Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

Correctness of automated distribution of sequential
programs
Cyrille Bareau, Benoit Caillaud, Claude Jard, René Thoraval

» To cite this version:

Cyrille Bareau, Benoit Caillaud, Claude Jard, René Thoraval. Correctness of automated distribution
of sequential programs. [Research Report] RR-1724, INRIA. 1992. inria-00076963

HAL Id: inria-00076963
https://hal.inria.fr /inria-00076963
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50448019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00076963
https://hal.archives-ouvertes.fr

IR

UNITE DE RECHERCHE
INRIA-RENNES

Institut National
de Recherche
en Informatique
et en Automatique
Domaine de Voluceau
Rocquencourt
BP105
/8153 Le Chesnay Cedex
France

Tel:(1)39635511

Rapports de Recherche

1992

B nniversdaire
N° 1724

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

CORRECTNESS OF AUTOMATED
DISTRIBUTION OF SEQUENTIAL
PROGRAMS

Cyrille BAREAU
Benoit CAILLAUD
Claude JARD
René THORAVAL

Juillet 1992

IR

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Tel 1 99 84 71 00 - Télex : UNIRISA 950 473 F
Télécopie : 99 38 38 32

: Correctness of Automated Distribution of
Sequential Programs

Cyrille Bareau Benoit Caillaud Claude Jard René Thoraval*

IRISA Campus de Beaulieu
F-35042 RENNES Cedex FRANCE

< name>Qirisa.fr

Publication Interne n°665 - Juin 1992 - 32 pages - Programme 1

Abstract

In this paper, we prove that the data-driven parallelization technique, which
compiles scquential programs into parallel programs for distributed memory parallel
computers, is correct. We define a model based on labeled transition systems,
and we prove, from the chosen compilation rules, the confluence of all possible
behaviours of the parallel programs we obtain, in spite of asynchronism due to the
communications.

We also show that this model is powerful enough to prove the correctness of
various optimizations of the basic compilation mechanism.

Preuve de la distribution de programmes
séquentiels

Reésumeé

Le but de cet article est de prouver la correction de la technique de parallélisation
dirigée par les données, qui permet de compiler des programmes séquentiels en
programmes paralleles s’exécutant sur machines 2 mémoire distribuée. On définit
un modcle, fondé sur les systémes de transition étiquetés, qui permet de montrer, a
partir des regles de compilation choisies et malgré I'asynchronisme di aux envois de
messages, que tous les comportements possibles des programmes paralleles obtenus
sont confluents.

Nous montrons que ce modele est suflisamment général pour prouver diverses
optimisations apportées au mécanisme élémentaire de compilation.

*Université de Nantes, Section Informatique, 2 rue de la Houssiniére F-44072 Nantes cedex 03

1

CENTRE NATIONAL OF LA RECHERCHE SCIEMUIFIQUE (U R A 2271 UNIVERSIE NERENNES) IN.'?A_ Dl:_ RENNES
INSTITUT NATIONAL DE RECHURCHE EN INFORMATIQUE E£T ON AUTOMATIOQUE 1 UNITE DI RECHERCHE DE RENNES)

1 Introduction

1.1 Motivation

Large scale parallelism promises high performance computing using the power of dis-
tributed memory parallel computers. Unfortunately, it is now clear that difficulties in
programming them efliciently limit their use.

Current programming techniques are often based on communicating sequential pro-
cesses. This approach makes it difficult to program large parallel systems in a practical
and efficient way. The definition of processes is application dependent and requires a
strong participation by the user. To resolve this problem, one radical answer is to hide
parallelism from the programmer.

Currently, the main parallelizing technique in this area is the “data-driven paralleliza-
tion” approach, which consists of creating communicating processes automatically from
sequential code plus data decomposition specifications [5, 12, 1, 10]. To be used as an
automatic parallelization method, this promising technique needs to be extended and
mastered: it has to be given a solid theoretical foundation.

1.2 Approach

C ol
-

(* GAXPY:y :=y + Ax A A Ap ‘
y(1..3], x{1..3), A[1..3,1..3), F
Ww[0.3,1..3], ALatglwn =2
.y . . (A212y2,w2)
Ali] is the ith column *) A3y w30 - A

fori:=1to 3 do W[i] := Afi] * x{i);
for i:= 1103 do begin w2 w A

W[0] := W[3],
S PV

for j := 3 downto 1 do W{j] := W[j-1];
wiewl

for j := 1 to 3 do y[j] := y(j} + WIj,j]
end

(* Distributed on processes P1..P3, w
Ali), x{i], y[i), W[i], i and j on Pi
plus W[0] on P3 *)

(@ ®)

Figure 1: (a) source program, (b) its execution, (c) the resulting transition system

We will introduce informally this parallelization technique using the example of figure 1.
We deal with a sequential source program (a), annotated with a data distribution which
assigns program variables to processes (here on the three processes P1 to P3). The
principle is that the owner of a variable is responsible for its assignment (local writes),
and thus the distant variables belonging to the right part of the assignment must be
exchanged. Figure (b) shows the message exchanges obtained by running the parallel
generated code. Figure (c) shows the corresponding transition system which will serve as
a model: we observe the classical explosion of the possible behaviours due to asynchrony
and parallelism, but with a regular structure due to confluence. Some particular snapshots
are circled (when communication channels are empty): these states will be connected with
the source program states.

i

The data-driven asynchronous parallelization technique has been widely accepted,
though it has not yet been formally proven. Whereas its correctness seems obvious,
a proof is more difficult. Non-determinism due to asynchronous communications gives
rise to an involved problem which is quite hard to solve directly. In order to overcome
this obstacle (and for aesthetic reasons as well), it is suitable to split the problem into
well-jointed parts. Moreover, as we intend to extract a reusable framework from the
correctness proof of a particular parallelization technique, such a decomposition turns
out to be central. The proof to be given has to capture the “essence” of the correctness
of the technique under consideration.

