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Texture and Multifractals: New Tools for Image Anmnalysis
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Abstract

We present some new ideas for image analysis and texture segmentation. The two important
points are the introduction of the multifractal theory for image understanding in a rigorous
manner, which allows to do all the computations directly on the discrete signal, and the definition
of a precise framewark for texture analysis, in which we do not choose any a priori madel for the
study but instead let the peculiar data in each case decide which model is the most appropriate.
We define an approach general enough as to handle a great variety of textures and we propose
a new scheme, based on learning and optimal cooperation, that gives good results on a lot of
segmentation experiments presented here.

Nous présentons de nouvelles idées pour 'analyse d’images et la segmentation de textures.
Les deux points importants sont Pintroduction rigoureuse de la théorie multifractale pour la
compréhension des images, qui permet de faire tous les calculs directement sur le signal discret,
et la définition d’un cadre précis pour analyse de textures, dans lequel aucun modele & priorin’a
besoin d’étre spécifié. Nous proposons une approche suffisamment générale pour travailler sur
une grande variété de textures, et nous présentons un nouveau schéma, basé sur une approche
par apprentissage ct coopération optimale, qui donne de bons résultats sur plusieurs tests de
segmentation présentés ici.



1 Introduction

In this work, we propose some new ideas for image analysis using texture and multifractal paradigms.
We first present the multifractal theory and its applications to image description, and we show that
this approach allows to work directly on the discrete signal. We then introduce a. system for texture
classification, ARTHUR, which is based on a learning scheme and does not make use of any a priori
model. We finally move to image segmentation by means of an extension of ARTHUR that uses
the notion of mixed classes to allow accurate textures boundaries detection on complex images.

2 Multifractal Approach

Though fractal geometry has been introduced a long time ago in image analysis, it is not yet used
extensively ((Man82], [B.M77], [B.D88], [BD85], [LV91], [BEHLS86], [Hut81], [PS88]). .
Some authors have used fractal dimension to perform texture classification and image segmentation
([PNHAB84],[Pen84]), other have used higher order dimensions or measures, as correlation or lacu-
narity ([KCC89],[LV90)]), to refine the results and have obtained some interesting results. Very few
papers have been devoted to the use of multifractals in image analysis ((AKA88]), but multifractals
are intensively studied in physics, meteorology and other fields ([LDG*90], [Oon89}, [Kah90}).

The main point that justifies the introduction of multifractals in image analysis is the following
one :
Fractal dimension is a nice tool for characterizing the irregularity of a curve or a surface. Though
its measurement is not very precise on images, it is fast to compute and can sometimes help to get
specific features of the data. However, it seems to us that applying it to characterize an image is
totally unfounded. This approach assumes that the 2D grey level image can be seen as a 3D surface,
or, equivalently, that the grey levels can be assimilated to a spatial coordinate on the z-axis. Thls
assumption has no theoretical basis and we believe that it leads to a fundamentally false analysis of
the image. Instead, we should look at the grey levels as a measure, laid upon a generally compact
set, totally unhomegeneous to space coordinates.!
In this framework, we may now appeal to fractal tools to solve some specific problems. The
correspondent of fractal dimension (which is a notjon that refers to set) for measures are the multi-
fractal measures. They have been developed by Hentschel, Proccacia and Mandelbrot ([1.P], [HI&3],
Shrg&6], [Man}, [Man89)).

he first approach to multifractals is the following one :

Let f be a summable function from [e,b] to . Let £ be an natural number and assume that we
divide [a,b] into ¢ intervals of equal length 1/£. Let u be any measure defined from f on each
interval k;(£). For instance, we may take:

k)= [ F)dt
piks) et f{t)

The measure p will be called multifractal iff :
a)

V(0,3 € */ ulk@) ~ (7)

when 71 — 0
which means that u(k;(€)) is equivalent to ()%
@ is 3a,lled the Holder exponent.
b
Let Eq, = {ki(f)/ag — do < ax, < ag + da}
for a certain {small) da and let
Ny = card (E,).

'Pentland (see [Pen84]) has shown that, under certain conditions, the image of a 3D fractal surface is also a fractal,
but this 15 not relevant here, since we are talking of a different problem



Then : )
No ~ dof ; )9

where g is a function of .

Intuitively, this means that when we group all “pdints” with same o, we get a set E,, whose
fractal dimension is given by g{«).

The {«, g(a)) description is then obtained, loosely speaking, in splitting the interval {a,8] into
subsets where all the points have same Hoélder exponent (some authors speak about strength of
singularity for the measure) and then characterizing each subset by its fractal dimension. This
approach includes both local (via «) and global (via g) informations.

In the second approach, we directly compute some sorts of “mornents” or generalized dimensions
of our measure. The generalized dimension of order ¢,q € , is defined by :

1. logTh, wilky
Dy = g—1 il—l-glc © log(e-l)

with the same notations as above.
People sometimes use 7(q) = (¢ — 1), instead of D,.

It may be noticed that Dy corresponds to the fractal dimension of the support of the measure,
D, (which is defined by continuity when ¢ — 1) to the information dimension, and Dy to the cor-
relation dimension. The description given by (g, Dy) is global since we sum over the whole interval.

Intuitively, when ¢ is very high, [, is sensitive to those parts of the interval where the mea-

sure is very dense, as when ¢ is very low {meaning negative with high absolute value), we get
information on the sparse regions with respect to the measure.

The two descriptions (a, g(a)) and (g, Dy) are dual and they have some profound links with ther-
modynamics, of which we shall only mention the Legendre transform. o might be compared to U
(energy) g to 1/r (temperature) g to S (entropy) and 7 to F (free energy).

