Lemma 4 The number of leaves in any tree (not necessarily of fizred arity) is one more than the
number of nonrightmost nodes.

Proof. Simple induction on the height of the tree. 0
It follows from this lemma that Lo(n) = n — 1. Furthermore, using this lemma we can prove,

Theorem 3 Forn > Il(p~-1)+1,n=1 (mod p—1),

s 5 n
Lip-1)41(n) = Lip-1y42(n) = - -+ = Lip_1)4p-1(n) = [ZG)———I_)-{-_pj -1

Proof. Notice that the last of these, with | = —1, correctly gives Lo(n) = n — 1. We have

Lip-1y11(n) = Ligp-1)42(n) = -+ = Ligp_1)4p-1(n),

because (p — 1)|(#N — 1) for any node N in T € P(n).

Take any tree T € P(n), label each node N with #N, and remove all nodes N of T labeled
I{(p—1)+1 or less; we thus obtain a tree T with L;,_1)41(T) nonrightmost nodes. It follows from
Lemma 4 that T' has L;,_1)41(T) + 1 leaves. Each of these leaves represents a subtree of T' that

has at least (I+1){(p—~1)+ 1 = I(p— 1) + p leaves—otherwise that node would have been removed
(and, the next larger possible number of leavesis (I + 1)(p— 1)+ 1). Thus

(l{p—1)+ p)(Lip-1)+1(T) + 1) < n,

10



or

n
I cl—" |-
p-0+1(T) £ ll(p— 1)+pJ 1

By the definition of I:,(p_l)ﬂ(n), then,

- n
Lip-yn®) € [ 15=y 5]

. To prove that this value is a lower bound on Z‘(p_ﬂﬂ(n), we will construct a tree T with n
leaves such that

n
Lip-1y+1(T) 2 L(P_-lmJ -1
Let

‘= ll(p—l)+pJ
and
v =nmod ({(p— 1) + p),

so that we have u > 0, v > 0,
n—1=ull+1)(p-1)+(u+v-1),

and hence u + v =1 (mod p — 1) because n =1 (mod p — 1). Thus P(u + v) is not empty; let
T’ € P(u + v). Replace each of the rightmost u leaves of T' by any tree from P(I(p — 1) + p) to
obtain a tree T' € P(n). When T is subjected to the pruning process described at the beginning of
the previous paragraph, the result is a tree with at least u leaves, each representing a subtree of T
that has at least /(p — 1) + p leaves. Hence by Lemma 4, T has at least u — 1 nonrightmost nodes
N with #N > l(p—-1)+p. O

Now for our analysis of (4). There are exactly L;_1(T) — L;(T) nonrightmost nodes N in T
with #N = ¢ and so we have

F(T) = 3 _[Lia(T) = LTS (D). (16)

i>1

This sum is actually finite because L;(T) = 0 when ¢ > |(n — p)/2] + 1 and T € P(n): If v is the
nonrightmost node, aside from the root, with the largest number of descendant leaves, then v has
a right sibling with at least as many descendant leaves and at least p — 2 siblings with at least one
descendant leaf each; thus

2#v+p-2<n,

or +2
n—p
po< |22247]
so that
#v < ln;pJH

for all nonrightmost nodes, as claimed.
We can use equation (16) and theorem 3 to obtain an upper bound on F(T).

11



Theorem 4 Given an increasing sequence of integersap = 0 < ay < -+ < o, ax > [(n—p)/2]+1,
satisfying (p — )|(e; — 1), 1 < i < k, and a corresponding sequence of functions L*(n), 0 <1 <k,
satisfying, for alln =1 (mod p — 1), Lt_,(n) > L}(n) > I:a‘(n), Ly(n) =n -1, and L(n) = 0,
then for nondecreasing f,

IA

k
SULia(m) ~ Li(w)f(ax)

E(T)

-

-
—

= Y [Li_y(n) ~ Li(n)]f(es) + Li_(n)f (o),

=1
for all T € P(n).

Proof. First we prove the result for integer-valued functions L}(n); afterward we will show how
to remove this restriction. We have, by the definition of F,

F(T) = > f(#N).
nonrightmost
nodes N of T

This sum of n — 1 terms can be written as
) J
F(T) = Z[Lﬁi—1(T) - Lﬁ.‘(T)]f(ﬂi),
1=1
where 3 < B2 < --- < f3; are the values assumed by #N as N ranges over the internal nodes of T;
since #N assumes only values of the form (p — 1)I + 1, each S; satisfies (p — 1)|(8; — 1) and hence
Bi-1 < Bi — (p— 1). Thus we can write F(T) as a sum of n — 1 terms

E(T) = f(B1) + - + £(B;) (17)

(a term f(B;) can occur more than one time, of course). The upper bound we want to prove has
the same form, namely,

k
Z[L?_l(n) — Li(m))f(e) = flar) + -+ flex), (18)

also a sum of Y5 [L1_,(n) — L*(n)] = La(n) — Li(n) = (n—1) -0 = n—1 terms. We will compare
the sums in (17) and (18) term by term, showing that the tth term of (17) is less than or equal to
the tth term of (18).