A natural and fruitful decomposition is suggested by the following informal argument,
which helps understanding the correctness of the technique. It is important to observe
that this argument is based on the last claim, also the most questionable one :

e applied to a fragment of sequential code which may be executed in one step, the
technique seems correct ;

e therefore, applied to an entire sequential program, it also seems correct, provided a
“good angel” ensures a sufficiently synchronized behaviour of the processes (the par-
allel simulation of one step has to be completed before embarking on the simulation
of another step) ;

e finally, although the real non-determinism forbids such a guaranty, it seems limited
enough not to cause unacceptable distortions : the presence of the “good angel” is
in fact unnecessary.

In this paper, we formalize the whole argument and prove that it does hold. First,
we deal with the last and most problematic claim in a way that is independent of the
parallelization technique under consideration. We define a model, close to the class of
confluent systems described in (8] (chapter “Determinacy and Confluence”). In spite of
limited non-determinism, our model allows one to import classical techniques for proving
correctness of compilation functions (see for instance [9]) within a deterministic world.
Thus, this model justifies the formalization of the first two claims, which are clearly related
to such proof techniques. As desired, it provides the basis of a formal framework for
designing other asynchronous parallelization or optimization techniques, and for proving
their correctness.

1.3 Paper organization

The paper is organized as follows:

We first present the theoretical model, based on products of labeled and partially
deterministic transition systems [3]. This allows us to compare the behaviours of the se-
quential source program with the corresponding parallel ones. One key semantic property
of the resulting transition systems is the “diamond” property that, thanks to Newman’s
theorem, reduces the combinatorics of all the parallel behaviours to a single significant
behaviour easily connected to the source program. We prove also that some properties
of the communication medium are required, and that they are provided, for example, by
the usual point-to-point Fifo channels.

Then we propose a simplified sequential language, given by a syntax and an opera-
tional semantics. We define the notations for the distribution of data, basis of the program

3

generation 1n a SPMD model. We formally describe the compilation rules, relying on the
standard ndtion of “refresh” of remote variables. Finally we prove the correctness of these
rules (based on the same approach as in [4]).

The last part of the paper shows that our formal model and proof methodology can be
used to design other transformations; we use as examples an optimization of the refresh
mechanism, the forinal treatment of arrays in the language and an anticipation of message
send.

2 Models and theoretical basis

2.1 Transition systems

A transition system P is denoted by (¢p, Qp, Ap, —p), where ¢p is the initial state, Qp
is the set of states, Ap is the action alphabet and =pC Qp X Ap X Qp is the transition
relation. A transition (g,a,q) €—p is denoted by ¢ —=p ¢’. The usual product on
transition systems is denoted by [] or x.

X

Figure 2: Architecture of a parallel program

A distributed program over processors I = 1...n is hereafter modeled by a vector
(Pi);=o., of transition systems (figure 2), where Py models the communication medium,

and Vi € I, P, models the ;th process of the program. Communications between processes
take place through Py which captures the communication asynchronism.

The set E denotes the collection of all data values that can bet sent or received. The
alphabet of Fy (Ap,) is the set of communication actions and is the disjoint union (§) of
send (!) and receive (7) actions of a message e € E from:i € I to j € I:

Ap, = T
E = Oierls
Viel o= Tie X!
VieLVye (L) I = @,
Vi,j €1 2 o= {!e“’j}eeE
Vi,jel Ef‘j = {?ej_,;}eeE

4

Any process that performs a receive is non-deterministic since it accepts several data
values — i.e. several receive events. However this non-determinism is particular since
it can be discarded by an abstraction of data values. The equivalence relation p (defi-
nition 1) and the quotient of a transition system by an equivalence relation over actions
(definition 2) formalize this data abstraction.

Definition 1 Let p be the equivalence relation defined by:

p={(Tei-; ?ff—*j)}i,jel e,f€EE
The equivalence relation p enables an abstraction of data values on receive actions.

Definition 2 (Quotient Transition System) Let P be a transition system and § an
equivalence relation over Ap. The quotient transition system P[¢ is defined by:

P/€ = (qp,Qpr, AP/ (1, X e X 1g,) (—p))

where @¢ : Ap — Ap/€ is the mapping which associates to a letter @ € Ap the class
of a modulo £, and 1g, X @¢ X 19, : (¢,a,¢") — (¢, e(a),q).

We now define two predicates:
Definition 3 Let P be a transition system, and B C Ap.

det™ (P,B) <= VqeQp |{a|3q €Qp, (¢,2,¢) €Ep}NB| <1
det™ (P) <= VYa€ Ap, Vg€ Qp, |{¢'|(g,,¢") €E—p}| <1
(i.e. —p isa function: Qp x Ap — Qp)

The predicate det*™* (P, B) means that the transition system is externally determinis.
tic over B: for each state of P, at most one action of B can be performed. And det™ (P)
means that the transition system is internally deterministic, which corresponds to the
usual meaning of determinism.

In the sequel, distributed programs under hypotheses 1 and 2 are considered.

Hypothesis 1 The distributed program matches the following predicates:

Viel det™* (P:/p, Ap./p)
Vi,j €l det™ (P, 57)
Vi e 1u {0} det™ (P))

Hypothesis 1 ensures that nondeterminism in P; arises only when P, performs a receive
action from a given process, but with an unknown value. Since Py is deterministic over
the receive actions of messages from j to ¢, the product P; x P, is deterministic over the
actions of P;.

Definition 4 (Diamond Property) Let P be a transition system and B C A.

o P has the diamond property over B iff Vg € Qp,V(a,B) € B,Vq1,92 € Qp, @1 # ¢2-

o IB
_)P !
{q o =>3Q'€QP{qlTPq
q—P Q2 @2 —p ¢

In such a case, it is convenient to say that the following diagram holds:

a
q —p 1
lp B lp B

a ’
92 —p ¢
o P has the diamond property iff it has the diamond over A%.

Hypothesis 2 P, has the diamond property over £2 \ U; ¢/ (Eéyj)z

Theorem 1 Let (P;)i=o..n be a distributed program verifying hypotheses 1 and 2. The
product transition system P =[], F; has the diamond property and is internally deter-
ministic, i.e. det™ (P).

