archives-ouvertes

Fractal and integral geometry tools for texture
deformation measurement
Jacques Lévy Véhel

» To cite this version:

Jacques Lévy Véhel. Fractal and integral geometry tools for texture deformation measurement. [Re-
search Report] RR-1708, INRIA. 1992. inria-00076945

HAL Id: inria-00076945
https://hal.inria.fr /inria-00076945
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inria.fr/inria-00076945
https://hal.archives-ouvertes.fr

235X $R PRI LA ANV S A AT A

~
=
] g
£ 3 <% S
O = o BB w
e . R 2 =z =2 =
& s 5 = 0% =
o S S o NI =R > 2 M
= ST ans > & |
Q v mm -
= S Z. = £
o % - AON - 5
|2 Z S S oNe) 3 -
' P..M.. - =
) S > g
p S TYA xR
=) o LS = =
5 K =
I = 2 =
=l =)
o ="y




Fractal and Integral Geometry Tools
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Abstract

In this work, we investigate the use of two techniques for segmentation of different states of one
texture {e.g. deformations of an homogeneous texture) :
o Fractal Geometry, that deals with the analysis of complex irregular shapes which cannot well

be described by the classical Euclidean geometry.
o Integral Geometry, that treats sets globally and allows to introduce robust measures.

We focus on the study of two parameters, Lacunarity and Favard length, and proove a theoritical
link between them.
As an application, we are able to achieve with an excellent accuracy automatic classification of

Lung diseases on the basis on SPECT images. Classical techniques tried on those images give poor

results.
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Abstract

In this work, we investigate the use of two techniques for segmentation of different states of one
texture (e.g. deformations of an homogeneous texture) :

o Fractal Geometry, that deals with the analysis of complex irregular shapes which cannot well
be described by the classical Euclidean geometry.

¢ Integral Geometry, that treats sets globally and allows to introduce robust measures.

We focus on the study of two parameters, Lacunarity and Favard length, and proove a theoritical
link between them.
As an application, we are able to achieve with an excellent accuracy automatic classification of

Lung diseases on the basis on SPECT images. Classical techniques tried on those images give poor
results.

Dans ce travail, nous étudions 'utilisation de deux techniques pour la segmentation de diflérents
états d’une texture {(c.a.d. des déformations d’une texture homogene):

o La Géométrie Fractale, qui permet de mesurer des objets extrémement complexes et irrég-
uliers.

e La Géométrie Intégrale, qui autorise P'introduction de mesures fiables et robustes sur les
ensembles.
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1 Introduction

The aim of this work is to explore the possibility of automatic segmentation of different states
of one texture. To explain what we mean by “different states of one texture”, we give an example :
let us consider SPECT images of the lung. For a normal lung, we obtain a certain texture T
(see Figure 7). When a disease is present, T varies locally: small and diffuse holes for a chronic
disease (Figure 8), or on the contrary one or two large holes for a pulmonary embolism (Figure 9)
appears on some places of T, while others remain unchanged. Our interest lies then in measuring
the “deformation” of an initially homc;geneous texture.

Some authors have adressed the peculiar problem of homogeneity in a texture [CJ83] and
proposed measures based on the assumption that the texture can be modeled by a Markov Random
Field. The methods are oriented toward binary images and are time/memory consuming. The
precise test of measuring the distorsion of one texture, however, has not been made.

Characteristic features of the images that we want to process are their complexity and the great
amount of noise they contain. For instance, medical images (brain, lungs, heart, obtained through
radiography, scintigraphy, echography) all give a great amount of information. These signals are
diﬁicult to process, mainly because they include a great number of regions and edges with a high
degree of randomness and because the quality is not very good (low contrast, poor resolution..).
The important information lies in the texture and not in the contours. Moreover, our will being
to differentiate several states of one texture, classical methods of image analysis (regions or edges)
may fail. That is why new techniques are needed to extract the interesting parameters.

