-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Automated reasoning with function evaluation for
COCOLOG
Suning Wang, Peter E. Caines

» To cite this version:

Suning Wang, Peter E. Caines. Automated reasoning with function evaluation for COCOLOG. [Re-
search Report] RR-1713, INRIA. 1992. inria-00076951

HAL Id: inria-00076951
https://hal.inria.fr /inria-00076951
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50448031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00076951
https://hal.archives-ouvertes.fr

IR

UNITE DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
= et en Automatique

> "~ Domaine de \oluceau
Rocquencourt
| .BP105
- /8153 Le Chesnay Cedex
- France
- 1él{1)39635511

Rapports de Recherche
1

2

M niversaire
N° 1713

Programme 5
Traitement du Signal,
Automatique et Productique

AUTOMATED REASONING WITH
FUNCTION EVALUATION

FOR COCOLOG

Suning WANG
Peter E. CAINES

Juin 1992

e

* 13 %

Automated Reasoning with Function

Evaluation
for COCOLOG

Suning Wang

Department of Electrical Engineering, McGill University.
em:wsn@moe.mcrcim.mcgill.edu,
Currently at Spar Aerospace Ltd., 21025 Trans-Canada Highway,
Ste-Anne-de-Bellevue,
Quebec, Canada H9X 3R2, Tel.(514)-457-2150

and

Peter E. Caines

Department of Electrical Engineering, McGill University, 3480 University Street,
Montreal, P.Q., H3A 2A7 Canada and the Canadian Institute for Advanced Research,

Tel.(514)-398-7129, em:peterc@moe.mcrcim.mcgill.edu

Abstract

In [2] we introduced a logic for the study of dynamical control sys-
tems which we called a Conditional Observer and Controller Logic for
finite machines (COCOLOG). In that paper the properties of consistency
and completeness for each first order logical theory in the tree of such
theories in a COCOLOG were established. The efficacy of automatic the-
orem proving is a crucial issue in the implementation of COCOLOG. In
this paper, we present a function evaluation based resolution, called FE-
resolution, for COCOLOG. The unique model property of COCOLOG is
first proved via the complete axiomatization property and then the de-
cidability property of any theory in a COCOLOG is deduced. Finally,
completeness and complexity reduction of FE-resolution is discussed in
terms of relative truthfulness and validity.

Raisonnement AUtomatique
avec Evaluation de Fonction

pour COCOLOG

Résumé

Nous présentons une méthode de démonstration automatique par résolution
pour des svstemes appelés des logiques de I'observabilité et de la controlla-
bilité conditionnelle (COCOLOG) [CW90]. Ces logiques sont créées pour le
controle des systemes dynamiques a entrées sorties. La méthode est basée sur
I’évaluation de fonctions et s’appelle FE-résolution. La propriété d'unicité
des modeles d’un systeme de logique COCOLOG est établie en premier :
ensuite les deux propriétés d’axiomatisation complete et de décidabilité d’un
systeme COCOLOG sont présentées. Pour finir, les problemes de la complé-
tude et de la réduction de la coamplexité de la méthode de FE-résolution sont
approchées en termes de véracité et de validité.

1 Introduction

In [2], we introduced families of first order theories which we called conditional
observer and controller logic and we gave the acronym COCOLOG to any such
a family of theories. This system of theories was created for the purpose of
designing observers and controllers for partially observed input-state-output finite
state machines. A COCOLOG system is given in the form of a family of axiomatic
theories where the transitions between theories are regulated by a meta-level
agent or an oracle function. The realizability of the logic-based control framework
introduced by COCOLOG is based on the assumption that at each clock instant
k, the logical theory T'h(of) can be generated instantly, or at least any theorem
P of the theory T'h(o%) can be generated instantly. This is indeed an idealization,
since the automatic generation of a proof for a given theorem in the propositional
calculus by resolution can be of exponential length as a function of the length
of the theorem statement (see [7]) and the situation is even worse in the first
order semi-decidable case (see [10]). (It is to be stressed that this statement is
specific to resolution proofs. Bibel [1] has shown that the connection method
gives quadratic proofs of the pigeonhole formulas.)

In this paper we discuss techniques which we propose for automatic theorem
proving for COCOLOG which are essentially extensions of the Resolution Principle
introduced by Robinson [14] and the Paramodulation technique for logics with
equality, see [5]. A recent thesis by K. L. Myers ([11]) has proposed and analysed
methods which have some points of contact with ours, and a detailed examination
of the relationship between the various methodologies is merited.

Consider a formula A of a logical theory characterized by a set of axioms
Y. In order to prove A is a theorem by a resolution based automatic theorem
proving procedure, ¥ is first transformed into its clausal form, denoted by AL,
which can be viewed as a conjunction of clauses. By the Deduction Theorem we
have that A is a theorem of ¥ if and only if AL — A is a valid formula, and this
holds if and only if =(AL — A) is unsatisfiable, i.e. ALV —A is unsatisfiable.
The unsatisfiability property has to be verified under all interpretations (see [10]
for a formal definition of interpretation). Herbrand showed that there exists a
special class of interpretations, now called Herbrand interpretations, where a for-
mula is unsatisfiable if and only if it is false in all Herbrand interpretations. The
discovery of Herbrand interpretation made it possible to systematically generate
proofs based on the verifications of all Herbrand interpretations. The complete,
possibly infinite, set of, Herbrand interpretations can be organized in the form

2

-3

of a semantic tree (see [5]), and one version of Herbrand theorem states that a
set of formulae is unsatisfiable if and only a finite closed semantic tree exists,
where a closed semantic tree contains all possible Herbrand interpretations for
that set of formulae (see [5]). There is a direct correspondence between a fi-
nite closed semantic tree and a resolution proof for a theorem. As we pointed
out above, Haken [7] has shown that there is a set of propositional formulae
for which the length of a resolution proof can be exponential, with respect to
the length of the formulae. Furthermore, in the first order case, a search for a
proof of a formula which is not necessarily a theorem can be non-terminating
due to the semi-decidable property of first order logic. This corresponds to the
existence of a possibly infinite number of Herbrand interpretations over which a
verification can be infinite. From the construction of a Herbrand universe and
a Herbrand interpretation (see [5]) we can see that infiniteness of the universe
is inevitable whenever a function symbol is introduced into the formulae. Our
proposed approach is to check the logical descriptions of all functions and then
add the capability of function evaluation to the resolution based proof procedure.
The function evaluation technique will restrict the interpretation of the function,
and hence all unique up to isomorphic interpretations will apply. Therefore the
extended resolution based proof procedure will generate only valid formulae rel-
ative to the functions, or in other words, will verify only the set of unsatisfiable
formulae relative to the functions. Furthermore, this evaluability of functions
actually extends to predicates and this enable us to adapt our proof procedure
to formula evaluation.

It is commonly thought that function definition and evaluation constitute
essential parts of classical, or functional, programming and that the close rela-
tionship between specification and control of data flow makes it impossible for
these two parts to be separated from each other. However, the recent develop-
ment of logic programming suggests the issue of problem solving can be viewed
as a process of logical theorem proving, where, in principle, he programming is
decomposed into logic and control in two orthogonal dimensions, see [8]. The
bridge connecting functional and logical programming is the way one chooses the
representations of functions versus predicates.

In this paper we focus on the issues of completeness and complexity reduction
pertaining to the proposed proof methodologies. We shall not discuss the issue
of choosing representations of functions versus predicates systematically so as to
perform optimally with respect to any criterion. But we should make it clear that
our basic motivation is (as in paramodulation) to decrease the number of axioms

3

in play and hence to increase the efficiency of resolution techniques which depend
exponentially upon the size of the corresponding base clause set. As explained
above, and in detail in Sections 3 and 4, this is bought at the cost of passing
from validity to relative validity with respect to models satisfying the axioms.
However, the models lost in this way are thought to be of no significance.