The sketch of the proof of theorem 1 is as follows: every pair of distinct actions that
can occur from any state of the distributed program should be considered. Furthermore
for each pair it should be shown that the diamond property is verified : hypothesis 1
ensures the diamond property for any pair of actions that are not both communications,
and hypothesis 2 ensures the diamond property for any pair of communication actions.

The reflexive and transitive closure of —p is denoted —%.

Definition 5 (Confluence) A transition system P is said to be confluent when the tran-
sition system (qp,Qp, Ap, —p) has the diamond property — i.e. the following diagram
holds:

q —% @
P l* P l*
92 ——p q

Theorem 2 (Newman, 1942) A transition system which has the diamond property is
confluent.

Theorem 3 An internally deterministic confluent transition system has the following
properties:

1. There is at most one mazimal state (sink state).

2. The transition system has a mazimal state if and only if it has no infinite compu-
tation.

A proof of both theorems is detailed in [2].

2.2 Implementation of P,

We hereafter use unbounded point-to-point FIFO communication channels. We give in
this section a model of FIFO channels in terms of a transition system and show that it
verifies hypotheses 1 and 2.

Definition 6 Let Pf = ((9,...,0), (E*)"Z,E,—w) be a transition system, where —p is
defined by the following aziomatic:

a Qe . le: . :
q"'j——)qilj .6,_.1 .e,_.J

a G~ 9, €
(. ey Qigy ..)—i(.. ’q'{..‘i’ ..)

The transition system P is a model of a complete network of point-to-point FIFO
channels over 1.

Theorem 4 Pf verifies hypotheses 1 and 2

The proof follows the lines of theorem 1. However it is worth considering a particular
case: one message send and receive on the same queue.

?et'—oj
q0,05+-++9€°Qijy---3qnn ? 90,05« -3Gijs+++sqn,n
Vs 7.
Tei;
q0,0>"'1e'qi,j'f;"'yqﬂ,n ? qO,O)""qi,]"f,"'aqn.n

It should be noted that the FIFO assumption is crucial, since desequencing commu-
nication channels do not fit the requirements of hypotheses 1 and 2.

2.3 Distribution proof bases
2.3.1 Correspondence between sequential and distributed program states

Let us now consider programs in a language £ computing over variables. The set of
variables is denoted V and each variable ranges over a single domain D.

The state of a process P;,t € I is represented by ¢; =< S;,0; > where S; € L is the
continuation program and o; : ¥ — D is an environment.

The communication medium of a parallel program is assumed to be a complete net-
work of point-to-point FIFO channels, modeled by Pf.

Given a distribution mapping and a compilation function, the state correspondence
connection ~» is defined as follows:

Definition 7 Let 7 : V — 27\ {0}, [] : £ — L' be respectively a distribution map-
ping and a compilation function.

The connection ~C Qp X QPOF X [lier @p; associates to any sequential state some par-
ticular parallel states (see figure 1). It is defined as follows:

g = (9,...,9)
< 8,0 >~ (g0, (< 8i,0: >)iey) <= { (Si)ier = [S]
Vv € V,Vi € 7(v), o(v) = 0i(v)

2.3.2 Principle of the correctness proof

The aim of the correctness proof is to show that the semantics of programs is preserved
by compilation. The semantics we consider is an “input-output” semantics in which
only initial and maximal states are meaningful. Definition 8 defines this semantics, and
definition 9 defines the correctness property.

Definition 8 The meaning of a transition system P is a mapping which associates to an
initial state q, a set of mazimal states.

Mp(q) = {¢lg—F ¢, ¢'mazimal} U {L]|qg —3}
The symbol L denotes the divergence of the transition system.

Assuming that L ~» 1, the correctness of the compilation function is defined as
follows:

Definition 9 The compilation function [] : L — L' is correct if and only if for any
sequential program P:

Va1 € Qp, Vg2 € Qq, Vg, € Mp(q1), Vg3 € Mg(@2), 1~ @2 = ¢1 ~ ¢
Where Q = Pf x [Lies [P;.

It should be noted that the meaning of an internally deterministic confluent program
is reduced to one element: either L or a unique final state (theorem 3).
So, the correctness of a compilation function becomes:

Lemma 1 Let assume that the language L verifies the hypotheses 1 and 2. The compi-
lation function [] : L — L! is correct if and only if for any program S € L and any
initial environment 0 : V — D.

o If M((S,0)) # {L}, the following diagram holds:

(S,0) ~ (g0, ({S0,0)ics)
1* l*
(8,0~ (g ((ShD)icr)

With (S',0') and (S!, 0!} mazimal.

197

o IfM((S,0)) ={L}, then :

(S,0) ~ <qo, (S, Ui))461>
Lo Lo

Since £ verifies hypotheses 1 and 2, theorem 1 applies and the meaning of a program,
sequential or parallel, is reduced to a single element

Therefore lemma 1 is straightforward from definition 9 and theorem 3.

We will inductively show either correspondence from an elementary diagram which
associates a finite, non empty parallel computation to a single step of the source sequential
program. That is, for one step of the sequential program, there exists a particular non
empty finite computation of the parallel program that preserves the state correspondence.
This can be formalized by the following diagram:

(S,0) ~ <<Io,((54,<f«')).~e1>
I
(80"~ (g, ({SoNier)

This property relies on the semantics of the language £ and on the compilation func-
tion [-]. It will be proved by inference on the rules of the operational semantics of £ and
on the axiomatic definition of [-].

3 Parallelization

3.1 Language syntax and semantics

We present the process language £ (the sequential language being the same one, but
restricted to one processor). It looks very simple but contains all the features of an usual
sequential language with respect to the control structure.

3.1.1 Syntax

A parallel program is defined as a collection (P,);e1 of processes generated by the following
grammar in BNF notation:

L ::= statement™

statement ::= v := expr
| if expr then L else £ fi
| while ezpr do £ od
| toiej

| Pvj

We assume that the domain of values D contains an undefined value L . For a matter
of readability, we ignore the question of types, which presents no difficulties.
In the sequel we will use € and b to range over expr, S over £ and s over statement.