They are couples of conjugate variables and we have :

dr = dg
a= = do

dq T = ga - g(a)
g =qa - 7(q)

(Legendre transform )

For image analysis, we shall add to the classic theory the measurement of £(a) which is the la-
cunarity of the subset F,. Generally speaking, lacunarity measures the homogeneity of a fractal
distribution. It is defined as the variance of the ratio %/, where 7 is the mean mass (intensity)

in a fixed size window and m' the actual mass in the window when it is moved over the whole set
({LV91))

!

m
=< (= —1)?>
m
we shall make a description of images in terms of {«, g(a), £(a)).
To have a little more insight of what « might mean, we give some examples. We shall use the

frame of Non Standard Analysis (NSA), since it simplifies very much the notations. However we
shall not go into any profound development in this field, so that the reader who does not know



about Non Standard Analysis will not have any effort to make. For our purposes, it suffices to
know that in NSA, a set * is defined, which is a non-archimedean extension of ( i.e there exists

numbers z and w such that Vo € ,nz < w) and which contains both infinitely large and infinitely
small numbers. Let w be such a infinitely large number.

Then: Yz € ,Vn € nr < w
We shall say that z <« w, or that Z is infinitely close to zero. Most of the rules of can be
applied, with certain care, to * .

*

Now let us begin with the 1D case. Let f be a function from * to * and let [a,b] be an in-

terval of
We note zp = a,
1 .
zi=a+ —(b—a), i=lw-1
W
T, =0b
It can then be shown under certain conditions that the quantities :

w

b—-a
> f(zi) "

" and

are infinitely close (their difference in infinitely small)

We shall write

b 2 Wb—a b—ad .
[ @i = f@) Tt = Y e

If interval {a,b] has Hblder exponent « with respect to f, we may write, witht=b—a :

> flzi)ke
=]

k(b—a)"’f_vb_a

[e3)

o1 = =1 S (i)
w
_log 35 flzi) — logw — logk | )
@ = e
logt

Assume f is constant : f(z) =¢,Vz € [a,b]

logcw — logw — logk

=1
o logt
a=1+ loge — logk
logt

Sincet ~0andt#0 :ax~1
If f(z) = z,Vz € [a, b] we find
W
logwa < logz:z:i < logwb

i=1
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Thus logb — log k
ogo — log
gt it -2 -]l 5 "O%
logt <a < logt

and again, since t >~ 0,t # 0, we have : o ~ 1.
It is easy to see that this result holds for any polynomial function f

Now if f is a two steps function :
flz)=cifz € [a,y

flz)=difz € [u, b]
we get
log (E‘{;“l z; + E‘,’;wuﬂ) —logw ~ logk
logt

a~]l+

with
Wy
u=a+t—
w

w T —a
and then — =
W b—-a

= p which is a standard number (an element of ).

Thos 1 1 d] — logk
G 14 loglpe+ (1~ p)d —log
logt

and again a ~ 1

This shows that one discontinuity and even a zero measure set of discontinuities does not affect the
value of a. This is very natural since the multifractal approach is indeed designed to handie the
case of very irregular measures, strange to Lebesgue measure.

In 2D the computation is very simple too

woow 2
[ [ @vdndy = 33 £l

i=1 j=1
with the same notations as above.

By definition of « .
t2 W w
1=]j=1

and thus y y
n log 3311 20521 f(24,y;) — 2logw — logk

a~2
logt

Again for polynomial f we find that o ~ 2.

Before we move to a truly multifractal measure, although very simple, let us just mention that
the function f :

f(z) = ax®7!, with z € 7 and a €]0, 1], has a = 1 everywhere except when z =~ 0,z # 0, where
a=a

Now let us to move to binomial measures. To construct a binomial measure on [0, 1], we first divide
it into [0, 3] and ]}, 1] and we set “mass” m; to [0, 5] and my to |3, 1], with m1 + mp = 1. We then

iterate the process in both subintervals, getting m? in [0, 1], mims in |}, 3], etc ...



Finally, if we have divided [0, 1} into 2 intervals [t;, t141] with :

we

1 i
tivl =t + 5% = 9w
may write
Vz; € [t;, tiv1l, zi = O.t?til s t?w + dz;

1 0 L0
where dz; € [0, P [, and t¥ = 0 or 1. Upon [t;, ti+1] lies the mass mf*m{*, if ¥ is the number of

tim

es we have a 0 in the decomposition of z; and ¢} the number of 1. It is then easy to compute

a, g(a) and £(a) which are given by :

a; = —pg logy Mo — 1 loga My
9(0u) = —po logy o — 1 log; 1
m‘b"ﬂl
fai) =27¢ [ngo (____5__“)_1___ 1]+ ng}
The computation of D, gives :
1
Dy = -1 logy[m§ + mf]

Examples of g(a) and D, are shown on figures 1. An I(a) curve is shown on figure 2.

D(q) f(a)

\ 2075
~_ 205 's

25
1

0 30 20 40

1.975 05

195

1.925 5 195 205 Tt

" Figure 1: left : D, right : g(a) spectrum

The binomial case, besides the advantage that the multifractal functions can be exactly com-

puted, teaches us the following fact :

If we need a continuous description of our signal, we may consider a step function taking constant
values on each sub-interval defined by the discrete data, and equal to these data. For instance, if
we denote by f the step function that associates to each r € (t;, t;+1] the mass laid upon [t;, ti11],

we get :
y = f(z) = mg*my*!
and :
t+1 mEP0m Pt
t f(z)de = 2 50 L = y(ti1) — () = dy
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Figure 2: I(a) curve for a binomial measure

Thus : dy = dz x dz* with dz = 2~¥
finally : dy = dz®*!