2 COCOLOG for Finite Machines

As we introduced in [2], a conditional observer and controller logic is a specially
constructed family of first order theories. It is distinguished from other logical
systems in that it consists of a collection (in fact a tree) of theories concerning a
finite machine which are coordinated in a particular fashion The reader is referred
to the discussion in [2, 4]. In this section, we first examine the syntactical
structure of a single theory in 3 COCOLOG. Then we establish the unique model
property for any such a theory in the COCOLOG family. From this unique model
result we can then derive the completeness of the axiomatization and therefore
the decidability of each theory in any given COCOLOG.

2.1 COCOLOG: Syntax and Semantics

A COCOLOG logic system consists of a partially ordered set, or family, of first
order logics. Each of these logics corresponds to a node in the observer tree of
a given finite machine. The family of these individual logic systems constitutes
a logic-based dynamical system which evolves with its environment and updates
its structure as time proceeds.

To be more precise, each of the logics is equipped with the observed input
and output as the data axioms of the corresponding node in the observer tree and
is able to make all logical inference steps based on data axioms. We present this
family of first order logics in terms of axiomatic theories. (For an introduction to
axiomatic systems see [10].) In the theory presented in this chapter, we say that
we let our COCOLOG system run in real time with the observation and control
tasks, meaning that we assume all sound inferences following from a given set of
axioms are available instantaneously before the next clock instant. The issue of
automatic theorem proving will be addressed later in Sections 3 and 4.

In this section, we start with an introduction of the COCOLOG /language
and then we will present the syntax and semantics of the “static” part of the

COCOLOG, i.e., the logic corresponding to the root node in the observation tree.

2.2 COCOLOG Language L

The COCOLOG language consists of a set of symbols S(L) and specified for-
mation rules (or syntax). The concerning subject of COCOLOG language is
the finite machine given as M = (XM, UM, YM &, 7)!, where XM is the set
of states, UM is the set of controls, Y™ is the set of output, ¢ is a state
transition function, ® : XM x UM — XM and 7 is a state output function,
n:XM oYM

We first define S(L) as follows:

S(L) = Aprp\J Fun, | J Varp | Consp | JQuar|) Leog | J{1}.

The component sets of S(L) are defined as follows:

Constant Symbols

Cons;, = {zl, e ,a:N} U{yl, e ,y”} U{ul, e ,u"‘,u"} U{O, 1,--- ,k(N)}.

where k() is the upper bound on time. ?

Variable Symbols

VarL = {z,x',z",---,}U{y,y',y",~--,}U{u,u',u",---,}U{l,l',---,}.

Where the variables are intended to be varying in different sorts or domains,
e.g., variables z,z’, 2", - - - will be interpreted to represent elements in the set of
states X, variables y,y’,-- - will be interpreted to represent elements in the set
of state output Y, and so on.

Function Symbols
Fung = {U(-),Y(-), (), (), +£() =2)}-

1We use superscrip to denote the relevant finite machine, e.g., X denote the set of states
of machine M.

2k(N) is taken to be an arbitrary large number, for example | X| or |X|? since as we can
see from the results presented in [3] that an initial or current state observer dag can have at
most | X| or | X|? non-singleton layers before it split into singleton nodes.

5

where the sort of each function symbol is defined as the follows:

U(a): ais a symbol either in {u!,--- u™ u*} orin {u,v,---,}.

Y(a): a is a symbol eitherin {y,---,y*} orin {y,¥,- -, }.

®(a,b): ais a symbol either in {z!,---,zN} orin {z,z,---,}; and bis a
symbol either in {u!,---,u™ u*} orin {u,u’,---,}.

7(a): a is a symbol either in {ml,---,mN} orin {z,z',---,}.

+1(a,b) and —(a, b): a,baresymbols eitherin {1,2,---,}orin {I,l,---,}.

Terms

(i) Each constant and variable symbol is a term, i.e., Consy U Vary C Termy,
(i) Iftis aterm and f is a function symbol then f(t) is a term
(i) Termy, are constructed only by steps (i) and (ii) above.

Atomic Predicate Symbols
Apry, = {Eq(-,-), RbI(-,-,")}.

Quantifiers

QuaL = {V}
Logic Connectives
Leog = {—»}

2.3 Syntax of COCOLOG L

Any well formed formula of L is given by the Backus-Naur syntactic rule, see

[6]:

A == oty - ta) | Ay = A2 | L |VVA ; where @(t,---,t,) € Aprr
ty,++,ty € Term

and the set of such formulas will be denoted Fmay.

The other logical connectives (—~,V, A, ——) and quantifier (3) are defined
as follows where (and) are used wherever the meaning of the formula can be

made clearer:

A 1= A= L
AlAA = (A — A)
Al — A2 "= (Al — Ag) A (Az — Al)
A1VA, = -A - A

A = -(Vv-A).

We observe that, as introduced here, L is a multi-sort language, where vari-
ables may vary within different domains. This complication can easily be removed
by using a sort predicate for each variable, and by replacing each quantified for-
mula via the following equivalence operation:

VzA(z) = Vr(X(z) — A(2)),
Iz A(z) = (X (z) — A(z)),

where X(z) is the sort predicate for variable z, indicating the membership relation
of z € X. This rewriting will allow variables to vary freely within a single domain
and hence we get a single-sort language. In the rest of the paper, we will not
distinguish between a formula and its rewritten version for reasons of simplicity.

2.4 Semantics of COCOLOG L

A L-structure Uy, = (D, I) is a pair, where D = XUYUUU 'k(N3) is the domain
of interest and I is an interpretation function defined as follows °:
I®) = ¢:XxU—-X
I@ = n: XY
I(+1) = Hrwvy: Ly X Iy = Iny
I(-1) = —kw) by X legny — k)
I(c) = ceD
I(Eq) = {(t.t)|t,¥ eD,t=t}CD?

I(Rbl) = {(x,x,k)|3uf € U*,0(x,uf) = x'} C X* x Iyn)

3We distinguish symbols used in COCOLOG language and in the base finite machine M
by the convention that bold face letters denote constant and variable symbols in the base
finite machine. COCOLOG function symbols will be denoted by a bar over the corresponding
function symbols in the base machine.

Where the addition, +(n), and subtraction, —(n), over finite integers {1,2, - - k(N)
+1} are defined by the following expressions:*

4ot b = a+b if a+b < k(N)
ATHM D=1 K(N)+1 ifa+b>k(N)

a_ bed - b fa—-b>1
KMEZ 1 k(N)+1 fa-b<1
i hese finite integer arithmetical operations are necessary to express control

properties in terms of integer number of steps.
A /{;-valuation is a function V : Vary — D satisfying

X fv==z
Y fo=y
Viv) € U fv=u
lk(N) fv=k
and can be extended to V : Term; — D by
V(t) Ift € VGTL
V(t) =4 I(t) if t € Consy,
V{8, V(L) it = f(ts,tr) and f € Fung

We take V ~, V'’ to mean that V and V"’ are identical except in the value
they assign to v and

V/x)=V' if V~,V' and V'(v)=x
The satisfaction relation U, = A[V], which stands for the property that a

formula A satisfies a structure Uy, under the valuation V, is defined recursively
by:

U, Eqt,O)V] i V()= V),

U, = Rbl(z,2', k)[V] iff (V(z),V(z'),V(k)) € I(RbI),

U, = (AL— A)V] i Us = AV] implies Uy | AsV],

U, = LI[v]

U, = YvA[V] iff forall x € D, it is the case that UL = A[V(v/x)].

*Here we follow the convention that 4+ and —p are used in logic language to denote
addition and subtraction function symbols; +4(n) and —i(n) denote the function symbols in
the finite machine or in the semantic model; + and — denote the standard integer arithmetical
operations.

A formula A is true, written Uy |= A, in the structure Uy, is defined by:

U= A iff forall V, it is the case that U = A[V];

conversely, A is false, written Uy, [~ A, is defined by:

UL A Iff forall V, it is the case that Uy, [A[V]

A formula A is called valid if it is true in all structuresfy, i.e., Ais valid if and
only if forall Uy, UL, |= A. Aformula Ais satisfiable if there exists some structure
Uy, and some Uy, valuation V such that the satisfaction relation U/, |= A[V] holds.
Obviously a formula A is valid if and only if ~A is unsatisfiable.