3.1.2 Operational semantics

The operational semantics of the process language defines for each process i a transition
relation —; C Qp, X Ai X Qp,, where A; = X, ® {v:=¢, b}, v := € and b denoting
internal transitions.

Inference rules are as follows:

assignment rule
<vize, 0 > 5 < nil, oiloi(e)/v] >

conditional rules
oi(b)
< if b then S! else S/ ﬁ,a;>——bh>,~<5,3,a.- >

—\6,'(6)

< if b then S} elseS,-!ﬁ,o;>-—b-—>,~<S!,a,~>

iteration rules
oi(b)
< whilebdo S od, o; > —2; < S, ; whilebdo S; od, 0; >

ﬂdi(b)

< whilebdo S; od, o; > —b—>.~ <ni, 6 o; >
concatenation rule

a
<s;,0i>—; <S!, ol >

a
<si;Si,0i>——;<S!; S, ol>
message send rule

l. ..
'Ul vi—o .
< !v,'qj,tr.' >L,—'.' < nil, o; >

message receive rule

%6 s .
< iy, 0; > —25 < nil, o;e/v] >

3.1.3 Verification of the deterministic hypotheses

The transition system defined by the operational semantics of the process language verifies
the hypothesis 1:
Viel

det*™ (Pi/p, Ai/p)
detmt (R)

The proof is straightforward. Moreover, lemma 1 can be used since P{ verifies hypotheses
1 and 2.

3.2 Compilation of the basic refresh mechanism

This section presents the compilation of a sequential program into a parallel one, both
in £. We first define the notations for the distribution of data, basis of the program
gencration in a SPMD model. Then we describe the compilation rules, relying on the
notion of refresh of remote variables, as it was implemented in the PANDORE compiler
(1] of our team.

10

3.2.1 Data distribution

A distribution is a tuple < I, 7, > where:
o [is the set of processors.

o m : V — 2!\ {0} is a mapping that associates to each variable v a set of processors
such that Vi € 7(v), ¢ owns v

.o VxI — 1
- Vig n(v),¢(v,i) € 7(v)
¢ is a mapping which, to each couple made of a variable v and a processor i that
does not own v, associates a processor (v, 1) owning v, which is responsible for the
refresh of v on ¢ (updated values of v are sent from ¢(v,1) to 7).

From now on, we will implicitly consider a given data distribution (the implementation
of the mappings 7 and ¢ being left to the compiler writer).

We also introduce a notion of context: a context is any mapping from I to 2Y. For
instance, g is the context which associates to each processor ¢ the set of variables owned
by 1

p(t)={veV]ien(v)}

The operations on sets are extended to contexts. Let d, d' be two contexts, V C V

and e € {N,U,\}.
{ ded (d(z) e d,(i))iel
deV = (d(i)eV)

iel
3.2.2 Notations for the compilation

Let A : expr — 2V and ¢ : statement — 2V be two mappings giving respectively
the set of variables occurring in an expression, and the variables to be refreshed on the
processor 1 for any statement:
ne O\KG) i € 7o)
Ale)\ p(2) ift€n(v
blvi=e) = {) otherwise
&i(if b then St else ST fi) = A(b) \ u(2)
&i(while b do S od) = A(b) \ u(3)

and finally ¢ is the mapping: statement — (I — 2V) such that

£(s)(2) = &(s)

In order to properly define the refresh construction, we now need a mapping which as-

sociates to a context a sequence of communication statements. The execution of this

sequence achieves the transmission of the values of every variable in the context. Any

transmission takes place from one owner of the variable to a processor which needs it.
Let F = {!vj_.k , ?vj_,k}j,kg,uev and I' : (I —_— 2V) — F*.

11

I' is any mapping® such that for any context ¢, I'(c) is a word in which no letter
appears twice; thus I' defines a totally ordered set (I'(c), <r(y)). Moreover, we assume
that it checks the following conditions:

F(C) = {!vtp(u,j)—'j ’ ?vw(v,j)—»j}jel.uec(i)
and Y v, 75, i, Tuin; € T'(c)

Wini <r(c) Ti-j
lu;_,; <r(e) Wi; &= Tui,; <r(c) ?v.'_.,'

The order < is such that each emission statement of a variable v occurs “before” the
corresponding reception statement, and the order between the emissions of two variables
is coherent with the order of their reception. Therefore, deadlocks are avoided.

The pr; construct is the projection of a communication sequence I'(c) on each processor
1, defined as follows:

pri(nil) = nal

pri(fvinyr) = lvinj;pri(r)
pri(Tvjmir) = Tvjuipri(r)
pri(lve—ir) = pry(r) ifk#1
pri(Tvgr) = pri(r) ifl#2

We can now define the refresh function:
refresh, = pr;oT

And finally, ezec; is a projection which ensures the execution of an assignment only
on the processors owning its left-hand side variable:

vi=e ift € n(v)
nil otherwise

ezec; (v i=¢) = {

3.2.3 Compilation rules

The compilation of a sequential program S results in a parallel program ([S];):e;. The
function [.]; : £ — L is defined by the following rules:

nil rule
[nil],; = nal
concatenation rule
[s; S); = [s]5 [S]s
assignment rule

refresh; (€ (v := ¢€));

[v:=e]i = ezec; (v :=¢€)

1The choice of a particular T' is a question of implementation.

12

conditional rule

refresh; ({ (if b then S* else S/ ﬁ)) ;

if bth St else SY i, =
fi €n o> else I [if bthen [S]; else [S7]; fi

iteration rule

refresh; (¢ (while b do S od));

. while b do
[while b do S od]; = [S1;; refresh; (€ (while b do S od))
od

3.3 Correctness proof of the compilation

Theorem 5 Let ¢ =< s;5,0 >, ¢ =< S5';S,0' > and § be such that
q 122,

g~ g
!