The binomial case is the simplest case of a more general family, the multinomial measures.
To construct such a measure on a given interval I of euclidean dimension D, typically [0,1] if
D=1,][0,1] x [0,1] if D = 2, we first divide I into N = b” equal parts. For instance, a binomial
measure in 2D will be generated by iterating the mass division on each fourth of [0, 1] x (0, 1],
a quadrinomial measure in 1D by applying the same process on each fourth of [0,1]. Given N

multipliers m;,7 = 1, N with Zf;l m; = 1, we set mass m; on the i** subinterval, and then iterate
the process on each subinterval. As before, @ and g(a) can be easily computed by :

N
alg)=—_ ¢ logym;

=1

N
gla(d:)) = =Y dilog, ¢

i=1
If N = 2, as for the 1D binomial case, we have a parametric definition of the spectrum (o, g(a)).
If N > 2 those two equations do not lead to a parametrization, for we only have two equations
and N variables. This means there exist several sets Ey, defined by a (¢;) vector leading to the
same singularity o(¢;) but differing with each other by their fractal dimension. g(a) is the fractal

dimension of UV, Ey;,a(¢i) = a. The fractal dimension of union of sets if the greatest dimension
of each set, thus :

’ N
~G(¢:) = g(a) = sup(— ) _ ¢:logy, ¢:)

© =1

To compute g(a), we then have to solve ming, G, given two constraints :

N
Cilds) =D ¢i—1=0
=1

N
Co(¢:) = —al¢:) + Z(ﬁ; logy, m; =0

i=1

We then introduce the Lagrange multiplyers Ay, A2 and we have to solve :

VG + MVC, + XV =0



which leads to a (N + 2) equations system with (N + 2) unknowns ¢;, A1, Ag :

¢i—1=0

{ Vi, log, i + A1 + A2 logymi + 1ohg =0
> ¢ilogym; +a=0

Each unknown ¢; can be written as a function of Ay :

m 2

b -

=N X
2= my?
Substituing ¢; in the last equation of the system leads to an equation with only one unknown, Az :
SjL1 my 2 log, m,

A(/\g) = — — = —Q
o my '

A being a decreasing function of Ay, we can find the solution iteratively. Nevertheless, two reasons
prevent us to handle the problem that way : as limj,——c A(A2) = —0min and lim), 0o A(X2) =
—Qmaz, values of a close to its extremum leads to a poor precision on Ag, and secondly, A is highly
dependant on (m;), that is, a little variation of (m;) leads to a great variation of A, introducing
important errors on Az2. A better conditioning of this problem can be achieved by introducing a
new function : if m and M are inf m; and sup m;, let us define :

m~*2log, m + M~ log, M
m=32 4 M-z

A" (X)) =

The reciprocal of A* is :
a-+logy, M
O8 ~ a¥log, m

log %

A Ha) =

A* presents several advantages :

¢ It has the same variation domain as A.
e It has a reciprocal.

¢ It has the same sensitiveness to m; as A, thus the function A A“‘l) is rather insensitive to m;,
as illustrated by figure 3, which represents graphs of A and A* for two 2D-binomial measures
with weights (0.5,0.2,0.19, 0.11) for the dashed curve and (0.27,0.26, 0.24, 0.23) for the other

one, and figure 4 which represents graphs of A(A*“l) for the same measures.

—_——— — —_—— —— — —H
1.5 -1.5
————ﬂ =4
2.5 <25
300 200 100 100 200300 -300 200  -100 __ 100 200300

Figure 3: left : A right : A*

Computing the singularity spectrum g(a) of a b-nomial measure in any dimension then consists of
those steps, for any value of @ € @min, @maz , With omin = —logy M and amaz = — logym .

8



1.9 1.95 2.08 2.1

-2.05 -2.5

- 15 2 2.5 3

Figure 4: A(A*"1)

e Given a, solve A(A*"(a)) = —a.

o Compute Ap through Ay = A*~!(a).

g
e Compute each ¢; through ¢; = —yi—x.

Zj:l m; :
o At last, g(a) = = 1N, ¢; log, ¢:.

The interest of multinomial measures for image analysis is that it is a large family of multifrac-
tal distributions whose spectrum can be computed exactly. Since some methods are available for
computing with good precision the spectrum of any image by use of a specific related multinomial
one (see {LVB91]), we are able to get reliable information on the image through its (e, g(a), l(a))
description. Indeed, direct computations generally give poor results, unusable for any interpreta-
tion. Instead, using multinomial measures allows us to bring the power of multifractal analysis into
image understanding : for instance, image points having a ~ 2 will be points where the measure is
regular, thus where no large changes appear. Points with o << 2 or & >> 2 will be included either
in zones with high “gradient”, or in zones of discontinuity of the signal or of its derivative. o # 2
thus allows to mark points where “something is hapenning”, as & = 2 indicates smooth behaviour
or very small activity. On figure 5, original image of Lena is shown along with 3 iso-a images. The
first and the third ones (@ = 1.8 and a = 2.2) contain active points, while the second one (a = 2)
exhibits points where the signal remains smooth.

Figure 5: Lena and a images of Lena

On figures 6,7, and 8 are displayed an original image (spot image, office, and MR image of
the brain), the binary image of points whose g(c) is smaller than a certain threshold (which is
equivalent to a << 2 or & >> 2) and, for comparison, the edges obtained with a classical Canny-
Deriche detector. The g{a) images show how the multifractal process, though failing to detect
certain edges, captures a more global description of the scene, giving for instance always closed
“edges”, that define regions. We believe that a more profound study of this approach could provide
an interesting alternative for edge detection, in which one would not have to go through a whole
process of smoothing the original discrete image signal before extracting the contours



Figure 7: office image, points with g(a) lower than 1.8, Canny’s edges

3 Texture analysis : basic ideas

Much work have been done on texture analysis in the last decades. The authors have addressed
the problem of classification, compression, or segmentation using several approaches ([Har79],
[WDR76}, [VP87], [AR81], [LV88], [PNHAS84], [Sul], [FK80], [BCG90), [Gal75], [KCC89), [GG8S,
(LV90], [MC91],{FJ91],[PIP91],[LVI1]).