2.5 Axiomatic Theory of Thg

A formal logic theory of a language L consists of a set of axioms, that is to say
a set of formulas from Fmag, which shall be required to hold in the intended
models and a set of relations on Fmay, i.e. which are called the set of inference
rules, together with concepts of a proof and theoremhood.

There are two sets of axioms in T hg, one is the logical axioms which are a
set of valid formulas (i.e., true in all models) which together with the rules of
inference generate all valid formulas; the other is a set of special axioms which
specify the true facts concerning the subject that logic describes. Correspondingly
Th(of) is a logical theory that has the input and output data as data axioms
added to the logical theory T hy.

We include logical axioms and equality axioms in Thq, for more details of
these axioms see [10}.

The special axioms for a given finite machine M are described as follows:
FINITE MACHINE AXIOMS

For any pair of constants xi,xi € XM u' € UM, if xi = O(xi, u) is satisfied
by the given finite machine M then we have the following dynamic axiom:

Eq(®(z*, u'), z7) AXMY™(L)

The dynamic axioms state the facts specifying the state transition function
of the given finite machine M. We note that the number of dynamic axioms is
equal to | XM||UM|.

For any pair of constants x' € XM, y' € YM satisfying the relation n(xi) =
y', we have the following output axiom:

Eq(7("),¥") AXM°*(L)

The output axioms state the facts specifying output function of M. The
number of output axioms is equal to [XM].

The finite machine axioms given above correspond to an infinite number of
models. We get a unique model (up to name change isomorphism) when we
further make the specifications of | X| = N,|Y| = p and |U| = m in terms of
axioms. Moreover, we also need to specify addition and subtraction functions
for the finite domain {1,2,---,k(N) + 1} of integers.

REACHABILITY AXIOMS
We recursively define the reachability predicate Rbl(-,-,-) by the following
axioms:

0. VaVz',E¢(z,z') «— Rbl(z,z',0)
1. VzVz/,(Ju, Eq(®(z,u), z')) «— Rbl(z,z',1)

2. VzVz'VI, Eq(L, k(N))VEg(L, k(N H1)V[{3z'3u, Rbl(:c z", £)AEq(®(z, u?
- Rbl(a: ", 0+.1)] AXMRel(L)

3. VaVa', R(z, 2’ k(N) + 1).

z')}

The reachability axioms specify the ! step reachability relation Rbl(z,z’,1)
among any pair of states z,z’. We note that in these formulas the variables
z,z',z" range over X, the variable u ranges over U and [ranges over the
integers 0,1,--- k(N) 4+ 1. Formally Axiom 3 make all states reachable from
each other in k(/N) + 1 steps, i.e. in the number of steps that plays the rle
of infinity in our arithmetic, while Axiom 2 excludes consideration of the infinity
case in order to characterize reachability on the finite numbers in the arithmetic.
Rules of Inference:

R1. MODUS PONENS

A A B

B : where A,B € Fmag

10

R2. GENERALIZATION

A
Vv A

We write AX M*P¢(L) to denote the set of special axioms of L, i.e., AXM*?¢(L) =
{AX M@ (L), AXM* (L), AXM™(L)}. We sometimes use ¥ to denote AX M**¢(L)
for simplicity.

A proof in L is a sequence of formulas Ay, ---, Ay in Fmar where A; is
either an axiom or a direct consequence of previous formulas via R1 or R2. The
last formula A; in the sequence is called a theorem and Ay, ---, A;_; is a proof
of theorem A;

A formula A is a theorem of a first order theory with equality, written 1 A,
if in a proof of A only logical axioms and equality axioms have been involved. On
the other hand, A is called a consequence (or theorem) of L, written L - A,
if in a proof of A axioms in L may also have been involved.

For brevity we write Thq for T'ho(L) which stands for the set of theorems of
T, hence we have Thg = {A : L I A} and we shall use the standard notation
Tho - A which is customarily read as A is a theorem of or provable (derivable
) in the theory T ho.

A structure Uy, of theory Thy is called a model of the theory if and only if
all the axioms of Thg are interpreted true in Uf.

. where v € Varg,

2.6 Observation Dependent COCOLOGs: Th(of)

Corresponding to a path in an observation tree, the family of these logics are gen-
erated by receiving the observation sequence of = {(¢,y1), (u1,¥2),- - -, (vr-1,9x)}
These sequence of logical theories Th(o;), Th(0?), - -, Th(of). are observation
dependent, we call them observation dependent COCOLOGs.

2.6.1 COCOLOG Language L(of) and Syntax

The language L(of) is extended from the language L by adding new atomic
predicates defined as follows:

S(L(o%)) = S(L) 0 Apr;, where Apr; = {eCSEJ-(-)}.

i=1

11

We define Fmar, = Fmay. The set of well formed formulae Frap . is then
defined by: A := ¢, | B| A" — A" | YvA' where B € FmaL(of_a), Yk € Apry
and A, A" € Fmap .

Again the properties true and false for a formula and the concept of a model
for a theory T'h(o}) are defined in the sense of Tarski model semantics.

2.6.2 Axiomatic Theory of Th(o%)

We assume that at each instant k, the observer will observe u(k — 1) and y(k),
and for each u' and y* such that u* = u(k — 1) and y* = y(k), the following
formulae written as observation axioms will be used to form the axiomatic theory
Th(o%) of L(o}).
OBSERVATION AXIOMS

Eq(Y(k),y") AXM°"(ab, L(0}))
Eq(U(k - 1),4") AXM"(ob, L(o%))
STATE ESTIMATION AXIOMS

The following is the general form of a set of Axioms of Conditional State Esti-
mation, where C;(-,) is a conditional formula expressible in terms of Fmagx1,

and AX M°“'(ob, L(of)).
Ci(Fmay o Eq(Y(£),3)) — eCSE(s) AXM®(ob, L(o))

RE—

C’N(FmaL(o:-x),Eq(Y(k),y)) — eCSEk(mN).

Here we denote by I{ the set of axioms ¥ (Jf_, { AX M°¥(0b, L(0])), AX M
(0b,L(0%)), AX M®(0b, L(0}), +), AX M=**(0b, L(0}),—)}. We define an Ob-
servation Theory Th°(of) of L{ at the instant k by Tho(of) = {A: X2+, A}
Next we consider a control theory at the instant k.

CONTROL AXIOMS

The following is the general form of a set of Control Axioms, where C;(-) is

a conditional formula expressible in terms of Fmap .

Ci(Fmayy) — Eq(U(k),u') AXM?*(cntl, L(o¥))

(API=C)ACri — Eq(U(K),u™).

12

Th' (oy)

Th"(of™")

Figure 1: The Tree Structure of a COCOLOG Family

2.7 Extra-Logical Transitions Between Logical Theories

A realization of a COCOLOG is a sequence of first order theories generated by a
given sequence of observations. It corresponds to a path in the COCOLOG tree
structure (see Figure 1).

the true formulas in the nodes of this tree can be captured by a possible world
interpretation of a modal logic, see [6]. Instead of modal logic, we use a family
of classical first order logics to codify the state observation and control problem
since we believe a modal logic representation would be too restrictive. The word
restrictive is used in the following two senses: First, it can easily represent a static
world. In other words, a modal logic cannot handle unknowns or the changes in
the dynamics or the environment of the system and this prohibit the use of the
logic for real time control tasks. Second, it is not necessary to code all the paths
of an observation tree into a logic since a physical system cannot realize all such
possibilities. Therefore the extra coding of modal logic system will simply further
delay its response time. For more discussion on this see [4].

In order for the family of logics in a COCOLOG to work coherently, certain
requirements have to be met. These requirements can be viewed as requirements

13

on the transitions between logical theories which cannot be represented in these
theories themselves. Hence the extra-logical feature of the transitions must be
described at a meta-level. In the following, we represent the meta-level require-
ment as meta-level axioms and the meta-level properties as meta-level rules of
inference.

Meta-level axioms will be used to describe the assumption that there are no
errors on the observation channel and the control actions sent from the logic
controller will be implemented instantly and correctly. Hence there will not exist
any conflict between observation and control axioms and reality.