/

q

Then there exists a non-empty sequence of —-transitions § —+ §' such that ¢' ~ §'

Proof
Let § = (g0, (< 55515, 00 >)ier)-
For all : € I, let us note x; such that:

[s; S1; = refresh; (£(s)) ; xi(s); [S];

The activation of the refreshment sequence I' (¢(s)) corresponds to a first (possibly empty)
sequence of —-transitions, such that,

g —" §" = (qo, (< xi(s); [S);, 0! >)ier)

The definition of T' ensures that this computation can be achieved.
From ¢ ~ § and from the definition of refresh, we obtain

Vv € V,Vi € n(v), o (v) = o(v) (1)

3

Vi€ I,Vv € &(s), 0i(v) = og,4(v) (2)

]

and from 1 and 2 we deduce
fs=v:i=c¢

Vi € m(v), oi(e) = o(e) (3)

and if s is a conditional or an iteration,
Vie I, a!(b) = a(b) (4)

There is at least one y;(s) which is different from nil, therefore the execution of one
step of each x;(s) # nil, in any order, produces a non-empty sequence §” —* G’ where
¢ = (g5, (< S;; [S]; ,0{ >)ier)- Let us show that ¢' ~ ¢'.

13

a) Queues are empty in state §”, because each message has been received, and so they
remain empty, therefore g = go.

b)
Vo € V,Vi € n(v), ol(v) = o'(v) (5)
The proof, by inference on the compilation rules, is straightforward. The only

case in which the environment is modified is the assignment: in this case we have
immediately 5 from 3.

Vie I,S; [S]: = [S"; SI; (6)

By inference on the compilation rules and thanks to the trivial property of the
compilation function: [S'];; [S], = [$’; S];, we have:

s = v:i=c¢.
Then S’ =nil and x:(s) = exec;(s) is rewritten into S =nil.

o s =if b then S else S/ fi.
Then if o(b) holds, we have S’ = S*. From 4 we deduce that x(s) =
if bthen [S']; else [S/]; fiistransformed into [S'],,i.e. S = [S!], = [S'];-
The case —o(b) is similar.

e s = while b do S” od.

Then if o(b) holds, we have s rewritten into S’ = S”;s. From 4 we deduce
that

xi(s) = while b do [S"];; refresh; (¢ (s)) od is transformed into

Si = [S"];; refresh; (£(s)) s xi(s) = [S"];; [s); = [$": 5], = [9].-

If ~o(b) then s becomes nil and so, from 4, x;(s) also becomes nil,i.e. S} = nul.

0

As an immediate consequence of lemma 1 and theorem 5, we have the main result of
this paper:

Theorem 6 The compilation function [.] : L — LT is correct.

4 Illustrations of the generality of the approach

This section is devoted to a few optimizations and extensions of the compilation rules
given in section 3.2.3, in order to show that our model can also be used as a tool for
exploring other more complex parallelization techniques.

Section 4.1 deals with an optimization which aims to reduce the number of message
exchanges. Section 4.2 raises the problem of array data structures in the language C.
Lastly an optimization consisting in an anticipation of message send is given in section 4.3.

14

4.1 Optimization of the refresh mechanism

The basic refresh mechanism is not optimal in terms of communications. For instance
the following example contains a useless send and receive pair:

. 9

P: 2:=0 I=1{1,2} Py :'2:12 41 Py z:=0
=241 ,§ w(z)={1} = ?2.2-.1 , 'z9_1
ri=z+z 7(z) = {2} szt 129-

Indeed the second communication pair (!z2_.; and ?2z,_,;) between the assignment of
P, and the second assignment of P; is useless since the variable z is not modified in the
meanwhile.

In other words, the refresh mechanism ensures the causality between assignments that
cannot be swapped — for instance the assignments z := 0 and z := z+1 do not commute,
therefore they must be causally ordered in P, and P;. However the second communication
pair is useless since z := 0 and z := z +, z are already causally related by transitivity:

J 2B P
z2:=0
l
!22—01

e

22301

!

z:=2z+1

!

r=z+4+z

The principle of the optimization is to delete refresh statements that are known at
compile time to be useless. An optimal refresh mechanism can be achieved in this way, at
the expense of an exponential code inflation. The optimization presented in this section
is a compromise between the raw refresh and an optimal one: it does not produce a great
amount of code and is far better than the raw refresh, yet not optimal.

The compilation function is defined with respect to a context d : I — 2V, which
associates to a process ¢ € I the set of variables d; C V that are assumed to be refreshed
on 1.

The approximation lies in the conditional and iteration rules: for instance, the context
assumed after the execution of a if ...then...else...fi statement is the intersection of
contexts obtained by execution of the then and else parts.

4.1.1 Compilation rules

The compilation function is defined by [-], = [[B?, where:

CX(I—>2V) — Ex(1—>2v)

: - (Sd) — [S]!

15

Nil rule
[nill¢ = (nil, d)

Concatenation rule

(51,6) = [[s]]:i , (82,d) = |15]]f
IIs;S]]:-i = (51;52,d")

Assignment rule
[v := €] = (refresh; (¢ (v:=e) \ d) jezec; (v =€) , (dUE(v:=e)) \ {v})
Conditional rule
(S1,6) =[S, (S7,6;) =[S,/

. d_ refresh; (€(b) \ d);
[if b then S, else S; fi]; = ([if b then S/ else S/ fi , 000 6y

Iteration rule

(S’, d/) — IISH ;iu((b) ’ (S”, d”) — ‘IS]],('dndl)Uf(b)
, (refresh; (§(b) \ d); ‘)
[while b do S od]¢ = | | while bdo 5 ; (dnd") UE®b)
refresh; (€(b) \ d”) od

4.1.2 Extended operational semantics

For the purpose of proving the correctness of these compilation rules, we need to extend
the operational semantics of the language. This extension consists in adding a context
to the state of a sequential or parallel program: this context represents the set d(z) of
refreshed variables on each process 1 € I. However the behavior of a program is not
changed, since we show below that, given an initial context, there exists a one to one
mapping between extended computations and computations given by the operational

semantics of the section 3.1.2.

The following three rules define the changes in the context according to the events

that occur in the program:

q vVi=€ q/

(g,d) == (¢, (dU € (v:=¢)) \ {v})

g— ¢

(g,d) —2» (¢, dUE(b))

—%+¢,a€ex

(g,d) —=» (¢, d)
16

It should be noted that communications do not modify the context.