On the righthand side of (17) the (n — Lg,_,(T"))th to the (n — Lg,(T) — 1)st terms are f(5;),
while on the righthand side of (18), the (n — L}_,(n))th to the (n — L¥(n) — 1)st terms are f(o;)
We will show that the tth term of (17) is no more than the tth term of (18). Suppose the tth term
of (17) is f(B;). Then

n—Lg_(T)<t<n-— Lg(T).

However, LB;_,(T) = Lg‘._(p_l)(T) because, by definition of the §; there are no nodes N satisfying
Lﬂi—x(T) < #N < Lﬁ,(T)a but IB{_l S ﬂ[ - (p— 1) < ﬂf ThUS,

n— Lﬁ'._(p_l)(T) <t

12



Since L;(n) > Li(T) for any T € P(n), we have
n = Lg_p-n(n) < L.

Let u be the least index for which oy, > B; — (p — 1), and hence o, > f;; such an index u exists
because Li(n) = 0 and T has, by definition of the §;, a node N with #N > §; = (p — 1). But
L*_(n) > Le,_,(n) by hypothesis and a,_y < B; — (p — 1), so that L., _ (n) > f/ﬂi_(,,_l)(n) and
hence L} _,(n) > I:ﬁi_(p_l)(n). Thus

n—L;_i(n)<t,

so that the tth term of (18)is f(a:) > f(ay) > f(B;) (because f is nondecreasing), which is what
we wanted to prove.
We now show how to reduce the non-integer-valued case to the integer-valued case. Let the
functions L¥(n) be given and define
Ax(n) = |L3(m)-

We have .
L:(n) Z Lai(n)7

but the L, (n) are integer-valued so that
Ai(n) 2 jia.'(n)’
and we can apply our theorem, giving
. k
B(T) £ Y [A7q(n) = AF(n))f (),
1=1

for all T € P(n). But

Z[A _1(n) = Af(n)}f(a) < Z[L ~1(n) = Li(n)]f(en),
for consider the difference

k
> L] 1(n)—L‘(n)]f(a,)—Z[A ~1(n) — Af(n)}f(en)
k

= 2 L) = Afy(n) ~ Li(n) + A7 () f ()

1=1
k
= Y ULm) - (L)@
k-1
= {Ls(n)}f(a1) + Z[f(ai) = flai-){Li(n)} = {Li(n)}f(e)

k-1 A
= M) = Sa)H I}

2 0,

13



since L§(n) =n — 1, Ly(n) = 0, and f is nondecreasing. O

This last theorem has several interesting corollaries. First, there is a p-dimensional analogue of
Corollary 9 in [4]:

Corollary 3 For f nondecreasing, the function defined by recurrence (4) for n of the form (p —
)l + 1 with M(1) given satisfies

{log, ((n-p+2)/2)] ;
* n -p+2
M(n) < nM(1) +n(p - 1) > e, <p[losp((n—p+2)/2)J - 1) / (l%_p '

']
i=1 P

Proof. Apply Theorem 4 with k = |log,((n — p + 2)/2)], @0 = 0, a; = p', 1 < i < k,
ar=(n—-p+2)/2, Li(n)=n/p - 1,1<i<k,L}(n)=0. O

Next, a much tighter upper bound:

Corollary 4 For f nondecreasing, the function defined by recurrence (4) for n of the form (p —
1)l + 1 with M(1) given satisfies

L(-3)/2) 1 1
M(n) < nM(1 -
(n) <nM(1) + n ;0 ((p—l)z‘+1 (p=1)i+p

) f(p-1)i+1)

* ‘((p— 1)[(1f /2] +1 1) f ((P— 1) l“;l)J +1).

Proof. Apply Theorem 4 with k£ = [’izl-J = I%J, a; = (1—1)(p—1)+1 and Li(n) =

nf(e;+p—1)—1,for1<i<k,ao=0and L§(n) =n -1, and oy = |2=2*2} and L}(n) = 0. O
For p = 2 the bound in Corollary 4 becomes

In/2)-1 .
f(@)
M(n)<nM(1)+n Y W(i+1)

i=1

+0(f([n/2])), (19)

a big improvement over the upper bound given in Corollary 9 in [4]. For example, when f(z) = z
and M(1) = 0 we know (see [2, eq. 2.50], for example), that M(n) = lnlog,n + O(n). The
upper bound (19) gives M(n) < nlnn + O(n) = 0.693 ---nlog, n + O(n), while the result in [4]
gives only M(n) < nlogyn 4+ O(n). When f(z) = log,z and M(1) = 0, (19) gives M(n) <
1.137---n + O(log n), while the result in [4] gives only M(n) < 2n + O(logn).