We write T3¢ as L3 U5, { AX M2**(cntl, L(of))} and define an Observation
and Control Theory Tho*(of) of L3 as Tho(of) = {A: Ly° F1 A}. From
this definition we deduce the following rule of inference to connect theories at
different instants along a trajectory of observations and control actions for a
finite machine.

NESTING OF THEORIES (Meta-Level Rule of Inference)

A € Tho(of) implies A € Tho(of), A € Th>(of) implies A € Tho(o}),
for any k' > k.

The sequence of theories satisfying the following condition

- S Th(}) € Th**(e}) C Th (o) C ---

We see that this sequence of COCOLOGs combined with the meta-level require-
ments constitute a closed loop feedback logical control system as displayed in
Figure 2

Next we show that each theory in a COCOLOG family as introduced in [2] can
be extended to a theory that corresponds to a unique model up to isomorphism.

Here we take Thy as an example and we shall first review the axiomatic theory
T hy.

2.8 Unique Model Property

Now by giving the machine axioms as before there can be infinitely many different
models. For example, any finite or infinite machine M’ = (XM', UM' YM' ¢/ »')
satisfying XM C XM' UM Cc UM, YM C YM' and such that ' and 5’ are
compatible with & and 5 up to XM Y™ and UM, can be a model of the given
machine axioms. Hence the machine axioms alone cannot uniquely characterize

14

u, R)=d" (G
k g‘ M=(X,U,Y,®on)) World of
Mathematical
Modeis
S N Interface Batween Plant and Loglc Controller |........
X A Loglc World
Eq(ug , u™ /m Eq(x .y')
™, A Eq(u,, , vi)
Th Rogul:gfe
System

Figure 2: A Closed Loop Logic Control System

a given finite machine. In fact, one cannot determine a unique model by any
given set of axioms. The most one can achieve by axiomatization is a set of
equivalent models up to isomorphism. Hence the uniqueness will be used in this
sense only.

The Size Axiom of X

X$. —Eq(z!,2?) A ~Eg(z', %) A Eq(z},2*) A dots A ~Eq(z*,zV)
A—=Eq(z?,) A —~Eq(z*,z*) A --- A =Eq(2?,zV)
A-Eq(z3,z*) A -+ A =Eq(a3,zN)

A-Eq(z""1,z")

X3 specify the fact that there are at least N distinct constant symbols in
the state space XM of the finite machine M, i.e., | XM| > N.
Next we specify the fact there are at most N elements in the intended model

-rX,\'*,‘+1 . Vz (Vfil Eq(z, z‘)).

By adding X#' and ~ X4, to the originally proposed machine axioms the
only models one can get will be the models that have exactly N distinct states.

15

That is the set of N-state machines in which ® and 7 are given as specified.
Further, if we add restrictions on the size of UM and Y™ we get a unique model
for M.

In the following we denote M and M’ as finite machines and we also use
them to denote the sets of elements in each machineas M = XM yuvMyyvy™
and M' = XM yUM yy™

Definition 2.1 (Homomorphism) If M and M’ are two finite machines, then
a map h from M to M’ is called a homomorphism if

h(®(x,u)) = @'(h(x),h(u))
h(n(x)) = n'(h(x))
h(+xmy(LF)) = +iwy(R(1), A(I'))
h(—xm(LV)) = —kan(R(D), h(V))

a

Next we show the unique model property of the theory Thy when together
with the size axioms of XM, UM and YM. Let us first denote AzmM as the
machine axioms for the given finite machine M and with

Yy = Aem™{JX¥U-XN.1
UUyUﬂUrII‘;{H
UvYU-Yi

for the set of axioms for the finite machine M at the instant zero.

Theorem 2.1 (Unique Model Property) If LS, is defined as above, then LY,

has a unique model up to isomorphism. O

Proof

We begin by establishing the existence of a homomorphic mapping for any
given pair of models of £%,. This shows there is unique pre-interpretation for LY,,
that is to say there is a homomorphism between all elements of any two models of
the given theory excepting possibly the interpretations of the predicates, see [9].

16

Now consider any two models M and M’ where M = (XM YM UM ¢ 1)
and M’ = (XM YM UM ¢ 7). By the size axioms we have |XM| =
|IXM| = N, [YM| = |[YM| = p and |[UM] = |UM'| = m. Then by the
machine axioms we have ® : XM x UM — XM and @/ : XM' x UM - xM'.
7: XM > YMand g : XM x UM — XM Now an one-to-one and onto
mapping h : M — M/ can be defined, where M here is also taken as the union
of XM, UM and YM and M’ is also taken as the union of XM, UM’ and YM'.

Let L denote the set of symbols of logical theory for a finite machine, I :
L —- M and I' : L — M’ be the interpretation functions correspond to the
model M and M’ respectively. Construct a mapping h : M — M’ such that
the following relation is satisfied:

h(m) = I'(I"}(m)) for any m € M

The relations among the set of L, M, M’ and the mappings of I,I’ and h

are shown as follows:
/ \
h

M M’

We need to show that A is a bijective mapping. This property is guaranteed
by the bijective mappings of I and I'.

First, onto can be shown by taking any m’ € M’, then we have I'"1(m’) = |
for some [€ L and I(l) = m for some m € M. We can show that this m is
the preimage of the m’ under h.

Wm) = I'(I7(m))
= IIaEe)
I{=(m)

ml

Second, the one-to-one property can be shown by taking any m;,m; € M,
assume that

h(m,) = h(m,) but my # m,

17

The following arguments will produce a contradiction as desired:

h(my) = h(my) i I'(I7'(my)) = I'(I7Y(m,y))

iff m3 = myp
This shows that the mapping h as constructed is a bijective mapping.

Now if we denote h(m) = m' for any m € M and m’ € M’ and take
any formula Eqg(®(z*,u'),z’) from the language L. Interpretation I will map

this formula to ®(I(z*), I(u')) = I(z?) which is ®(xl,ul,) = xby and the
interpretation I' will map the formula to ®'(I'(z*), I'(u')) = I'(x?) which is
¢'(xi,ul,) = ®,. Now since h(m) = I'(I-}(m)) we have the following
relationship between the two models:
o(xt ,ul Y=x iff &'(xl,,ul,)= x,
N(Xim) = Yin i 7'(X) = Vi
+"(N)(|m)|:n) = l::l’ iff +;¢(N)('m”|:n') = 'Z-'
—k(N)(lm,l:“) = :.:‘/ lff —'k(N)(|m',l:“l) = l:;‘l
From this it follows immediately that the mapping h so defined is a homo-

morphism, i.e., h satisfies the following relationships:

h(®(x,u)) = &'(h(x'), h(u'))
R(n(x)) = o'(h(x))
B+umh 1) = +igw (1), k(1))
B(—in(LV)) = —hmy(R(1), (1))

We conclude that I, has a unique pre-interpretation up to isomorphism.
Next,it is evident that the equality predicate has a unique interpretation on the
elements of the pre-interpretation. And finally, an examination of the recursive
nature of the reachability axioms AXM""(L) reveals that there is a unique rela-
tion on the elements of the (proven unique) pre-interpretation that will satisfy the
reachability axioms. It follows that up to isomorhism L%, has a unige model,as
required.

g

Definition 2.2 (Proper Formula) A formula P is a proper formula with re-
spect to a set of formula I" if P contain neither any predicate symbols nor function
symbols which do not appear in any formulas in [’]

18

Definition 2.3 (Complete Axiomatization) A set of formulas I is said to be
complete if either P or ~P is a logical consequence of [for any proper formula
P with respect to I']

It is known result that if a set of axioms has an unique model then that set
of axioms is complete. We state this in the following theorem.

Theorem 2.2 (Complete Axiomatization) Let I, be defined as above as a

set of axioms of a given finite machine M, then L3, is a complete axiomatization
of M. o

Now from the theorem stated above we can oderive an important result on f
as follows.
Proof

To prove that IS, is a complete axiomatization of M, we need to show that
for any formula A € L either £, F A or £, F = A is true. We know X%, is
consitent since the existence of the models for £3,. By Lindenbau’s lemma, see
[10] if £S, is consistent first order theory, then there is a consistent complete
extension of L9,. But since we know L9, has a unique model, see Theorem 2.1,
this implies the complete extension of £, is £, and henc e L9, is complete
since otherwise I}, cannot have unique model. a

Theorem 2.3 (Decidable Theoremhood) The axiomatic theory as generated
by L9, for any given finite machine M is decidable.