Several trends can be distinguished : supervised versus unsupervised methods, model-based versus
“general” methods, methods using multiresolution approaches or not.

Unsupervised approaches, for instance, make no use of a priori knowledge of the texture types
to analyze. Model-based methods often look at the texture as a realization of Markov Random

Figure 8: MR image of the brain, points with g(a) lower than 1.8, Canny’s edges
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Field, stationary or not, or of a Fractionnal Brownian Motion. Multiresolution approaches use
descriptions of the image at several levels, most of the times in the frame of Wavelets theory.

Our method is a supervised one, without any model assumptions. The justifications for these
choices are the following ones :

e one may believe that the human brain recognizes textures without learning : after all, one an
classify textures never seen before on the basis of lower level informations such as coarseness,
orientation, etc ..., and experiments have longly shown that specialized cells in the cortex
react to precisely oriented line segments, motion, etc ...

However, at least two reasons stand for a learning scheme :

— If it is true that humans recognize textures with lower level mechanisms, those have been
learnt at some time. Then, we should show the computer how to do that. Since we do
have to do a learning, it is easier and more reliable to teach the computer higher level
knowledge as the texture type itself.

— It is a false impression that the human brain recognizes textures without learning : this
is only true for a certain class, as outdoor natural textures, hand-made textures. This
class is indeed very vast but does not include some “special” images, as for instance
the cork textures displayed on figure 14, or medical images : echographies or simply
radiographies may be simply impossible to interpret for a non trained person.

e

Figure 9: radiography of the breast with microcalcifications

On figure 9 it is hard to detect what the radiologists call microcalcifications, which are
small calcareous deposits in the breast. They look very much alike artefacts or simply
high density zones of the image . This texture detection is a learnt ability. We don’t
believe that what radiologists learn to do on large training data sets, the computer can
do without.

e Since we do training, we do not really need a model for our textures : in fact, there is
no model which is general enough as to handle all possible textures : some are Markovian,
some Fractals, some of another still unidentified type. Some may be well described with
multiresolution techniques and others do not. Thus, it seems an impossible task to design a
system able to recognize one texture among all possible textures in the universe. Instead, we

11



shall restrict our work, in each case, to the recognition of textures among a finite number of
patterns, which we shall call a library. Doing that, we shall let the system find by itself an
“empirical ” model to describe a peculiar set of textures. Notice that we may define and use
as many libraries as we need.

This leads us to the last point : a large number of features have been proposed for texture
measurements. Some give good or excellent results, but only on a restricted class. There is
no universal parameter. The idea is then to let the system compute a great variety among all
of known features and allow it to choose a small subset that makes the best discrimination
in the textures library.

Theses idcas will be used both for classification and segmentation.

4 Texture Classification

4.1

Basic ideas

The fundamental principles of ARTHUR, the texture classifier, are the following ones:

learning scheme : we have explained our reasons for that approach in the previous section.

non hierarchical multi-parametric approach : one of the main aims of ARTHUR. is to
be able to use jointly the discriminant powers of for instance, Haralick’s energy and Fractal
dimension. The system computes all the parameters and then let the data analysis module
handle them.

robust data analysis : several methods for data analysis have been included in ARTHUR,
some classical, others developed specially for our problems. It is then possible, exactly as for
the parameters, to choose the data analysis scheme that gives the best discrimination.

notion of library : all the results given by ARTHUR (selected parameters, discrimination
power, classification ) are local to a library.

It has occurred in our experiments that for library { wood, grass, ivy }, parameter p and
q are good, as for library {wood, clouds, water}, they behave poorly. Nevertheless, nothing
prohibits to compare different libraries using the results of ARTHUR. Finally the system not
only allows to classify textures in a library, but also to show the existence of large types of
textures, as for instance Markovian or Fractal ones, according to the types of parameters that
best describe them.

Qualitative description : In addition to all quantitative results (values of the parameters
for each sample, means, variances, Fisher test, correlations, decision scheme, classification,
etc ... ), we may have a qualitative insight consisting in :

— a multiplot representation of the results.

— a graphic display of the correlation between parameters

— a decision tree

Finally we mention that ARTHUR is very easy to use, the user interface has been carefully stud-
ied. Besides this integration, our contribution here lies in the data analysis module and in the
introduction of new parameters, namely Multifractal and Integral Geometry ones.

We shall describe the main parameters used in ARTHUR, then the data analysis module, and
finally show some results.

4.2

The parameters

They have been separated into several classes :

12



4.2.1 Statistical parameters

e Moments : All sorts of moments have been implemented : centered and not centered,
invariant, etc ..., up to the seventh order.

e Autocovariance up to a translation of six pixels length (see [GM85]).

o Haralicks’s parameters : Here also, the translation ranges from 1 to 6 and all classical
features are available (energy, entropy, contrast, maximum probability, correlation, etc ...,
see [Har79})

e Run lengths: All classical run-lengths parameters have been implemented in the four direc-
tions (see [Gal75]).

4.2.2 Autoregressive model

A 3 parameters autoregressive model has been implemented

4.2.3 Parameters based on Fourier transform

All classical parameters based on the Fourier transform have been implemented (see [WDRT76]).