When f(z) = [log, 2] we know from [4] that M(n) = nM(1) + n — [logyn] — 1 and we can
use summation by parts (see, for example, [2, eq. 4.65] or [3, ex. 1.2.7-10]) with (15) and (19) to
obtain

— 1
n M(1)+n+0O(log?n) < M(n) < nM(1)+n§m+O(logn)
~ nM(1)+1.2645---n + O(logn).

Most interesting is the case f(z) = |log, z|. We know from [4) that M(n) = nM(1) + n —
|logy n] — v(n), where v(n) = O(logn) is the number of 1-bits in the binary representation of n.
Using summation by parts with (15) and (19), we obtain the sharp result that M(n) = nM(1) +
n + O(log? n).

14



Corollary 5 For f nondecrcasing, the function defined by recurrence (4) for n of the form (p —
D+ 1 with M(1) given satisfies

1\4(n)5n1v1(1)+[(1_§1):/2j([( . }—[( e J)f((p—1)i+1).

= p—1);i+1 p—1)+p

Proof. Apply Theorem 4 with &k = {I—*Q‘—IJ = [;;}”_‘fJ, a; = (¢ —1)(p- 1)+ 1 and L}(n) =

Lo,(n) = l(’z—_lY(;}—_lTTpJ —l,for1<i<k,and ag =0and Ljg(n)=n—-1. O

The upper bound in Corollary 5 is sharper than that in Corollaries 3 and 4; in fact, it is sharper
than any other upper bound of the same form. Let n be fixed and consider the partial order on
the set U(n) of upper bounds for M(n) of the form

k
V(f)=nM1)+ ) vif(5) (20)
i=1

that hold for all nondecreasing functions f. Upper bounds V and W are comparable, V < W,
if V(f) < W(f) for all nondecreasing functions f; V and W are incomparable if there exist
nondecreasing functions f and g such that V(f) < W(f) and V(g) > W(g).

Lemma 5 Let \
V(f)=nM(1)+ ) v f(5)
=1
and

k
W(f) =nM(1)+ Y wif(3).

=1

Then V < W if and only if for all j, 1 < j <k,
k k
Z'v,‘ S Z’w,‘. (21)
=3 i=j
Proof. If V. < W, then (21) follows by considering the step function
(=40 <7,
f](ft) - { 1 z 2 _7

On the other hand, suppose that (21) holds. To prove that V < W, we must show that
V(f) < W(f) for all nondecreasing functions f. Let f(z) = f(z) — f(1); f(«) is a non-negative,
nondecreasing function of z and moreover,

W(f)-V(f)=W(H)-V(]),

so we need only prove that V(f) < W(f) for non-negative, nondecreasing functions f. Such a
function can be written as a linear combination of the step functions f;(x),

k

f(z) =3 c;fi(z) + h(z),

j=1

15



where h(2) = 0 when 2 is an integer, 1 < & < k, and the ¢; are non-negative. Because V only uses
f at integers, we have V(f) = V(f — k), and we have

k

= nM(1)+ Zvi[f(i) = h(3)]
1;1 )

= aM)+ ) v
=1 gj=

¢; f3(2)

1

= aM(1)+ Z’U,’CJ‘,
125

since f;j(¢)is 1if ¢ > 7, and 0 otherwise. Thus,
koK
V(f)=nMQ1)+ 3 ¢ vi,
=1 i=j

and so by (21),

=
=
A

k k
nM(1) + Zci Zw;
=1 iz
w(f),

by a similar argument. 0O

Lemma 6 Let

k
V(f) = nM(1) + 3 i f ().

=1

Then, for 1 < j <k, S5 ;v > Liq(n).

Proof. Suppose Zf:j v; < L;_1(n). Consider the step function

fj(x)={ (1) Lo <7,

otherwise.

We have
M(n) = aM(1)+ Trélgz‘i) F(T)
nM(1)+ max > fi(#N)
nonrightmost
nodes N of T
nM(1)+ max z 1

TeP
) nonrightmost nodes
Nin T with #N > 7 -1

16



- All aX [/‘_ T
nM(1) + max Li=i(T)
= nMQ)+ L;-1(n)
k
> aM(1)+ > v

iy

= V(f;),

contradicting the fact that V is an upper bound. O

Theorem 5 The upper bound of Corollary 5,

W=1)/2) n .
V(f)=naM(1)+ Z:O <[(p_ SHIJ - l(p_ 1)i+pJ>f((p_ 1)z + 1),

is the minimum element of the partial order U(n); that is, V is in U(n) and is less than or equal
to any other element in U(n).