Fractal Geometry, initially developped by Benoit Mandelbrot [B.M77, Man82], can be of great
help for the analysis of complex images, because it does not suppose that the studied objects have
good properties of continuity, smoothness, etc.. On the contrary, fractal entities are irregular, rough,
and in general can not be treated by Euclidean geometry: their main characteristic is that their
complexity is the same whatever the level of analysis is. In particuliar, they have no derivatives.
If such objects are considered as 'monsters’ by classical geometry, they are often encountered in
the real 3-D world: clouds, mountains, plants, textures can be treated as fractals [Vos85]. Physics

and biology also include fractals. The main interest of Fractal Geometry is that it gives a way to
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quantify irregularity, and thus allows to differentiate between two seemingly chaotic images.

Integral Geometry is another useful tool for processing our images : in this theory, classical
measures such as length, perimeter, surface, are made on sets of the space; many useful exact or
probabilistic results concerning intersections between sets are obtained. The interest for us lies in
the fact that the technics used for the computing of the parafneters are fairly insensitive to noise,
because they use global knowledge and properties of the sets.

In this work we try to demonstrate the interest of the two mentionned theories for the processing
of complex images. More precisely, we have chosen to study two parameters, the Favard length f
and the lacunarity {, and we have applied them to the problem of the classification of lung diseases.

We also proove a theoritical result that links f and [ in a simple way.

2 Fractals

To make it easy to understand the basic ideas of fractals and infinite level of complexity, a
classic example is to try to measure the length of a coast, or a borderline between countries. If we
use a rule of length m, and place it n times along the coast to cover it, the computed length will

be:

Lim)=nxm

But with the rule of length m, we have lost the measure of little details, those that are smaller

than m: if we now use a rule of length m’ smaller than m, we shall find L(m') with:
L(m') > L(m)

The problem is that for most coasts, the function L{m) has no upper bound: when m tends towards
0, L tends towards infinity. To solve this problem, we use the notion of fractal dimension. If we

had to measure an area instead of a length, we would use a formula like:

area =n X m2
and for a volume:

volume =n x m?
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For a fractal object, there exists a number D such that:
nxm!=0if {>D

and

nxmt=00 if I<D

D is not an integer in the general case, it is called the fractal dimension. D measures the degree
of irregularity of the object. In the case of a curve, D is always between 1 and 2. If D is close to
one, the curve will look like a 'normal’ one (e.g. a piecewise smooth curve); if D is close to 2, the
curve will be very complex in the sense that it will fill a large portion of the plane.

In general, the fractal dimension of a set E is defined as follows: Let € be a real number, and
consider spheres of diameter ¢ in the d-dimensionnal space. Let N(e) be the number of such spheres
needed to cover E. If:

N(e) = k:(l)D when € — 0; k constant
€

then D is called the fractal dimension of E. ! Practically, several methods can be used to compute
D. As an example, we describe the box dimension method for a curve (see Figure 1). We first
divide the plane into boxes of dimension € x ¢, (¢ is large with respect to the dimension of the pixel)
and compute the number N(e) of boxes that intersect the curve. We then use boxes of dimension
5 X 5, and compute the new N(£). We iterate until ¢ reaches the size of one pixel. D is given by
the mean slope of the curve:

Log N(g) versus Log(%)

Although very simple, the box method is not generally used in image analysis, because it yields
very poor precision. More sophisticated methods have to be employed.

Many models have been proposed to perform a fractal analysis of natural phenomena. The
well known Fractionnal Brownian Motion, based on the analysis of the average absolute intensity
difference of pixel pairs as a function of scale, allows to understand some statistically self-affine

fractals as the result of random walks. However, our aim is not to build a model that fits in

!This presentation of fractal dimension is intuitive and far from being rigorous. Although precise mathematical

definition is possible, it is not our interest here.
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Figure 1: Computation of the fractal dimension with the boxes method

some sense a texture like scintigraphic data of the lungs, but simply to recognize different states
of one texture : in fact we are more interested in finding a set of parameters that performs such a
classification.