Any extended transition relation is in one to one correspondence with a transition of
the operational semantics of the language. This one to one mapping is the projection
({S,0),d) — (S,). Therefore the basic computations set and the extended computa-
tions set are isomorphic.

The following rule enables us to forget that such and such a variable has been refreshed,
in order to establish a correspondence between the context assumed at compile time and
the context obtained by simulation for a given statement:

(9,(d(0),...,d(2) ® {v},...,d(n))) > (q,d)

We hereafter consider computations consisting in an interleaving of —» and b tran-
sitions.

4.1.3 Extended state correspondence

The state correspondence should be modified in order to take into account the extension
of the state of a parallel or sequential program. It is defined as follows:

Definition 10

o The vector of programs (S;);c; is said to split when there exists K > 0, a sequence

of programs (Sk)k=1...K and a sequence of contexts (d") P such that:

Ve=1...K, §% # nil
Viel, Si=[S'1%;...; [sK]1Y
Ve=1...K -1, | (3, 36%, ((*,v),d*)—»*((nil,v'),8%))
Yv:V —-D — §F D gt
Such a couple of sequences is said to be a decomposition of (S;);c;-

o The connection . is defined between a state of a sequential program and a state of
a parallel program.

((S,0),d) = ({0, (Sl 0ler) ') if and only if:

(g0 =(0,...,0)

Yv €V, Vi € w(v), oi(v) = o(v)

Vie I, Vv e d (), ol(v) = a(v)

dCd

(Si)icr splits into (Sk) with contexts (dk)

=1..K i=1..K
such that S = S*;... ;Sk and d' = d'

\

Lemma 2 The compilation function [-]; is correct if and only if for any program S € L
and any initial environments o and (0;),¢;, if

((5,0),0) 7 {(a0, (1512, 04)) 9)

then either diagrams holds:

17

(5,90, = (e (151¢15),,) 1 0)
L (tuw),

a

{(nil,&),d) = ({qo, (il &:);e;),d")

(5,20,0) 2 ({00 (151%53),,,)9)
L (iuv),

Proof From the definition of 7~ we state:

(5,200 Z ({20, (1518, 05),.,) +9)

<
(S, 0') 3 <(I0,<IIS]]? ’Ui>g€1>
and:

3d,d, ((nil, &) ,d) <<qo, (nil, 6:)e;) > ')
=
(nil, &) ~ (go, (nily &) e/)

From the extended operational semantics we deduce:

{ id, (¢,d)(— U B)" (¢, d) <= ¢—*¢
{(g,d) (—» U b)” = g

Then we conclude by applying lemma 1.

4.1.4 Correctness proof of the compilation rules

The correctness proof is quite similar to the proof of theorem 5. However it is far more
tricky since the state correspondence _ is more complex. In this section we will only
give parts of the proofs that are different from the proofs of section 3.3.

Let us prove the following lemma:

Lemma 3 For any pair of corresponding states:
[a ¥ 2
<<S;Sa 0') ’d) ~ <<Q’0, (Qia Ui);€]> [} d0>

The following diagram holds:

((s;S, U)) d) : <<(IO, ((I)i’la")iel> s d0>

l I+
V=

(($.6).d) = (o (Bad),,))

18

Proof of lemma 3 From the definition of 7 we have:
@i = [T IS0 5.5 ISKD
From the concatenation compilation rule, we deduce:
[TT¥ = [s]°; [S:]5"

Since T;S;;...;SKk = s;5, we have:

o = [s]P;0;
0 =[S 5 [Sed™
[s17° = refresh; (£(s) \ do) ;xi(s)

-~

Therefore, by the same reason as in section 3.3:

<<qo, (Is1 50, 04>,.€,> ,do> —»" <<qo, (x® ()05, 0$>,.€,> ,d0>

The refresh sequences (R;);c; have been executed, then one step of each non-empty

x¥(s) should be executed. Let S! be their remainder:

S! = nil if x®(s) = nil

(X (s),0!) —» (S1,5:) if xP(s) # nil

Viel{
Xi y Yy

Since at least one xf°(s) is not empty, we have:

<<qo, (x® (s);0, a.‘)'.y) ,do> —»* ({40, (55:0:,6);¢1))

By nearly the same reason as in section 3.3, it can be shown that:

Viel, Vved(z) 6(v), = &i(v (7)

{ Yo eV, Vien(v), a(v) = a;(v;
dCd

However, in order to prove the state correspondence, one should prove that d; = S0,

splits in:
S = S;...:8
. . - dy L dy (8)
¢ = [[SI]L' 3---;[[5L]]i
It should be also shown that:

dCd (9)

~

so that <<qo, (S% O;,&;),.E,) ,d’> >* <<q°’<q)"&i>iel> ,Jl>.

19

Proof of (8) and (9) The proof of point (8) is a bit tricky: elther Viel, S; = nil
then &; = ©;, or 3 € I, S! # nil, in which case it splits in S! = [R,]/*; I[RM]]fM

It should be noticed tha.t in every compilation rule, the context obta.med by com-
pilation is smaller than the context obtained by any s1mu1at10n using the operational
semantics. This ensures that the following is a decomposition of d; = S!;0;:

& = [R5 Rl [S12 5. (S8

Let us denote this decomposition:

2 A (il ol J
®; = IISlli Yooy ﬂSL]].'L

Point (9) is proved by exactly the same argument on contexts obtained by compilation
and simulation.

End of proof of lemma3 From (8), (9) and (7), we can show the state correspondence
which closes the following diagram:

(5,00, 2 ({0 (B1E00,03),) o)
1

Lx

(g0, (x (5130,) s o)
1

1 1y

<<‘10a (57505, &i),-€1> , d'>
Vs«
<<S’&> ’(2> ~ <<‘Io,<‘i’i,&i>‘.el> ,J1>

The diagram of lemma 3 is embedded in this diagram.

End of correctness proof By induction on the diagram of lemma 3, one of the two
diagrams of lemma 2 holds, which concludes the correctness proof.