Proof. The upper bound V is of the form (20) with £ = (p—1){(I-1)/2]+1,l = (n=1)/(p—1),

o = { Lioa(n) = Li(n) if (p = DI - 1),

0 otherwise.

so that V is in U(n).
Given any element W € U(n), W(f) = nM(1) + 5_, w; f(?), pad the shorter of V and W with
zeroes so the two are the same length. By Lemma 6, for 1 < 7 < k,

k
w2 Lia(n)
-

¥
Z[L_l(n) - Li(n)]

k
Z Ui,
i

so that V < W by Lemma 5. 0O
Combining all of these results yields

Theorem 6 For f nondecreasing, the function defined by recurrence (4) for n of the form (p—1)I+1
with M (1) given satisfies

Ltog, ] L .
AM()+(p=1) 3 {;+{(—”—} (Y

p—1)p
< M(n)
[(1=1)/2] n n .
< M)+ 3 (o=t - lo=ms)) F@-viv 0

17



< ub —
< aM()+n g G-l Golitr

* ((,,_ e 1) d (“" 2 [Lzl)J * 1)

Llogp "—“—%ﬂj

< et 8 A () (52))

i=1

) 1= ni+ 1)

Proof. All of the inequalities except that between the two larger upper bounds follow immedi-
ately from our preceding discussion. Let W(f) be the largest of the three upper bounds and let
V(f) be the second largest of the three upper bounds. We must show that V < W in order to
prove the theorem. Write V() in the form

1252
V(f)= Z (vi = vi1) f(3)

=1

and write W( f) in the form

|R=p2

W(f)= > (wi=wi)f(i),

=1

with
n

vy = ——————1
, jp-1)+1
when (j —1)(p-1)+1<i<jp-1)+1,

n
wi= — — 1

p]—l
when p/~1 < i < p?, and
’l)ln—2e+4J = wLn—§Z+4J =0.
Since v; < w; for each ¢, it follows that V < W by Lemma 5. O

For example, when f(z) = z, using the lower bound and the middle of the three upper bounds
in Theorem 6 tells us that

p—1

nlog,n+ O(n) < M(n) < nlnn + O(n).

Similarly, when f(z) = log, z, we get

1 1

— )+ Olog?n) < M(n) < (M + = 1)1np) n + O(log 1),

p—1

<M(1)+

when f(x) = [log, ] we get

1
p—1

) n 4 O(log? n) < M(n) < (M(l)-i— 3 2) n + O(logn),

(M(l) * 2p -

18
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O

.y

and when f(2) = [log, x|, we get the sharper result that
M(n) = (M('l) + _1_1) n + O(log? n).
r—

We can compare the upper and lower bounds in Theorem 6 on M(n) for f positive. Let U(n) be
the largest of the threc upper bounds in Theorem 6 and let L(n) be the lower bound in Theorem 6.
For convenience, assume M(1) = 0 since the M(1) term occurs with the identical coefficient in
both U(n) and L(n). Then, from Corollary 3 and (15), the same calculations that we did for
recurrence (3) lead to

U(n) fOL2=BE2))
I(n) =P (1 + f(p“%p(:‘P)J‘l))

for recurrence (4) because

L(n) > ————n(p —1) U"ng’EJ'l IQL)

2p par S 4
and
og, 2522 .
U(n) < n(p - 1) gz %ﬂ»f([—;i*—?j)

5 Conclusions

It is worth noting that, in contradistinction to the binary case explored in [4], even as strong a
property as the concavity of f is insufficient to determine the exact location of the maximum in
recurrences (3) and (4). For example, in recurrence (3) with p = 3 and f nondecreasing and
concave, direct calculation gives unique values for M(n), 3 < n < 53, n odd, but gives

M(55)

[l

55M(1) + max{19f(1) + 5f(3) + f(5) + 2f(9), 19£(1) + 6/(3) + f(9) + f(13)}
55M(1) + 19f(1) + 5£(3) + f(9) + max{f(5) + f(9), f(3) + f(13)},

which is indeterminate given only that f is nondecreasing and concave: For f(z) = z, f(3) + f(13)
is larger while for f(z) =1Inz, f(5) + f(9) is larger; both of these functions are nondecreasing and
concave. In recurrence (4) with p = 3 and f is nondecreasing and concave, direct calculation gives
unique values for M(n), 3 < n < 13, n odd, but gives

M(15)

15M (1) + max{11£(1) 4+ 2£(3) + f(7), 10f(1) + 4£(3)}
15M(1) 4+ 10f(1) + 2f(3) + max{f(1) + f(7), 2f(3)},

which is similarly indeterminate.

Thus we leave it as an open problem to find general conditions on f under which the exact
location of the maximum in recurrences (3) and (4) is determined. Such a condition would likely
involve the signs of the differences Af, A@)f ..., AP f, just as the case p = 2 involves conditions
on the signs of Af (that is, f nondecreasing) and A(? f (that is, f concave or convex).
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