Several authors have worked on the problem of fractal segmentation of textures. Pentland [Pen84]
computes the Fourier transform of the image, finds the power spectrum, and estimate the fractal
dimension as the mean slope of the function : log of the power spectrum versus log of the frequency.
The fractal dimensions computed in two orthogonal directions gives a way to classify textures. Pe-
leg [PNHA84| computes the size of the intensity surface area at different scales, determines the
local slopes of log of area sizes versus log of scales, and is able to distinguish between six natural
textures. Chen [CDF89] used fractionnal Brownian motion model to classify normal and abnormal
ultrasonic liver images.

All these studies have in common the fact that they are founded on the use of the sole fractal
dimension D. Some concentrate on computing a reliable value of D, others present a richer measure
of roughness by including intermediate (in the sense of the degree of resolution) results. The new
thing about our work is that we try to use also a second order fractal parameter for the segmentation

which is totally independant from D.
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Fractal dimension is of first order in the sense that it measures how the mass (or intensity)
distribution varies with change of resolution. A second order parameter, the lacunarity, proposed
by Mandelbrot [Man82], can be defined as follows : let M be the total mass of the fractal object,
and let B be a window of given size ¢ (for instance a disk of radius £). One can compute the
expected mass m in B, and we know from fractal dimension D that m will vary as eC. As in
statistics, we can build a second order parameter by measuring how far the actual mass m' in B is

from m. We then define lacunarity as :

l=<(m'/m—-1)>%>

Intuitively, | will well measure the lacunarity of the object, e.g. the distribution of its gaps: a
fractal is lacunar if its gaps are large (they include large discs).

Lacunarity is useful because it allows to distinguish two fractals that have same fractal dimension
(see [Man82]). Especially for us, it is a very interesting tool, since, as a second order parameter,
it measures the “distance” of a texture to homogeneity : that is what we want to quantify when
we study the deformation of the texture.

Some authors have proposed slightly different definitions of { [KCC89], and have applied them
to texture segmentation. The results they present are very interesting for natural scenes analysis.

However, they have not studied the problem of measuring the distorsion of a homogeneous image.

3 Integral Geometry

Instead of making a general survey of Integral Geometry, that would be either too vast or too
vague, we only introduce the notions that we are going to use. We first make the presentation in
2-D, and then extend the results in 3-D.

Let G be a straight line in the plane. We can determine G by the angle ¢ that it makes with a
fixed direction (0 < ¢ < 27) and by its distance p from a defined origine O(p > 0). (p, ¢) are the
polar coordinates of the foot of the perpendicular from the origin onto the line (see Figure 2).

In order to extract desired parameters from the studied sets, we have to define a measure in the

plane. More precisely, as we are going to work with lines, that is to use lines to measure sets, we
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Figure 2: Definition of a line G

must define the measure of a set of line. This measure must have some desirable properties, and
first of all, must be invariant under motions. It is easy to show (see Santalo [San76] for this result
and others in this chapter) that, up to a constant factor, the only invariant measure for a set of

lines G(p, ¢) is defined by the integral, over the set, of the differential form :

dG = dp A d¢

dG is called the density for sets of lines.

This is an example of the use of dG: let K be a bounded convex set, and suppose that we want

to measure the set of lines that intersect K. A simple computing gives :

m(G,GUK #0)=1L

where L is the perimeter of K.

We find that the measure of the set of lines that intersect a bounded convex set is equal to its
perimeter. |

The result that we are going to use is the following one : Let C be a piecewise differentiable

curve, and for every line G of the plane let n(G) be the number of intersections between G and

C(n > 0). Then :
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/MGMG=2L

where L is the length of C.

The very remarkable result is that this equality holds for any rectifiable curve, and can serve
to actually measure lengths.