Proof
By the generalized completeness of first order logic in general and COCOLOG
in particular, see the previous sections we know that for any formula P, P is
provable if P is a consequence of LS,. Now for any formula P we start a
search for all possible proofs for both P and =P. One of these two searches will
terminate since £, is a complete axiomatization, i.e., either P or =P will be a
consequence of £9,. Thus we can conclude that the axiomatic theory generated
by L%, is decidable.
O
These results can be generalized to any theory Th(of) in a COCOLOG family.

19

3 Resolution Proofs of COCOLOG Theorems

The Resolution Principle introduced by Robinson see [14] has been widely used
in mechanical theorem proving. In this section we discuss a mechanical the-
orem proving method for COCOLOG theorems in terms of a resolution based
procedure. The extension of the resolution technique called paramodulation for
logic with equality will be introduced since, in a COCOLOG theory, the equality
predicate is one of the atomic predicates used for expressing the machine axioms.

Consider the machine axioms in a COOCLOG theory as described in the last
section. They are given by the equality predicate E¢(-,-). To prove a theorem in
which the equality predicate is involved, a direct approach is to introduce extra
axioms to describe the equality relations in the logical theory. An alternative to
this, which is often more efficient, can be achieved by introducing extra inference
rules.

We first examine how to describe an equality relation. We know that an
equality is an equivalence relation and furthermore one can substitute an equal
for an equal, i.e., identity substitution. For more discussion of this see [10, 5].
The truth for an equality predicate of a set of clause S can be axiomatized as
follows denoted as K-(S5).

Equality Axiom Schemata

Eq(z,z)

Eq(z,y) — Eq(y,)

Eq(z,y) A Eq(y,z) — Eq(z,2)

Eq(z,y) — Eq(f(z), f(v)) for each function symbol f in S
Eq(z,y) — (P(z) — P(v)) for each predicate symbol P in S

For a resolution based theorem proving procedure, these extra number of
axioms will certainly reduce the speed of a search or increase the size of the
search space. Since the number of attempted unifications during the search of
a resolution proof is often an exponential function of the number of the input
axioms. The increase of the search space is generally an exponential function
against the increase of the number of input axioms. The number of equality
axioms is a linear or at most a polynomial function of the number of function
and predicate symbols. To avoid such a dramatic increase in the size of the
search space for resolution proofs, Robinson and Wos [13] proposed a generalized
resolution principle called paramodulation using reference rules in addition to the

20

resolution principle. In the following we will examine this generalized resolution
proof.

The key concepts for the formulation of the paramodulation technique are
(1) equality interpretations, called E-interpretations, and (2) the notion of un-
satisfiability in the class of equality models, called E-unsatisfiability. These are
formally defined as follows in terms of Herbrand interpretations. Formal defini-
tions of Herbrand universes and Herbrand interpretations can be found in any
standard logic textbook, and for their use in mechanical theorem proving we refer
the reader to see [5]. A Herbrand universe of a set of clauses S consists of the
minimum set of symbols relevant to S: the elements of a Herbrand universe of a
set of clauses S are the set of possible ground terms generated from those clauses
using iterations of all function symbols that occur in S. A Herbrand interpreta-
tion is an interpretation based on a Herbrand universe: a Herbrand interpretation
consists of a set of ground predicates, i.e., the predicates with terms being re-
placed by elements in the Herbrand universe. A ground predicate in a Herbrand
interpretation is interpreted as true in that interpretation. Hence a Herbrand
interpretation will contain either P or P where P is any ground predicate. As
we stated earlier, it has been shown that a set of clauses is unsatisfiable if and
only if it is unsatisfiable under all Herbrand interpretations. Now let us define an
E-interpretation.

Definition 3.1 An E-interpretation of a set of clauses S is a Herbrand interpre-
tation I satisfies the following conditions.

Eq(z,z) el
Eq(z,y) € I then Eq(y,z) € I

Eq(z,y), Eq(y,z) € I then Eq(z,2) € I
Eq(z,y) € I,L{z) € I then L[y] € I

> w b

where ,y,z are elements in the Herbrand universe of S and L is an atomic
predicate or a negation of an atomic predicate i.e., a literal in I. o

Definition 3.2 A set of clause S is called E-satisfiable if there is an E-interpretation
that satisfies all the clauses in S. Otherwise S is called E-unsatisfiable. O

An E-interpretation is an interpretation that satisfies equality axioms, i.e.
which is a model of an equality theory. Next we give a theorem that states
E-interpretations indeed characterize the equality axioms.

21

Theorem 3.1 ([5]) Let S be a set of clauses and K=(S) be the equality axioms
of S. Then S is E-unsatisfiable if and only if the set of S|J K-(S) is unsatisfiable
]

Furthermore, if S is a finite set then we have the following result.

Theorem 3.2 ([5]) A finite set S of clauses is E-unsatisfiable if and only if there

is a finite set S’ of ground instances of clauses in .S such that S’ is unsatisfiable.
a

Next we introduce a new inference rule, paramodulation, in addition to the
resolution principle, and then state the result that by using both resolution and
paramodulation, we can deduce the empty clause O from an E-unsatisfiable set
of clauses. That is the combination of paramodulation and resolution is complete
for E-unsatisfiable set of clauses.

Definition 3.3 (Paramodulation) Let C, and C; be two clauses with no vari-
ables in common. If Cy, = L[t]UC] and C; = Eq(r,s)UUC3, where Lit] is a
literal containing the term ¢ and C; and C are clauses, and if ¢ and r have a
most general unifier o, then infer

La[so]| JCio | Cio

where Lo[sco] denotes the result obtained by replacing single occurrence of to in
Lo by so. The above inferred clause is called a binary paramodulant of C, and
C,. We also say that we apply paramodulation from C; into C;. @]

Next consider the machine axioms in a COCOLOG theory. They are expressed
in terms of equality predicate, state transition function and output function. Like
the equality predicate these functions can also be expressed either by extra axioms
or they can be embedded into a set of new inference rules hence increasing the
efficiency of the proof procedure. The inference rules corresponding to these
functions will be designed so that they will imply the empty clause O from any
set of clauses which are unsatisfiable in any of the models of the given finite
machine M. We will call such models M-unsatisfiable.

22

4 FE-Resolution in a COCOLOG Theory

Taking our inspiration from the concepts of E-interpretation, E-satisfiability and
paramodulation for equality predicates, we propose similar concepts for functions
in a COCOLOG theory. The results derived in this section can be generalized to
extend to other logical theories. The key idea here is to restrict the size of the
Herbrand universe of a given set of clauses. Recall that a Herbrand universe of
a set of clauses S is a minimum set of ground terms of S. The minimality is
defined in the sense that for any interpretation I, of S, there exists a Herbrand
interpretation I} of S from defined Herbrand universe such that a clause C € S
is true in I, then C is true in I;. Therefore S is unsatisfiable if and only if S
is false in all Herbrand interpretations. The point is that a Herbrand universe
is designed so that one can construct Herbrand interpretations within which the
validity of a formula can be verified. In fact what we want to characterize here
is a concept of relative validity with respect to the given finite machine. To be
more precise, we want to define a pseudo-Herbrand universe from which we can
construct interpretations and verify the validity of a formula with respect to the
finite machine. Relative validity means that a formula is interpreted as true in
any model of the given finite machine. These are semantical constructions. The
corresponding syntactical counterpart will be called FE-resolution. The idea is to
add a function evaluation ability to the resolution principle and paramodulation.
The syntax and the semantics will be connected by a completeness result for
FE-resolution. FE-resolution can then be extended to the predicates in EA,,
and the set of evaluable atomic predicates at the predicate level (and therefore
evaluable valid formulas with respect to the models of the given finite machine)
can then be eliminated at the formula level.