4.2 Extension to array data structures

This section is devoted to the manipulation of arrays, in order to generalize our model.
From a theoretical point of view, dealing with arrays does not involve much problems,
the main difference being that most of compilation functions produce now some guarded
code (the predicates of the basic case being no more evaluable at compile-time).

We first present some slight modifications in the notations used so far, then we describe
a new “dynamic” version of the refresh function, we give a sketchy proof of correctness
of this new model and we conclude by an example.

4.2.1 Notations and extensions

We modify V by introducing a syntactical distinction between scalar variables and array
elements: V = V,UV,.
V, : scalar variables

20

V. = {Aler,...,e;] | A: array, ex € expr} : array elements

Extension of o : let v = Aley,...,e,] € V,, then o(v) is in fact o(A[o(ey),...,0(ea)]).

Furthermore, © and ¢ are now compilation functions (i.e. they produce code), and
are extended in this way :

n(Aler,...,es)) = 1(Afo(er),...,0(en)])

#(Aless-renlsp) = w(Alo(er), -, a(ea)],)

and we will use ¢ : V x I — 2! such that p € ¥(v,q) <= ¢(v,p) = q.

Lastly we need a new syntactic function, similar to A, which gives the variables
(scalars and/or array elements) occurring as index of arrays in an expression:

Aind : expr — 2v

For instance, if e = A[i + j] * B[C[j],3 * k] + | — 2 then A;q(e) = {3, 7, C[j], k}.

4.2.2 Generalization of the refresh

The principle of the generalized refresh is to evaluate the value of every index of an array
element before the evaluation of the value of the element itself. As we consider a general
framework, without restrictions to the case where such indices are known at compile-
time, we also have to deal with the case of an array index being itself an array element.
Therefore, the refreshgen is a recursive compilation function that calls a slightly different
version of refresh : the new refresh is a function creating code with guards.

refreshgen; (V' N V,, I);
refresh; (V' N V,,I);
refresh; (V, P) ifvV#0
refreshgen,; (V, P) = with V' = | Aina(v)
vev
nil fv=29

where refresh! = pri oI'", prl and I'" being modified versions of pr; and I respectively.
The function I'" produces a sequence of guarded communication routines?:

Gk, P, Wmek),
g(me, P, ?vw(u,mc)—»mc)

I"(V, P) = {

}mcG IveV.key(v,me)

where G : I x 2! x statement — statement is a compilation function that produces
guarded code in a dynamic case and unguarded code otherwise:

e if the value of P is known at compile-time (i.e. P = I or P = n(v) with v € V,),
s ifieP

nil otherwise

G, Ps) =

e if the value of P is known only at runtime,

G(s, P,s) = if i € P then s fi

*for the sake of brevity, we have chosen to present a “naive” I'". Indeed, it is possible to implement
one that will produce a far more efficient code.

21

The function I'" checks the same conditions as in the basic case, and pri(I'"(V, P))
keeps all constructions of I'" with me= 1.
We also need a trivial runtime version of ezec :

ezecl(v:=€) = G(1,m(v),v:=¢)

4.2.3 Compilation rules

In the conditional and iterative rules, the only modification to deal with is to replace
refresh by refreshgen. For the assignment rule, we have now to compute the refresh of
the left-side variable : if it is an array element, then its index has to be evaluated.

assignment rule

[v:=€}; = | refreshgen; (A(e), w(v));

refreshgen; (Aind(v),I);
ezec; (v =€)
condition rule

[if b then S* else S/ fi}; = [refreshgen; (A(), I)

if b then [S']; else [S/], fi
iterative rule

[while b do S od], = [refreshgen; (A(b), 1) ;

while b do [S];; refreshgen; (A(b),I) od

4.2.4 Correctness proof outline

Case of the scalar variables : for a set V C V,, we have the immediate result:
refreshgen; (V, P) = refresh; (V, P)

Moreover, if we assume that the restriction of I'" to V, checks the same conditions as I' (cf.
paragraph 3.2.2), then refresh! and refresh; produce the same communication sequences,
and therefore the processes have the same behaviour.

Case of the array elements : according to the definition of the refreshgen function,
each access to an array element v = Aley,...,en] with Aju(v) = {vq,...,v,} (where
each v; is a scalar) is translated into a refresh of all needed variables v,,...,v, on every
processor and therefore on the owner of v, followed by the refresh of v. Henceforth the
correctness of the latter is ensured. Moreover, the recursive style of refreshgen maintains
this correctness when the v; are array elements.

4.2.5 Example

To illustrate our model, we present a non-trivial example: the following program is a part
of the well-known Cholesky solver algorithm.

(* Declarations *)
A : array [1..n,1..n] of real;

x,p : array (1..n] of real;
i,j,k : 1integer;
1:=1;

22

while i<=n do
x[i):=Ali,i]; (1)
k:=1;
while k<i do
x[i]:=x[i]-A[i,k]?; (2
k:=k+1
od;
plil:=1/sqrt(x[il); (3)
ji=1+1;
while j<=n do
x[i):=A[1,j]; (4)
k:=1;
while k<i do
x[1] :=x[i]-A[1,j]1*Al1i,k]; (5)
k:=k+1
od;
Alj,1):=x[i]*p[il; (6)
ji=j+1
od;
i:=1+1
od

As usual in distributed programming, eficiency mostly depends on the mapping of
data on the processors; here the distribution is quite obvious: A, x and p are distributed
by row, i.e. Vi,j € [1,n],7(A[z,]]) = m(z[s]) = =(p[f]]) = {i} and the scalars ¢, 3,k are
distributed on all processors: 7 (i) = 7(j) = n(k) = {1,...,n}.

Let us consider the assignment (2):

refreshgen; ({z[d), A[s, K]}, 7 (z[s])) = pri(T7({z, ¥}, I)); pri (" ({z[¢], Alz, K]}, 7 (2[e])))

Notice that I'" ({7, k}, I) contains no message construct because for all / in I, ¢(é, l)=
¥(k,l) = 0 can be statically computed. And we have:

B z[t 1 x(z[iN) = g(h"’r(zli]),!vl—»h),
I ({z[d], A[Z, K]}, m(=[2])) { G(1, 7 (x[2]), Wy (v 1y—1) }ve{z[i],A[i,k]},he¢(v,1)

The principle is the same for the other assignments; in practice, the compilation
produces a lot of guarded message statements, but at run-time, only (6) will produce
effective refresh.