We can also extend the definition of length : let E be a continuum of points in the plane, we

define its Favard leﬁgth as :

f=%/nWMG

with the same notations as above. Note that f can be infinite. This definition has the advantage
that it can be applied to very complex objects (e.g. objects that cannot be viewed as simple curves)
as the ones we encounter in medical images for example. Another very good property of f is that it
provides a simple, fast, and fairly precise way to compute numerically lengths, where other methods
fail due to the complexity of the sets.

For the implementation, we have to discretize dG : as for p, we define steps of one pixel, and
it can be shown that choosing only eight directions for ¢ ensures that the error on f will be lower
that 8 %.

Up to now, we are able to measure curves, or 2-D contours. But scintigraphic images are gray
level images, and therefore must be treated as 3-D shapes. The generalisation is simple : instead
of computing lengths, we compute surfaces :

e we first cut the 3-D shape by a plane orthogonal to the z-axis, in order to obtain a 2-D curve,

e we compute the Favard length of this curve.

By doing this for several successive planes on the z-axis, and adding all the lengths obtained, we
can estimate fairly precisely the total “surface” of the shape. This measure has the great advantage
of being really insensitive to any rotation or translation of the object. This is of great importance
for comparing several medical images, where the conditions of acquisition are always fluctuating.

Also, thanks to the integration along all directions and positions, f is.nicely insensitive to noise.
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All our measures (on natural and computed images, see part 5) have shown a sort of correlation
between f and [. More precisely, for two fractals Fy, F» with same dimension and mass, we found

that:

(f(Fl) < f(Fg)) equivalent to (I(Fl) > I(Fz))

Intuitively, it is easy to understand that, if we change the frontier of a set F in such a way that:

e the mass remains constant,
e the fractal dimension remains constant,
o we add sinuosities to the contour, .

then the Favard length will increase (“the perimeter” of the set is.higher), and the lacunarity
will decrease because the set and its complementary will be mixed in a more intricate way and the
homogeneity of the mass distribution will be greater.

To confirm theoritically these results, we have tried and dig deeper in the definition of {.

Our aim is to find a first order approximation of [ when the size of the window goes to 0. The
hypothesis and notations are :

Let D be a disk of fixed radius Dg.

Let C1,C4, ..., Cy be n closed piecewise smooth curves included in the interior of D.

Let E be the set composed of the union of all the interiors of the C;, and E be the complementary
of £ in D.

Let S be the area of D, aS the area of E, and then (1 — «)S the area of E. F represent the set
we want to measure, and F the “holes” in the texture.

Let P be the length of the frontier of E.

Let r be the radius of the window in which we compute the actual mass. r is close to 0.

Let us consider a saussage of width 27 around the frontier of £ (see Figure 3). This saussage
defines three regions in D (if r is small enough, since the C; are in the interior of D, the saussage

is also included in D) :
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Figure 3: Definition of the three regions
e R; : the points of D outside the sauséage and included in E. The aera of R, is aS — Pr.
e R, : the points of D outside the saussage and outside E. The area of R is (1 — a@)S — Pr.
e R3 : the points of the saussage.

We recall that :

drdf
v= / /P< Howan 12440, (1)

<m>

where :

e B is the disk of radius r centered on (z,y)

e < m > is the average mass :

J Jp 1edzdy / /
<m >=
[ Ip1pdzdy J s

It is possible to re-write the definition of [ using f.(x,y) = proportion of “mass” in B(r,z,y).

Then the actual mass in B is : 772 X f(z,y)

and :
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3//(f-’ 2Y) _ 1)dzdy

We split the integral on D in three terms :

£:(x,
o 13 =1 [ Jo, (¥ _1y2dxdy

in Ry, fr(z,y) = 1 everywhere :

2_ 1 / 1 Vdzdy = 1L 12 _
ll_s/ (G~ WPdedy = 5( = 1) x (a8 ~ Pr)

o B=§J [, (2% — 1)2axdy

a

in Ry, fr(z,y) = 0 everywhere :

12 = %//R dzdy = é((l —a)S — Pr)
2
o 13 =L [ fo (B20) _1)2dxgy.