Definition 4.1 (M-Universe) Given a finite machine M = (XM UM YM o, 7)
and a set of clauses S, an M-universe is defined as the union of the following

sets:

Mo = {a:aisa constantin S},
M, = {¢(axa au)’ T)(“z), +k(N)(al’ a'I)’ —_k(N)(aI’ a'I) :
a: € Mo[1 XM a, € Mo[YUM, and ar,a7 € Mo[) I{()}

Mk+1 = {¢(am au)3 7](0.1:), +I¢(N)(a1a all)a _k(N)(ah a’I) : .

23

a; € My ﬂ’XMu € MkﬂUM, and aj,a} € MkﬂI,:‘("N)}
Thus an M-universe is defined as

p UM i Mok
XMUUMUYM incase Mo=¢

Obviously M C XM JUMUY™M holds. 0

Now we say a set A is an atom set (or a M Base) of S if A consists of only
ground atoms occurring in S where terms are elements of an M-universe of S.

We define an interpretation on an M-universe of S as a pseudo-Herbrand
interpretation where Herbrand universe being replaced by an M-universe. To be
more specific, Let A = {A;, Aj,---, A,, -} be the E atom set of S, then

I= {mlamZ""ymm'”}'

is an interpretation if m; is either A; or ~A;. An E-interpretation over an M-
universe will be defined as given in Definition 3.1, where the Herbrand Universe
is replaced by the M-universe. Next we define an M-interpretation:

Definition 4.2 (M-Interpretation) Given a set of clauses S and a finite ma-
chine M, an M-interpretation is an E-interpretation which in addition satisfies
the following conditions.

1. Eq(®(a,b),d') el if ®(a,b) =a’
2. Bya(a)c) I if ()=
Forany a,a’ € XM, be UM and c € YV, m)

In fact an M-interpretation is an pseudo-Herbrand interpretation where all
machine axioms will be interpreted true and Eq(-,-) is interpreted as the identity
relation. A set of clauses S is said to be satisfiable in an interpretation I, denoted
by I |=, S, if and only if for any clause C in S there exists some ground clause
C' of C such that C’ is interpreted true in I. Truthfulness of first order formulas
is then defined by use of the standard Tarski semantics (see e.g. [10]). Next we
define M-valid and M-unsatisfiability.

24

Definition 4.3 (M-Relative Validity) A formula A is said to be M-relative
valid, or M-valid if A is interpreted true in every M-interpretation, i.e. for each
M-interpretation Ips we have Iy = A. o

Correspondingly we have: |

Definition 4.4 (M-Relative Unsatisfiability) A formula A is said to be M-
relative unsatisfiable, or M-unsatisfiable if A is interpreted false in every M-
interpretation, i.e. for each M-interpretation Ips we have Iy |~ A. a

Obviously we have that A is M-relatively valid if and only if =4 is M-relatively
unsatisfiable. Next we show that an M-interpretation characterizes the class of
models for the given finite machine M defined by the set of axioms L},. But
before we do so, we first give two Lemmas. It is a known result that if a set
of clauses S is satisfiable in an interpretation I then S is also satisfiable in any
Herbrand interpretation I* corresponding to I. (see Lemma 4.1 in [5]). Now
we extend this result from Herbrand interpretations to E-interpretations and M-
interpretations respectively.

Lemma 4.1 Let K_(S) be the equality axioms for a set of clauses S, then any
Herbrand interpretation I* satisfies K-(S) implies I* is also an E-interpretation.
a

Proof. By the converse of Theorem 3.2, I* |= K_(S) implies that for any axiom
A € K_(S), each ground instance A’ of A is such that I* = A’. But since each
axiom in K_(S) is assumed to be quantified universally it follows that any ground
instance A’ of any axiom A in K_(S) is satisfied by I*. Therefore I* meets all
the conditions for an E-interpretation and so I* is also an E-interpretation. O

Lemma 4.2 Let L,(S) be the machine axioms for a set of clauses S, then any
E-interpretation I satisfying L3,(S) is also an M-interpretation.]

Proof. The proof is similar to that of the previous Lemma. Ig = L%,(S) implies
that for any axiom A € L%,(S) there exists a ground instance A’ of A such that
Ig | A'. Since each axiom A in L9,(S) is universally quantified it follows the
Ig = A. This implies Ig = A’ for any ground instance A’ of A in £%,(S) and
hence all the conditions for Ig to be an M-interpretation are met. We conclude
that Ig is an M-interpretation. a

25

Theorem 4.1 Let S be a set of clauses, £3,(S) and K_(S) as the set of
machine axioms and equality axioms respectively. Then S is M-unsatisfiable
if and only if SULY, U K-(S) is unsatisfiable. |

Proof. Suppose S is M-unsatisfiable but SUZI%(S)UK=(S) is satisfiable.
The latter implies that '

1k SUZU(S) U K(5)
This is equivalent to
It Sand I | X3(S)and I = K-(s)
This implies for any Herbrand interpretation I* corresponding to I we have

I't= S and I" | E5,(S) and I* k= K-(S)

By Lemma 4.1 we have

Ig = S and Ig = £54(5)

By Lemma 4.2 we known that S is satisfied by an M-interpretation, that is to
say Ipq |= S, which contradicts the fact that S is M-unsatisfiable and hence the
result is proved.

The other direction of the proof is simple. Suppose SUZLS,(S)UK=(S) is
unsatisfiable but S is M-satisfiable. The latter statement implies there is an M-
interpretation In = S. Clearly we have Iy = £9,(S) and In | K-(S) since
Ipm is also an E-interpretation. Therefore we have Iy = SULS,(S)UK=(S)
which contradicts to the assumption that SJZ%,(S)U K=(S5) is unsatisfiable.
This completes the proof. a

In the following we denote f(z,,---,z,) as a n-ary function with n vari-
ables z,,z, -, z4,and b = f(ay,- -+, a,) shall denote function f evaluated at
constant a;,---,a, is b. Now we define rules for function evaluation based res-
olution, also called FE-resolution. Then we shall show that these rules combined
with rules of standard resolution and paramodulation are complete. In particular,
an empty clause will be generated from a set of M-unsatisfiable set of clause by
applying these extended resolution. Function evaluation can be done either at
the constant level or at the variable level, i.e., f can be partially evaluated at a,,
a,, etc, to give the function f(ay, - +,am-1,Zm, " +,2n). Thus FE-resolution
should also be defined for constant and variable cases respectively.

26

Definition 4.5 (Constant FE-Resolution) Let C) be a clause which is in the
form C; = L[f(ay,--+,as)] V C}, where L|f] is a literal containing the function
symbol f in its ground form f(ay,:-+,ans), C] is a subclause of Cy, then infer

C=L[HVvC,

where b = f(a1,---,a,). The inferred clause C is called a constant FE-
resolvent of C;. O

Applying constant FE-resolution will result in the generation of all equivalent
clauses to those which contain ground terms but not ground function terms.
Now constant FE-resolution can be extended to variable FE-resolution:

Definition 4.6 (Variable FE-Resolution) Let C; be a clause which is in the
form

Cl = L[f(alv Ak, Thyly 5y Ty Y1yt 0t ayl)]VC{(zH»l’ oy Ty Tngly xn-f-m)

where L[f] is a literal containing the function symbol f which is in a semi-ground
form, f(ar, -+, @k, Tk+1," " *yTny Y1, -+, Y1), C} is a subclause of C, and Cj has
shared variables zi41, -, Tnym wWith L[f]. f b= f(a1,a2,---,an,¢1, -+, q) for
any constants Gr41, Gk42,°** 5 Qn, C1,°° *, €, We may then infer

C = Lo[b) v Cio

where 0 = {Zi41/ak+1, The2/Ak42, *, Tnfan, Y1 /1, + -, i/ 1} is a substitution.
Therefore the above formula is equivalent to the following:

C = Lo[b] V Ci(ak+1, "y Gny Tng1y " * y Tnm)
The inferred clause C is called a variable FE-resolvent of C,. O

A variable FE-resolution will generate a ground instance of the function and
then a semi-ground instance of the original clause will be logically implied by the
original clause. Finally we state the completeness result in the following theorem.