4.2.4 Integral geometry

We make some brief recalls about Integral Geometry.
Let G be a straight line in the plane. We can determine G by the angle ¢ that 1t makes with
a fixed direction (0 < ¢ < 27) and by its distance p from a defined origin O(p > 0). (p, ¢) are the

polar coordinates of the foot of the perpendicular from the origin onto the line.
‘e define :

dG =dp A d¢

This density is the only invariant measure for sets of lines (see [San76]).
The parameters we use in ARTHUR are defined by :

f(k) = /maz k,n(G))dG

where n(G) is the number of intersections between G and the binary set E that we are measuring,
and the integration is taken over the plane. f(k) is the Favard length of order k of E. For
generalization of f to grey level sets and other results, see {LV90] and {LVB91].

f(k) measures the “lengths” of slices of the texture taken at different levels defined by the

intensity values and and also takes into account the default of convexity of these slices. They are
robust parameters, fast to compute.

4.2.5 Maultifractal parameters

We implemented the parameters described in section 2, namely the (o, g(a),!(a)) and the (g, Dg)
descriptions of the image.

The user may finally choose between more than one thousand parameters.

4.3 Data Analysis

Once the library is defined (i.e. the classes are defined and some images are assigned to each class)
and the parameters have been computed on every sample, the data analysis module takes on.
Among the possible methods, we have chosen to focus on a peculiar one, that we have been

desxgmn spemally for our type of problems. For description of other methods, see for instance
[LVJ91],[CL82],[Cag0].
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4.3.1 Introduction

We present here a new method for discrimination with the following features :
o the set of parameters is large

e the set of classes is large

e the a priori classes of the learning samples is known

The method proceeds in two steps :

e First step : Discrimination

We reduce to several two classes problem. For each pair of classes, a discriminating space is
chosen via a density estimator on the learning set and a criteria. We obtain a collection of
discriminating spaces of small dimension.

o Second step : Decision.

To classify an element y, we compute a vote matrix M{y) = (Dy;(y)), where D;;(y) is the
probability for sample y to be in class C; when opposed to class C;. A decision function

applied to M(y) then leads to the final decision.

Notations :

Let C = (C;) be a set of N classes, E = (p;) a set of p parameters.

Let L be the learning sample set, z an element of L.

We associate to z the couple (V,,C;) where V; is a P vector (values of each parameter) and
is the class of z :

Let S be a sample set to classify, y an element of S

Let (D;;){y) be the vote function of the class C; versus the class C; for y :

Dij 5 — [O,l]

with Dy(y) = 1,Vy.
Let Fy(y) be a decision function :

Fd(y) : M(N’N)(y) — (Cy,i = l,..N) U Ind

where My ny(y) is a N x N matrix of vote functions and Ind is the indecision vote. The i-th line
of M(n,ny(y) collects all the votes on behalf of class C;.

4.3.2 First Step : pair discrimination.

We have designed several ways to construct the discriminating spaces. We first present a general

model, then a charaterization of this model in the gaussian case.

However, any other model

could be applied. The method allows to work locally on higher dimension spaces to improve
the discrimination of a pair of classes when necessary.

1. General model : blind discrimination.

The discrimination is blind in the sense that no model is assumed here. The method is
based upon density estimation. We present the unidimensional model, but the method can
be extended to higher dimension (in practice, choosing a dimension higher than 3 implies
the use of a parametric model) with n-uplet of parameters. We assume that the costs of
misclassification are the same for each class.. '

a/ Density estimation.

The density estimation is made on the learning set. We note 5¥ the estimation of density
function of class C; for parameter k. We implemented two kinds of density estimators, the
simple histogram density estimator, and the kernel method estimator, which is more delicate

" 14



to proceed (choice of h) but provides a higher estimation quality. It is based upon the following
equation :

() = T%
pi(z)'—' N;hp z;CK( h )

where N; = Card(C;), h is the sensibility (i.e. the width of kernel) and K(z) is a kernel of
probability.

A continuous K(z) leads to a continuous estimated density. We used a kernel averaged per
interval to thin the histogram estimation.

b/ Selection of the parameters :

Once the densities are estimated for each class and each parameter, the discrimination power

of a parameter for a pair of classes is measured in terms of a recovering area. We use the
following criterion :

gl = [ Min (75(2), 75(x) de
The most discriminating parameter is the one that minimizes the recovering area :

uij = ArgMing(85;)

Notes: ;
* more robustness might be added by using convolved functions.

selecting the best parameter for each pair of classes may not be a good idea because it
sometimes leads to a large number of parameters, most of the times correlated. Two strategies
can be used to reduce the set of selected parameters. The first is to apply a pre-filter over
the set of parameters before using the discrimination method, for example a step-by-step
selection method. The problem would then be that equivalent parameters could be selected.
The second, which avoids this drawback, is to use the value of the test given by the method.
We present the algorithm in the annex.

*

. Unidimensional Gaussian Model.

This peculiar case of the general model leads to a very simplified version of the method.
a/ Density estimator

We denote by uf the mean of parameter p; for class C; and by af its standard deviation.

We suppose that the density function 5¥(z) of parameter k for class C; is a gaussian one :

2
- 1 -1 :n—-p’-‘
k ]
or(z) = E;Xp Sl I %
1( ) 27!0’1-c 2 ( [‘Ll'c )

The equation of the decision surface is :
IL,C;/; ¢ () = T1;C; 355 ()

with II; = a priori probability of class C; and Cy/; = cost of misclassificating a sample of class
C; in class Cj.

We shall assume that all a priori probabilities are the same and that the costs of misclassifi-
cation are functions of the standard deviations :

15



Cisy ~ \ﬁfc
b/ Selection of the parameters :

This pecuhar choice of the cost leads to a simplified test. The decision surface between class
C: and class Cj is then defined by :

Eopp o Py

The solution inside interval [uf, u¥] is given by :

| uf — ub |
of + ok

Thus, the discriminating power of parameter k for pair (C;, C;) is estimated by :

lﬂi —/1‘_7 l
0'1 +UJ

61]

finally, the most discriminating parameter is :
ui; = ArgMax;(85)

4.3.3 Second Step : Decision.

1. The vote function.
a/ General model

We simply use a normalization of the pair of density functions to estimate the vote function
of class C; versus class Cj :

ey PE)
o) = e 0 )

and :

p; (x)
P (z) + ) (x)

D]'i(:n)

where z is the sample to classify.