We do the change of variables :

(2,y) — (n,t) &,(n,t) = fr(z,y)  and dedy = dndt

(for each (x,y), the transformation is a rotation) where n and t are the radial and tangent lengths
along the frontier of £ (they exist almost everywhere). If r is small enough, we can almost ev-
erywhere consider locally the frontier as a part of a straight line. Under these conditions, the
dependance on t disappears since the proportion of full mass in B does not change when we make
a small tangent walk along the frontier (see Figure 4). In the end, if we integrate with respect to t

along the whole frontier of E, we shall have :

2 _ r(n, t) 2
13_3//123 ~1)2dndt

_ ‘I‘(n)
= S R( - - 1)%dn
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Figure 4:

=

9

Itz

Figure 5:

with :

¥, (n) = ®.(n,t)

The situation for this integral is the following one : we have a disk B that walks orthogonally
from the outside to the inside of F, starting from a position where the intersection between B and
E is empty (for example the value of n is 0 at this point) to a position where B is included in E (n
= 2r, see Figure 5). Finally, we can see that we have to integrate the areas of all the lunules from
0 to a full disk, Figure 6). We shall obtain a constant depending only on r. The computing of the

area of one lunule gives :
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Figure 6:

13
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2
o= %(9 — sin8)
and :
o @ —siné

1Il,.(n) = nre = 2

We still have to express n as a function of 8 :

0
n = r(l—cos 5)

r . 68
dn = Esmidﬁ

then :

P (%" @ —sinf r . 6
2 ~1)2_ gin
s = S /o ( 21 2 g Sif 2d9

Pr (—128
a?S " 4572

+a? +(1-a)?)

In the end, we find for [ :

P=02+1E+1

1-a 128 Pr

2= - —
a 45072 S

Before we go further, let us pause and make some remarks about equality 2:

o If the frontier of F is a piecewise smooth curve of finite length, we obtain the limit:

l -«

2

As expected, if « is high (near one) I* is near 0, because the set E will fill almost entirely

the domain D. The limit when a goes down to 0 is more difficult to appreciate. Equality 2
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gives: 12 — oo, but we must remember that, in the definition of ! (equality 1), the average
mass < m > appears in the denominator.

However, when r decreases till 0, the limit value of I2 only depends on «, which seems

reasonnable for a piecewise smooth curve of finite length.

Now let us move to the first order term. The variables are P and r.
e First, remark the negative sign of this term: as r goes to 0, I? increases to 12, which is intuitive.

e For fixed @ and r, I? is a decreasing function of P: we find here the justification of our intuition

and measure, that, everything else remaining constant, the lacunarity shall be low is the fron-

tier of the set has many sinuosities, and high if it is straight.

e For a fixed perimeter, 12 is also a decreasing function of r; this is also intuitive: at the limit
of E being included in a single B(r, z,y), we shall have m =< m > (notation of equality 1)
and {? = 0. If r is very small, then the B(r,z,y) will be able to measure very small details

and variations of mass, and {2 will be high.

However, our real interest lies in measuring {2 for fractals, and our whole procedure till now has
been based on the property of the frontier of E to be piecewise smooth and of finite length.

Let now the frontier of E be a fractal. This means that at least one C; is a fractal. To find an
extension to our formula, we are going to use the classical approximations of our set £ at different
resolutions. Let R(n) = 2n, for n in N* be a sequence of increasing resolutions. We state the
following definition :

Ey is an approximation of E at the resolution R(n) iff :
e The frontier of £, is piecewise smooth.
o dy(E,E,) < R_(lnj (dy, is the Haussdorff distance between sets).