Theorem 4.2 (Completeness of FE-Resolution) FE-resolution together with
paramodulation and resolution are complete, i.e., an empty clause O will be de-
rived by using the standard resolution, paramodulation and FE-resolutions from
a given set of clauses S, if S is M-unsatisfiable. o

27

Proof

By Theorem 4.1 we know that S is M-unsatisfiable if and only if S U K=(S)UZL%,(S)
is unsatisfiable. By Theorem 3.2 SUK-(S)UZ%(S) is unsatisfiable if and
only if SUX%4(S) is E-unsatisfiable. Furthermore, by the completeness of the
paramodulation we have SUZIS4(S) Fo,, O and therefore there exits a deduc-
tion of resolution and paramodulation of the empty O clause from S|J X9,(S),
denoted by D[SUIS,(S) F,,, O]

Now we need to show S *‘a,, 0O, that is, O is deducible from S by using
the deduction rules from ;.. It is enough to show the existence of a deduction
D[S +,,, O]. It will be seen that this deduction can be obtained directly from
the existing deduction, D[S UZ%4(S) Fo,, O] and that the changes of the base
clause set from SUX%,(S) to S will be compensated for by the additional
syntactic inference rules of function evaluations.

According to our earlier definition, £$,(.S) consists of two set of clauses which
specify: (1) functions, i.e., in the form of ®(x;, w;) = xj,n(x;) = yi, +xw)(1, V) =
1" and —xwy(L,V') = I and (2) variable size clauses which specify the facts
z) # T2,y # T3, --. We need only consider to convert the first set of clauses
to FE-resolution since the set (2) is implied by the use of function evaluation and
function definition.

Consider a clause Eq(f(a,b),c) in L54(S) (the same is true for unary-
function Eq(f(a), b), a state output function in £9,(S)). If this clause, denoted
C\ is one of the parent clauses in the given deduction process, the other parent
clause must be the form of C; = =Eq(f(z,u),y)ACj(z,u,y), where Cy(z,u,y)
is a subclause of C,. In this deduction the letters z, u, y will either take the vari-
able -type values- which we denote x, u, y or they take constant values which in
this proof are denoted a, b, c, i.e., we are dealing with variable or semi-variable
FE-resolution as defined in Definitions 4.6 and 4.5. Taking the element x to
have the generic variable letter form x or the generic constant letter form a, we
get the first line of the following table where eight cases need to be considered:

Var Cases
z |ala|x|a|x|x]|a]|x
u {blb|b|x|b|y|x]|y
y |c|lyleleclylc|ylz

in the following, we show this case by case:

28

Case 1. If C, = =Eq(f(a,b),c)V Cj(a,b,c) then the resolvent produced by the
use of the resolution principle to this and the clause Eq(f(a,b),c) in T9,(S) is
C = Cy(a,b,c).

Consider the application of function evaluation to f(a,b) in C,, we shall
have ~Eq(c,c) VCj(a,b,¢c) if ¢ = f(a,b). This clause can then be further
resolved with Eq(z,z) to the final resolvent C' = Cj(a,b,c) = C. The case

¢ # ¢ = f(a,b) will not occur since function evaluation will be consistent with
the axiom of Eq¢(f(a,b),c).

Case2. HCy = ~Eq(f(a,b),y)VCj(a,b,y), then the resolvent is C = Cjo(a,b,yo),
where o is a substitution defined as o = {c/y}.

Consider the application of function evaluation to f(a,b) in C,, again we
get ~Eq(c,y) VCi(a,b,y) if c = f(a,b). Furthermore, we may resolve this
with Fq(z,z), and we have the final resolvent C' = Ci0(a,b,yo) where o =
{c/z,c/y}. Obviously C' = C.

Case 3. If C; = ~Eq(f(z,b),c)V Cj(z, b, c) then the resolvent is C = Cjo(z0, b, c),
with o = {a/z}.

Consider the application of function evaluation to ¢ = f(z,b). We shall find
some a’ such that ¢ = f(a',b) and define 0 = {a’/x}. Now this function evalu-
ation will flead us to ~Eq(c,c)V Cio(zo,b,c). Again resolve this with Eq(z,z)
we get C' = Cjo(zo,b,c)=C.

Case 4. C; = ~Eq(f(a,z),c)VCi(a,z,c) is treated in a similar manner as in
Case 3.

Case5. f Cy = ~Eq(f(z,b),y)V Cj(z,b,y) then the resolvent is C = Cjo(za,b,yo),
with 0 = {a/z,c/y}.

Consider the application of function evaluation to y = f(z,b) we shall find
some a’,c’ such that ¢ = f(a’,b) and define 0 = {a'/z,c'/y}. Now this
function evaluation will result ~Eq(c’,)V Cjo(x0,b,yo). Further resolve this
with Eq(z,z) and get C' = Cjo(z0,b,yc)=C.

Case 6. C, = ~Eq(f(z,y),c)VCy(z,y,c) is treated in a similar manner as in
Case 5.

Case 7. C; = ~Eq(f(a,z),y)V Cj(a,z,y) is treated in a similar manner as in
Case 5.

29

Case 8. If C; = —Eq(f(z,y),2)V Cy(z,y, z) then the resolvent is C = Cjo(z0, yo, 20)
with o = {a/z,b/y,c/z}. ‘

An application of function evaluation to z = f(x,y) may lead us to any
a',b', ¢ such that ¢ = f(a', '), but not necessarily with a’ = a and & = b and

c =c.

This completes our case by case analysis and hence we can conclude that
the existence of a deduction of the form D[SUZX%,(S) to,, O] implies the
existence of a deduction of the form D[S I,, O] and hence we conclude that
FE-resolution is complete.

O

In cases, except in Cases 1 and 2, trial and error steps are inevitable in order
to get a substitution identical to the resolvent produced by the resolution and
paramodulation.

5 Experiments

In the first page of the appendix we show a seven state machine its controlled
state transitions. On the three succeeding pages we display the results of three
automatic theorem proving experiments in a version of COCOLOG where the
reachability predicate Rbi(x,y,|) denotes reachability of y from x in less than or
equal to | steps. The basic software used was the GTP automatic theorem
proving software of [12] extended with the FE-resolution facility by Q-X. Yu.
The seven state machine experiment was devised by Y-J. Wei. The print out
of the ATP excercises on pages 33,34, and 35 displays the successful resolution
proofs of the predicates Rbl(x1,x7,3), Rbi(x2,x4,4), and Rbi(x,y,5), with x and
y free, respectively. The total computing time in minutes was 0.06, 0.63 and
32.04, respectively and the corresponding number of resolutions was 289, 1366
and 59,017.

6 Conclusion

We have presented a function evaluation based resolution methodology, called
FE-resolution, for the sets of conditional observer and controller logics referred
to by the acronym (COCOLOG). The unique model property of COCOLOG is
established first and then we derive the results of complete axiomatization and

30

decidability properties of the COCOLOG theorems. Completeness of the FE-
resolution technique is achieved through the relative truthfulness and validity
of the COCOLOG models. Complexity reduction and experiments on theorem
proving by use of FE-resolution are continuing at the present time.

7 Acknowledgements
Work partially supported by NSERC grant A1329 and INRIA Sophia-Antipolis,

France. The authors would like to express their thanks to Q-X. Yu and Y-J. Wei
for their assistance with this work.