Note that it is necessary to apply a threshold when the density estimation at point « is near
zero. If needed, it is possible to change the a priori probability II; or the cost Cj/; simply by

balancing this function. The vote function becomes :

H'Cz/]p:‘u ( )

Di' r)= u; Ug;
]( ) Hicx/Jp: J( )+Htcl/3p] ](.’B)

b/ Gaussian model

The same vote function can be used but we obtained better results with the well known fuzzy
logic function displayed on diagram 10.
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Figure 10: fuzzy logic function

2. The decision function : simple vote.

To decide to which class a sample z belongs, we build a N x N matrix M where m;; = D;;(z).
D;;(z) represents, for sample z, the vote in favor of class C; for the pair (C;, C;). It should
be noted that each element of the matrix refers to a different set of parameters in parameters
space. For each pair, we have selected the most favorable subspace for discrimination. A vote
gunction is applied to this matrix to find the decision class. We implemented two well-known
unctions :

a/ The fuzzy vote function :
This function select the class which is globally the best.

Fj(z) = Arg Max, (Il; Dy;(z))
where :
Vil (z) = T;(Dyj(x))

is the product of all the votes in favor of class C; versus all other classes Cj.
Examples :

Fuzzy case
1.00 0.70 0.80
M(z) = [ 0.30 1.00 0.05 ]
0.20 0.95 1.00
Binary case
1 11
011
Fdl(z) =Cy

b/ The minimax function :
This function, from games theory, minimizes the risk of misclassification.

F,f(x) = Arg Maxi Minj (D,J(x))

we note :

17



Viz (z) = Min;(D;;(z))

Examples:
Fuzzy case
1.00 0.70 0.80
M(z) = { 0.30 1.00 0.05 :l
0.20 095 1.00
Fi(z)=C
Remark :

'The reader might have noticed the amazing fact that the opposition between classes C; and
Ck is used when class C; is decided. We have to do this because the result of each vote might
influence the general decision (depending on the vote function). The reason for that appears
with ambiguous votes. In the following example, each class have “lost” at least one time
against another one :

1.00 0.51 0.51
M(z) = [ 0.49 1.00 0.99 ]
0.49 0.01 1.00
.The computations give :
Fy(z)=Co
and :
Fi(z) = Cy

Here, the fuzzy logic function, that takes into account global information, appears to be the
most natural choice.
. Improvements the decision function.
We implemented the following tests to improve the reliability of the votes :
a/ Crossed Vote :
The vote is confirmed if : )
Fi(z) = Fi(z)
Else, the sample is said to be uncertain.
b/ Vote with majority :

If the decision is class Cj, then V;(z) must be greater than a threshold s, which means that
a minimum amount of confidence is required to accept the vote.

Vi(z) > s

¢/ Vote with deviation :

The deviation between the two best votes must be greater than a threshold to be accepted.
If we note V4, the highest vote and Vjezs the second highest vote, the test is :

( Vnezt < s 1)
Vinax
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d/ Mixed decision

If all these tests lead to an indecision vote, the context often says us more than “I don’t
know"”, for instance it might mean :“it must be class one or class two”. This is an indecision,
but an indecision with knowledge. For this reason, we introduce now the mixed classes. A
mixed class is an indecision class corresponding to the confusion between two classes. The
condition is :

) V
if - ((V—'f:f > s}n> A (Vmu + Viegt > sfn))
then z belongs to the mixed class (Cpmaz, Crest)-

In the gaussian model, another definition can be set. Around the fifty-fifty chance point, a
mixed indecision class is defined. The mixed class becomes an interval.

The mixed indecisions will be solved later using for instance spatial constraints.

4. Comments and results.
a/ General case :

The general case does not lay on any model. It selects the best parameters (in the sense of the
minimum recovering area) without any analysis of the density function. We point out that
a great complexity of density functions does not change the complexity of the method. The
most sensitive point is that the estimation of density is often delicate to perform when a large
number of samples is not available. In our cases, the results are always correct because we
have a large learning sample (thus a good density estimation) and a large set of parameters
(thus a large choice). The recognition rate is good (90% to 98% depending on the difficulty).

b/ Gaussian Case :

This model is easy to implement and works fast. It is robust because the estimated parameters
are robust. It gives good results but selects only gaussian-like parameters. If a selected
parameter is not gaussian, the results of discrimination will be feeble. From our experience,
it seems that the recognition rate between classes is well balanced.

Remarks :

In our method, the “curse of multi-dimensionality” is conjured by reducing the problem to a
collection of smaller dimension spaces (see [Han81]). The fact that we work on pair of classes
and the separation between discrimination and decision allows to :

- add a new class without invalidating the discrimination scheme : only the new pairs created
have to be added (the new class with all aiready existing classes).

- work in a subspace of classes (by using only the pair of classes of this subspace).

- change easily the a priori probability and the cost of misclassification of each class (by
changing the weights in the vote function)

- insert a new parameter in the system without invalidating the rest of it (just test if the new
one can do better than the already selected ones for each pair)

All these features make the method a very adaptative one.

4.4 Results
We show some results on three libraries

1. Brodatz textures
We tried and classify the nine following textures from the well known Brodatz album : wood,
canvas, water, grass, wool, ivy, sand, bubble and raffia. Several authors have reported good

results on these textures, using all types of parameters. The training set was made of 64
images of size 64 x 64 per class (figure 11).
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Figure 11: Brodatz textures

547 parameters were computed among ail types, fractal, statistical, autoregressive, integral
geometry. After data analysis, 8 parameters were selected, seven of Haralick and one run
length. It must be noted that all parameters selected are co-occurrence ones with small
translation length, which leads us to classify our library as a Markovian one.