We can see that, if we increase the resolution to infinity, we can find a sequence of E,, that goes
to E. E, is an approximation of FE such that the only “details” that differ between E and E, are

“smaller” than Wlﬁi'
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For a fixed n, formula 2 holds and we can write [ as a function of n :

1—a(n) . 128  f(n)r(n)

B(n) = a(n)  450%(n)r2 S

(Clearly, S does not depend on n)
‘Instead of writing P(n) we have written f(n), that is the Favard length of E, : this is to gain
some generality, and take into account special cases : now, we need only define the frontier of E as

a collection of continua of points.
We have to find out what happens when n changes :
When the resolution doubles, new details of E will appear in E,, of size between 72?155 and mﬁlfﬁ.

All the new parts in E,, that are not in F,_; are included in disks of diameter E(nl_—TS - R—(l,;j. This

implies the relation :

where rg is a constant.
It is easy to see that the function a(n) goes to a limit & when n goes to infinity
If we consider the whole frontier of E as one fractal lumping all the C;, we can measure its

fractal dimension D and we have by definition :

1
f(n)= fon—l_—D‘
fo being a constant.

We can now write the lacunarity for a set whose frontier is fractal:

P) _ 1 —'a(n) _ 128 fo’r‘o
Fn) = a(n) 45502 (n)w2 n2-D

As a consequence, we find that, since D is between 1 and 2, we still have a finite limit for {
when n goes to infinity.
It is important to note that D is the fractal dimension of the whole frontier of E. FEach

indivudual C; may be (and in general is) of different dimension D;
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This general relation between f and [ allows us to choose which aspect (e.g. Integral or Fractal)

of the object is easier to measure according to the available data.

5 Application

We have applied our measures on different types of scintigrahic images of lungs. Three states
have been considered: normal, chronic disease, pulmonary embolism. Even though it is easy for
an experienced pratician to distinguish these three states on scintigraphic images, there are several
reason why it is not obvious to do so for a computer:

¢ due to the nature of both the images and the diseases, only texture criteria can be helpful.
e the images are small, sometimes 128 x 128, often 64 x 64.

e they contain a great deal of noise.

e no general theory is available on the formation of the image or of the noise.

e since the position and the size of the lung on the image may vary a lot, an automatic pre-
processing that would isolate a region of interest is difficult to implement. Instead, we wish

to design a method that would work directly on the image.

Our first aim is then to make an automatic classification of these diseases. A second and more

ambitious one is to go further and help the pratician to:
e measure the progress of a chronic disease.

e detect a mix of chronic disease and pulmonary embolism.

These two tasks seems to be not easy to do visually, even for a pratician.

The interest of an automatic classification is that it would free the pratician of the task of
analysing the scintigraphic images, saving him much time, since about one hundred of such images
have to be processed every week in an average parisian hospital.

Sutton and Hall [SH72] have already worked on a similar problem. They were able to classify

normal and abnormal lungs using autocorrelation methods. Although both the methods and the
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Figure 7: SPECT image of a normal lung

Figure 8: SPECT image of a chronic disease
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Figure 9: SPECT image of a pulmonary embolism

results are very interesting, they don’t recognize different sorts of abnormality, and their algorithm
needs a pre-processing of the image that would not work in the case of an pulmonary embolism.

Our first set of data was composed of :

e nine 3-D images of projections, among which 3 chronic diseases (cdl, cd2, cd3) 3 pulmonary
embolism (pel, pe2, pe3) and 3 normal lungs (nll,nl2,ni3), (see Figure 7, 8, 9, for SPECT

images of lungs). Each “image” is 128 x 128, and contains around 20 projections,

e the nine corresponding images of slices, (reconstructed images) which are 64 x 64, and contain

each around 16 slices.

These data all come from Hopital Cochin, Paris.