31

| ~Eq(phi?(v,w),x)

| ~2q(phi7(x1,2),x)

| ~Eq(phi?(y,s),x7)

ABDP: 4
INT: 150
LVL: &

Theorem:. controlll.thm +m ¢9 ¢t =1 +e +22
1: A Rbl(x,x,0)
2: A Rbl(x,z,1) | ~Eq(phi7(x,y).,2)
3: A ~Rbl{x,u,y) | Rbl(v,u,x) | ~Eq(minus7(x,1),y)
4: A ~Rbl(xz,u,x) | Rbl(z,u,y) | ~Eq(x,minus?(y,1))
S: A BqQ(x,x)
6: A ~Eqix,y) | Eq(y,Xx)
7: A ~Eq(x,y) | ~Eqly,z) | EqQ(x,x)
8: A ~Bqix,y) | Eq(phi?(x,2),phi?(y,2))
9: A ~Bq(x,y) | Bq(phi?(z,x),phi7(s,y))
10: A ~Bqix,y) | Eq(Mu(x),Mu(y))
11: A ~BqQix,y) | Bq(minus?(x,1),minus7(y,1))
12: A ~Bqix,y) | Bq(minus7(l,x),minus?7(1,y))
13: T ~Rbl (x1,x7,3)
14: (13a,4d) ([--) ~Rbl(xl,x7,x) | ~Bq(x,2)
15: (14b,%a) [--) ~Rbl (x1,x7,2)
16: (15a,3) {(--) ~Rbl(x,x7,y) | ~Eq(l,y)
17: (16a,2a) [--) ~BEq(1,1) | ~Eq(phi7(x1,x),y)
18: (17¢,%5) [--) ~Bq(1,1) | ~Eq(phi?7(x1,x),x4)
19: (18b,8%a) (--) ~Eq(1,1)
20: (19a,%a) [--) ()
AUM: 1061 SUN: 518 UNR: 488
FAC: O REBS: 289 »OD: 111
™we: ¢ MER: O IpN: 27
LIT: 3 LaT: S1 TIM: 0.03
1: 0.00 2: 0.00 3: 0.03

33

4: 0.03

Theorem: controlll.thm ¢m ¢ ¢t -1 +e +33
1: A Rbl(x,x.O)
2: A Rbl(x,x,1) | ~Eqiphi?(x,y),2)
3: A ~Rbl(z,u,y) | Rbl(v,u,x) | ~Eq(minus?(x,1),y) | ~Bq(phi?(v,w),z)
4: A ~Rbl(z,u,x) | Rbl(z,u,y) | ~Eq(x,minus7(y,1))
S: A EBq(x,x)
6: A ~Eq(x,y) | Rq{y,x)
7: A ~Eq{x,y) | ~Bqly,z) | Eq(x,z)
8: A ~Eq{x,y) | Bq(phi?(x,2z),phi7(y,2))
9: A ~Eqix,y) | Bq(phi?(z,x),phi?(z,y))
10: A ~Eq(x,y) | Eq{Mu(x),Mu(y))
11: A ~Zq(x,y) | Bq(minus7(x,1),minus?(y,1))
12: A ~Eqix,y) | BEq(minus?(l,x),minus7(1,y))
13: T ~Rbl (x2,x4,4)
14: (13a,4d) [--) ~Rbl(x2,x4,x) | ~Eq(x,3)
15: (14b, S5a) (--) ~Rbl (x2,x4,3)
16: (15a,4b) [--) ~Rb1(x2,x4,x) | ~Bq(x,2)
17: (16a,4b) [--] ~Rbl(x2,x4,x) | ~Eq(y,2) | ~Eq(x,minus?(y,1))
18: (17a,2a) (--) ~Bq(x,2) | ~EqQ(1l,minus7(x,1)) | ~Eq(phi?(x2,y),x4)
19: (18c,5a) [--] ~Eq(x,2) | ~Eq(1l,minus?(x,1))
20: (19b,%s) (--) ~BEq(2,2)
21: (20a,%3a) [--) ()
am: 6480 SUN: 3228 UNR: 49%
rac: © RES: 1366 MOD: 524 ABr: $
my: 0 MER: O IDN: 17 TAT: 1364
LIT:) LHT: 326 TIM: 0.30 LVL: §
1: 0.00 2: 0.00 3: 0.03 4: 0.30 5:

0.30

Theorem: controll..*': +4m +8 ¢t =1 ¢e +2?

1: A Rbl(x,x,0)

2: A Rblix,x,1) | ~Eq(phi7{x,y),2)

3: A ~Rbl(z,u,y) | Rbl(v,u,x) | ~Eq(minus?(x,1),y) | ~EqQ(phi?(v,w),z)
4: A ~Rbl(x,u,x) | Rbl(z,u,y) | ~Eq(x,minus?(y,1))

$S: A Eq(x,x)

6: A ~Eq(x,y) | Eq(y,x)

7: A ~Bqix,y) | ~Eq(y,z} | Bq(x,%3)

8: A ~Bqix,y) | Eq(phi7(x,3),phi7 (y,%))

9: A ~Eqix,y) | Eq(phi?(s,x),phiT(2,y))

10: A ~Bq(xz,y) | Eq(Mu(x),Mu(y))

11: A ~Bqix,y) | Eq(minus?(x,1),minus7?(y,1))

12: A ~Bqix,y) | Eq(minus?(l,x),minus?(l1,y))

13: T ~®bl(x,y,5) _

14: (13a,4d) [--) ~Rbl(x,y,3) | ~Bq{z,4)

18: (14b, Sa) (--] ~Rbl(x,y,4)

16: (13a,4d) (--) ~Rbl(x,y,s) | ~Eq(sz,3)

17: (16bd,Ss) {--) ~Rbl(x,y,3)

18: (17a,4) (--) ~Rbl(x,y,sz) | ~Eq(z,2)

19: (18a,4b) [--) ~Rbl(x,y,z) | ~EqQ(u,2) | ~Bq(z,minus7(u,1))

20: (19a,2a) [--) ~Eq(x,2) | ~EqQ(l,minus7(x,1)) | ~Eq(phi7(y,s),u)

21: (20c¢,8a) (--) ~Eq(x,2) | ~EBqQ(l,minus?(x,1))

22: (21b,5a) [--] ~Eq(2,2)

23: (22a,5a) {--]) [}

AUN: 207412 SUN: 116430 UMR: 568

FAC: O RES: 59017 BOD: 31058 ADFP: 3

TAU: O MER: 9 IDe: 4521 THT: 41018

LIT: 3 LHT: 11073 TIM: 16.16 LVL: 7
1: 0.00 2: 0.00 3: 0.01 4: 0.13 S: 0.98
6: 14.76 7: 16.16

35

References

[1] Wolfgang Bibel. Short proofs of the pigeonhole formulas based on the
connection method. Journal of Automated Reasoning, pages 287-297, 6
1990.

[2] P. E. Caines and S. Wang. Cocolog:A conditional observer and controller
logic for finite machines. In Proceedings of the 1990 Conference on Deci-
sion and Control, Honolulu, Hawaii, December, 1990.

[3] Peter E. Caines and Suning Wang. Classical and Logic-Based Regulators
for Partially Observed Automata: Dynamic Programming Formulation. In
Proceeding of the 1989 Conference on Information Sciences and Systems,
John Hopkins University, Baltimore, MA, March 1989.

[4] Peter E. Caines, Suning Wang, and Russell Greiner. Dynamical Logic Ob-
servers for Finite Automata. In Proceeding of the 1988 Conference on Infor-

mation Sciences and Systems, pages 50-56, Princeton University, Princeton
NJ, March 1988.

[5] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Me-
chanical Theorem Proving. Academic Press, New York, 1973.

[6] Robert Goldblatt. Logics of Time and Computation. CSL|/Stanford, Stan-
ford, CA, 1987.

[7] H. Haken. The intractability of resolution. Theoretical Computer Science,
39:297-308, 1985.

[8] R. A. Kowalski. Logic for Problem Solving. North-Holland, New York,
1979.

[9] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, Germany, 1984.

[10] Elliott Mendelson. Introduction to Mathematical Logic. Van Nostrand
Reinhold Company, New York, N.Y. 10001, 1964.

[11]) Karen L. Myers. Universal Attachment: A Technique for Integrating Di-
verse Representation and Reasoning Methods. PhD thesis, Stanford Uni-
versity, 1990.

36

[12] M. Newborn. The Great Theorem Prover. Newborn Software, P.O. Box
429, Victoria Station, Westmount, P.Q. Canada, 1989.

[13] G. A. Robinson and L. Wos. Paramodulation and theorem proving in first
order theories with equality. Machine Intelligence, 4:95-99, 1969.

[14] J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Princi-
ple. Journal of the ACM, 12(1):23-41, 1965.

37

ISSN 0249-6399