The mean recognition on a 20 % test sample set is 97.77 %, which is better than all previously
published results, to our knowledge.

In this case, we see that making some well chosen parameters cooperate in classification can

improve significantly the results. Correlations between parameters and a multiplot are shown
on figure 12.
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Figure 12: correlations and multiplot of parameters computed on Brodatz textures

2. Binomial textures :

A 2D binomial texture is obtained through the following process : the image is divided
into four quarters, the first one receiving mass (intensity) my, the second mg, the third mg,
the fourth my, with mi + mo + ma + myg = 1.

The process is then interated in each fourth, giving birth to subsquares of mass m;m; de-
pending on the place. We go on until pixel size is reached. The resulting texture is of course
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very irregular. density.

Figure 13: Binomial textures

The four classes on figure 13 are obtained with four different choices of (m1, my, m3, mg). The
same parameters as earlier were computed and this time, three multifractal parameters were
selected and able to achieve a 100% recognition rate. Of course, we classify our library as a
fractal one.

Cork texture

This case is more difficult since we try here to separate four states of one texture rather
than four different textures (figure 14).

Figure 14: Cork textures

The variations of appearance of the cork pieces are due to their processing, where temperature
and pressure cannot be totally controled. For the human eye, specially if you leave apart the
grey levels mean which is subject to changes with ambient light, it is difficult to distinguish
between the textures. Psychovisual tests have shown that non trained people do not achieve
better than 70% classification rate. Using three parameters (both statistical and fractal), the
system was able to reach 93% of good recognition with the same conditions as previously.
There again, it is the method that provides us with a “model” in the sense that it chooses
the best way to look at and measure our library, which we may classify as a mixed one.

Texture Segmentation

Introduction

The segmentation system, EXCALIBUR, works very much in the same way that ARTHUR, to
which it is directly connected.

The same ideas of integration of different methods for global cooperation and advanced user inter-
face have been applied.



Besides this integration, our contribution here lies in the possibility of making several methods
cooperate at different levels and in the definition of mixed classes to refine the segmentation.

5.2 The segmentation process

The basic principle is very simple : the first thing to do is to define the set of images to be processed,
then to choose an associated library from ARTHUR, meaning that EXCALIBUR will use a (small)
set of parameters and a vote method connected to the data analysis module.

It is also possible to decide at which resolution the images will be processed, to save comput-
ing time. The non computed points will be affected using spatials constraints. Then, the system
computes all parameter images (these are the transforms of the original image under the selected
parameters) and, using the vote scheme, the decision image, which is a first approximation of the
segmentation.

5.3 The post-processings

Most of the times, the segmented image has to be refined to obtain a good result. A lot of post-
processings are possible in EXCALIBUR, we only mention a few of them, and the fact that a
tool box is available where you can pick series of operations and very simply chain them using
the graphic interface to enhance your original decision images. The system memorizes the serie of
processings so that one may think of it as just one complex operation.

The processings are grouped into several categories :

1. Qualitative

These are not strictly speaking processings, but rather tools designed for providing a quali-
tative insight of the segmentation: display of a specific parameter image, or of variations of
one parameter along a direction of the image (see figure 15). Selective display of only one or
a few of all the texture classes instead of the whole image.

Figure 15: lacunarity image of Brodatz textures composite image -see original image below-, and
variation of lacunarity along a line

2. Morphological operators

These include all classical morphological operators, such as conditional erosion and dilation,
openings, removing of small connected components, etc ...
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3. Geometrical operators

These are geometric filters as for instance K-nearest neighbors filter or re-affectation of bound-
ary zones.

4. Context operators

They allow to take into account some high level knowledge about the images : for instance,
for a specific type of images, class A can never be a neighbor to class B, or class C is always
included in class D.

5. Mixed Classes

All texture segmentation methods use, at a certain time, a window centered on the point
to be classified, and do some statistical computations inside this window. If the considered
point lies in the middle of a zone of pure texture, we may hope that the system will give a
correct answer. But when the point is on or near a boundary, the measurement will have
nothing to do with reality. The question will be : “Is that window included in texture A, B,
or C ?”. Since the window is in no pure textured zone, we shall always get a false answer.
We do have here a paradox, because we are interested in the boundaries between textured
zones, but we do not give the system any chance to behave correctly near these boundaries.
Computing windows are generally 16 x 16 pixels wide, thus, in the best cases, we shall have
an uncertainty of width 8 pixels around each boundary, if we do not take into account small
regions of one texture included in another one and other special cases that also lead to false
answers or uncertainties. If we want to refine our segmentation, we must certainly look at
what is really hapenning in mixed zones. Our very simple idea is then to tackle the problem
of the boundaries by including them into the system, meaning that we teach the system how
to react when it meets a boundary zone. The first way would be to say that if texture A is
statistically charaterized by feature vector U and texture B by vector V, then a computing on
a boundary window would lead a feature vector W “statistically between U and V”, to put it
loosely. Unfortunately, this is not true, as it can be seen with the following simple example :
take A to be a chess-board texture with alternate black and white blocks of a certain size,
and let B be the same texture, only the chess-board is shifted in such a way that the white
blocks of A become the blacks ones in B. The computation of lacunarity on A and B gives the
same result, Ly, = Lpg, but on a boundary window, the lacunarity L" will be different, and
thus L' is not included in [L 4, Lg]. A better method is, as usual, to let the system decide by
itself what a mixed zone is.