The three parameters (D, !, f) have been computed on each projection and each slice for each
image. The set of the obtained values is too important for a practical use. Instead, we have
computed the median value of each parameter for each image (projections and slices). We have

found that the median value is better than the mean because some slices or projections (particularly
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extremal ones) contain too much noise with respect to the interesting signal, and so give weird

results.

5.1 Fractal analysis

The computation of D has to goals:

e When we compute D on a grey level image, considered as a 3-D shape, we always find a

number between 2 and 3.

If we obtain D = 2, it means that the studied surface is not a fractal, and that further analysis
1s meaningless. This implies that we first need to compute D to validate our approach. In our
special case of several slices or projections in one image, we can also check that D remains
approximatively the same for each sub-image, so that we can speak of the fractal dimension

of a particular lung.

e If D is strictly greater than 2, we can see if there are significant differences between the D of

the three types of lungs.

Leaving apart extremal sub-images, we have obtained the remarkable result that all slices and
all projections yield a D of 2.3, regardless of the type of lung (see Figure 10).

In fact, D varies between 2.2 and 2.4, but we must keep in mind the small size of the images
that does not allow a good precision on D, certainly less than 0.1, and so the differences are not
significant.

This result confirms that SPECT images of the lungs are fractal, but shows that D fails to
separate the diseases.

When we compute I, we again find that, for a large number of slices or projections of one
image, the lacunarity remains approximatively constant. But now, ! changes from one image to
another: for the normal lungs, [ is typically 0.2; for the chronic diseases, it is 0.6, and for pulmonary
embolism, it is 0.8. These normalised values are computed on the projections.

They show that actual separation of the three types of lungs is possible with respect to [ (see

Table 1 and Figure 13).
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Figure 10: Typical values of D for normal lung, chronic disease, pulmonary embolism

On figure 11 are shown “lacunarity images” of a normal lung and a chronic disease. The
lacunarity image is obtained by local computation of [ on a 16x16 window centered on each pixel.

These images show well how homogeneity is distorted by the disease.

5.2 3D Computation

Instead of computing ! for each slice or projection, we can estimate the lacunarity of the whole 3D
image. The principle is the same as in 2D : once we know the mass of the entire image, we consider
a small cube centered on each pixel, compute the actual mass in it and compare it to the average
mass. The results are shown on Figure 12.

The obvious advantage of the direct 3D computation is that it allows to take into account
spatial knowledge and coherence of the image. The processed information is richer since we now

also consider pixels relations in the z dimension. This method should be able to give good results

on more difficult images, that we are currently studying.
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Figure 11: Lacunarity image of a Normal Lung and of a Chronic Disease

Values of the 3D Lacunarity
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Figure 12: 3D Lacunarity for the 9 images
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. _l—;):;;ro;ectlo_ns l for—siices f fo_r‘—projection;- —f for sli(;e_zs_
nll 0.18 0.17 0.91 0.9
nj2 0.20 . 0.21 " 0.9 0.88
nl3 0.21 0.23 — 0.9 0.87
cdl 0.55 0.53 0.73 0.7
cd?2 0.62 0.64 0.67 0.65
cd3 0.63 0.69 0.65 0.5
pel 0.79 0.68 0.48 0.52 -
pe2 0.80 0.78 0.41 0.4

] pe3 0.83 0.82 0.35 0.35

Table 1:

5.3 Integral geometry analysis

The computing of f for projections gives (normalised values) :
e for normal lung, f is typically 0.9,
e for chronic diseases, f is typically 0.7,

e for pulmonary embolism, f is typically 0.4.

There again, we find that f can separate the three types.
On Table 1 are given the median values of { and f for each projection and slice image: we can
see that for projections, the segmentation works allright. But for the slices, there is an inversion

between pel and cd3. Several factors explain this error:

¢ slice images are reconstructed ones, and so contains more noise than projection images,
e slice images are only 64 x 64 and so the computing of F' and L is less precise.