Two methods have been implemented :

- Virtual Mixed Classes : during the learning of the textures by ARTHUR, we let the system
consider virtual mixed classes by creating mixed windows with certain proportions of two
pure classes, and computing all the parameters on these virtual classes. In the classification
phase, these results are taken into account on the same level as those coming from the pure
classes. In this method, if the inputs are textures A, B, and C, the system will create virtual
classes A-B, A-C, and B-C, and will go into the whole process with these six classes. Another
way to think of mixed windows is to see them as special classes, namely frontier textures
between each pair of classes. The advantage of this method is that we need no assumptions
or theoretical approximation, thus we do not reduce to any peculiar model, we just let the
system find the best model in each case. The drawback is that the number of classified classes
grows very fast, and if there are more than 6 pure classes, the method becomes impractical.

- Parametric Mixed Classes : this scheme has been presented in the Data Analysis section.
Here, we do not create mixed windows, but directly mixed classes. We say that a specific
point is in mixed class A-B if its probabilities to belong to classes A and B are both superior
to a certain threshold (more precisely there is a possibility of confusion between A and B,
and only between these two classes). In that case, we will not affect the point to class A nor
to class B, and we will neither say that it is an uncertainty point, but rather a mixed class
A-B point. The advantage of this method is that it is simpler than the previous one. The
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drawback is that it is founded on a assumption, related to the discriminant analysis scheme,
and thus is sensitive to errors in the probability density functions estimation.

However, both methods give good results not only in localizing with better precision the
boundaries, but also in reducing the overall rate of misclassification (see Results, next para-

graph).
Remark : it is possible to consider mixed classes composed of more than two textures, for
instance to detect triple junctions, but the computation cost then grows very quickly.

5.4 Results

We present three segmentation results :

1. Brodatz textures

We used here the library defined in section 1.4.1 to study image figure shown on 16, where
textures of wood, canvas, bubbles and water have been mixed.

e

Figure 16: composite image of Brodatz textures and its segmentation

The difficulties of the original image are the thin line of wood between water and canvas, the
small blob of bubble inside the water zone, the small blob of water inside the bubble zone,
and some irregular boundaries between bubble, wood, and canvas. As one can see, most
of the features of the original image have been captured by the segmentation, including the
thin wooden line, the small blob of bubble and almost all irregular boundaries. The system
however failed in detecting the small blob of water inside bubbles and had some trouble
with the thin wooden line. The fact that small zones (the wooden line is 6 pixels wide and
the bubble blob is an irregular shape that can be included inside a 12 x 12 pixels square)
could be detected by EXCALIBUR is a result of the use of mixed classes. On figure 17 is
displayed a preliminary segmentation using mixed classes, where the color of each detected
mixed class is the interpolation of the colors of the two correspondent pure classes. The
mixed classes appear at the boundaries between the corresponding pure classes, and this fact
allows a better localization of the transitions. A simple processing in order to get the final
segmentation image is then for instance to conditionally dilate in parallel all pure classes
within the domain composed of the pure class itself, all the associated mixed classes, and the
uncertainty points.
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Figure 17: original image and first step of segmentation using mixed classes

. MR image of the eye

The learning was made on 25 MR images of the eye, each class containing 50 samples.

In order to allow simple learning when no images of pure texture are available (which hap-
pens here and very often) ARTHUR is designed in such a way that it can take as an input
parallelogram-like zones defined by three points in a composite image. The zones are then
processed in order to make possible the computation of the parameters.

In our case, the samples were parallelogram-like zones of approximatively 12 x 12 pixels. The
original eye and its segmentation are on figure 18.

Here again, EXCALIBUR was able to detect all main features of the image.

. MR image of the thorax

“The image on figure 19 is a difficult one since it is very noisy (it includes a large vertical
strip of “ pure ” noise due to blood flow) and it contains several textured zones with irregular
boundaries, most of which are very small : heart, lungs, bone, blood flow noise, exterior part.
The learning was made under the same conditions as those of the eye image. As can be seen
on figure 19, EXCALIBUR was able to localize correctly the lungs, the exterior part, the
blood flow, most of the bone, but failed in detecting the heart which is indeed a very small

part of the image whose texture is blurred by the noise and masked by other morphological
structures.

It is worth noticing that classical edge detection methods are performing poorly on those
images.

Conclusion

In this work, we have studied a new approach for image analysis, in which the multifractal theory
seems to be of great help for segmentation and interpretation. We have also presented an unified
system for texture segmentation that gives good results on complex real images, like medical ones.
We think that an larger integration with other techniques and theories - as for instance Wavelets
and Non Standard Analysis - could lead to a significant progress in automatic image comprehension.
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Figure 19: MR image of the thorax and its segmentation
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8 Annex : Lowering of the number of parameters.

We present the method for a one-dimensional model but it can be easily extended to higher dimen-
sions by the use of N-uplet.
For each pair, we define the two following sets :

E} = {Pk/ﬁfj > s>}

© (set of “sufficiently” discriminating parameters)
Bij
E'.\f = P JPORR > S~
i { o/ Maxi 3%

(set of equivalent parameters)
An acceptable set of parameters for each pair is defined by:

— B> ~
Eij —_ EU U Ez]
The set of all the discriminating parameters is :

E= _U. E-,;j

The problem is : find the minimum set of variables E,,;n such that :

VEij, EminNEj; #0
This problem is a NP one.

We propose the following procedure to be done until the set E is null:
Step 1: select the parameter

P, = ArgMin(ilj)Maxk( Card(Py)/ P, € Ey; AN Ey; € E)
where :
Card (P) = card{(C;, C;)/ Px € Ey}
Step 2: update the set E
E « {E\ E;/Py € E;;}
This procedure provides us with one of the minimal coverings of E;;. The parameter assigned

to a pair of class is the one that have the best test.
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