¢ the pulmonary embolism on image pel is not easy to see, because it is small and appears only

on a few slices. This makes pel a difficult image tc analyse.
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Figure 13: Favard Length and Lacunarity for the 9 images

On Figure 13 are presented graphically the median values of | and f for slices.
As a validation of our method, we have used a second larger set of data, composed of 25 3D

images of each type. The results were very consistent with those obtained previously :
e for all normal lungs, ! was between 0.14 and 0.25, and f between 0.86 and 0.92.
o for all chronic diseases, [ was between 0.5 and 0.7, and f between 0.5 and 0.75.

e for all pulmonary embolism, { was between 0.68 and 0.9, and f between 0.3 and 0.53.

5.4 Comparison with other methods

Classical texture analysis include measures of autocorrelation, gray-level co-occurence, gray-
level run-lengths, first order statistics of gray-level differences, and autoregressive models (we
do not mention here macro-textures studies, since they would obviously be useless for our
case).See for example [Har79), [WDR76], [VP87], [ARS81], [FK80], [BCG90}, [Gal75], [KCC89),
(GG88], [LVI0Db).
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Figure 14: Computation of the Contrast

To compare our parameters with others, we have chosen to compute the classical Contrast (C)
and Angular Second Moment (ASM) measures of Haralick on our images (see for example

[Har79] and [WDRT6]). These measures are widely known as very reliable and generally give

good results.
We have computed C and ASM for eight translations: (1,0),(0,1),(2,0),(0,2),(4,0),(0,4),(8,0),(0,:

Again we have considered each slice of each of the nine images and we have used the median

value.

The results are shown on Figures 14 and 15 for the first four translations. The other

translations do not achieve better classification.

We can see that none of the parameters is able to perform a segmentation between the three

types of lungs.

As a second test, we have pre-processed the image in a very simple manner in order to get

rid:. of noisy uninteresting regions. We extracted a square region which is always inside the
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Figure 15: Computation of the ASM

left lung for our set if data. We chose this region because it is a place where both pulmonary
embolism and chronic disease appear on our images. Notice again that no simple automatic
method can be designed for extracting the actual contour of the lung since, in the case of

pulmonary embolism, a whole part of it has just disappeared.

The results are on Figures 16 and 17 : this time, we can see that, if the C parameter is still

useless, the ASM allows at least to distinguish between normal and abnormal lungs.

Finally our comparison shows that :

— The Contrast and Second Angular Moment cannot perform segmentation between the

three types of lungs.

— If we pre-process the data, the ASM is able to distinguish between normal and abnormal

lungs. An automatic pre-processing is difficuit to implement.

— Training on a larger set of images would allow to choose which translations are the most

effective for classification. However, neither [ nor f need a training set of data.
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- — Though 3D extension of gray-level co-ocurrence methods is theoritically straightforward,
the large number of translations and the computing time make this extension difficult

to implement. Conversely, 3D computation of [ is simple and gives good results.

6 Conclusion

In this work, we have presented a new approach to the problem of the segmentation of different.
states of one texture, based on the use of both fractal and integral geometry parameters.
The interest of these measures is that they are adapted to complex, irregular, noisy shapes.
Moreover, we have prooved a result that binds  and f under certain assumption, and that help
to understand the links between Fractal and Integral Geometry, which are not well known.
As an application, we have found a way to make an automatic classification of certain lung
diseases. Classical Texture measures have given poor results on our images, except in a few
cases, if a pre-proéessing is made on the data. We propose the following explanation : Second
order statistical methods make the assumption that the studied textures have finite correlation
(since only a finite number of translation are used). Instead, Lungs and also SPECT images of
lungs are fractal (see [LV90al), and then there exists infinite memory between pixels. Fractal
and Integral Geometry methods take advantage of this long term correlation while second

order statistics truncate the data, loosing essential information.

Further developpement of our work will hopefully allow to measure evolution of these diseases

and simultaneous occurence of chronic disease and pulmonary embolism.
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