Considering that send;(V,J) is a function computing the send sequence of the vari-
ables of V from ! to each processor p € ¥(v,{)NJ, and that receive;(V) computes the
receive sequence on ! of each variable v of V from (v, 1), then the code on a processor [
will be for instance (it depends in fact on the chosen implementation of I'") the following
one:

1:=1;
wvhile i<=n do

send;({A[1,1]},n(x[1]));
23

GQ1,m(x[1)),receive;({Ali,i1}));
G(1,7(x[i]),x[i]:=A[4,i]); e
k:=1;
while k<i do
send;({x[1],A[1,k]},7(x[i]));
G(1,m(x[i]) ,receive;({x[i],A[i,k1}));
¢, 7 (x[i1),x[i) :=x[i]1-Ali,k1%); (@)
k:=k+1
od;
send;({p[i]},7(p[il));
GQ,m(plil),receive;(x[il));
GQ,m(plil),plil:=1/sqrt (x[i1)); (3)
Ji=3tL
while j<=n do
send; ({A[i,j]}, 7 (x[1]));
G(Q,m(x[i]) ,receive;(A[1,3]));
GQ,m(x[i]),x[il:=A[1,3]); (4)
k:=1;
while k<i do
send;({x[i],A[1,j],A0i,k]1},n(x(i]));
GQ,m(x[i]) ,receive/({x[i],Al[1i,3],Al1,k]1}));
G, m(x[i1),x[i) :=x[i]-A[i,jI*A[i,k1); (5)
k:=k+1
od;
send;({x[i],p[il},n(A[j,11));
G(1,n(Alj,1]) ,receive({x[i],p[i]1}));

GQ,n(Alj,1]) ,A[F,i) :=x[i]*p[i]); (6)
Jji=3+1

od;

1:=1i+1

od

Note that an extension of the optimized refresh mechanism (cf. section 4.1) to arrays
would allow the suppression of two useless refresh: those of A[i,j] in assignment (5) and
of p(i] in assignment (6).

Beside this, there are of course possible techniques for avoiding at compile-time the
computation of useless refresh such as, for instance, the refresh of variable A[i,k] of the
processor m(Ali,k])={i} towards the processor n(x[i])={i}. These techniques, based upon
domain analysis, are currently under study in our team, and we aim to integrate them in
our compiler.

4.3 Anticipation of message send

This section deals with a post-compilation optimization: one should notice that message
exchanges are placed as late as possible, i.e. right before the assignment or predicate, the
evaluation of which requires some variables to be refreshed. However, it is valuable to

24

anticipate as much as possible message sending, in order to minimize idle times during
the evaluation of receive statements.

This optimization is local to each process, since it takes each process independently
and produces an “equivalent” optimized process, with anticipated message send state-

ments.
4.3.1 Optimization rules

Let ~ be the asymmetrical binary relation over programs:

uFv

Vi=mE r~ !‘u,'_..]'

ni ~ lu;,;

u# v L#

i~ Ui i ~ Tu;

T

S ~ !u;_.j y S~ !u,'.._.j

Sis ~ lu;,;

St ~ !u,-_.j y Sf ~ !u;_,j
if bthen 5! else S/ fi ~ lu;_;

S ~ !u,-_.j
while bdo S od ~ lu,_;

This relation defines whether a message send can be swapped with a sequence of code
or not. The ~ relation is used to define the optimization function { - } : £ — £ which
is defined as follows:

fvi=e} = vi=e {nil} = nal
fluisi} =tuin; {Puini} = Tuis;
{if b then S* else S/ fi} = if b then {S'} else {S’} fi
{while bdo S od} = while bdo {S} od

{Sh=5"s,s~s {S}=5"s,s+#s
{Sis} = {STshs" {Sis} = Shs' s}

4.3.2 Proof principle

The principle of the correctness proof is to use the confluence property of both parallel
programs and to establish a correspondence between any execution of the source parallel
program and a particular computation of the optimized program. Definition 12 defines
this correspondence. Lemma 4 gives the elementary diagram that should be proved in
order to show the correctness (definition 13) of the optimization function.

In first place, a projection over sequences of message send actions is defined:

25

Definition 11 Let ®,_,;

{leritiier cer — {'€r—~1}iser cp b€ the function defined
below:

(I),'_.j(nil) = Tl'I,I

Dii(lein; - A) = lei; - i (A)
(3,9) # (k1)

D ;(lert-A) = @i;(A)

Definition 12 The relation = is defined as follows:

<q, (Si’ai).'el> é <q’,(Sf,af)‘-€,>
—

Viel, o = o

. I [Viel, \;S;={S:}
I(W)ier € ({teiitepsjer) { Vi,j € I, ®ii(A) = Bini(D)
VZ,] € 17 ql’,] =4qi; - 0i ((D"“J(A))

Definition 13 The anticipation function is correct if and only if either diagram holds:

L If M ({0, 0), (Si,0i)ier)) # {L}:

(0,..,0) (Sisoidier) 2 {(0,.-,0),({Sih,oidicr)
L L

(0,...,0), (nil.6)ie) & {(0,...,0),(nil,&:)er)
2. If M({(0,...,0),(Si 000,)) = {1

J

(v, .2 /
(0,..,0),(Sioier) = {(0,.,0), ({5}, 00)ics)
w bw
Lemma 4 The anticipation is correct if the following diagram holds:
A] !

<q,(5ia0i),‘€1> ~ <Qa<5i’a£)iel>
ba pe Lo
la la

~ /& A wTl A A ARTEEN
<q, (S, 0;>1.€I> ~ <q A5 U{>£61>
. o 2, ' le: . *
with a € {’U.—E, b’ ‘ei—'J}{,jEI, vEV, e€expr, c€E and 1yl € {'e’_’f}i.jély e€E”

Proof of lemma 4 By induction on the diagram of lemma 4, either diagram holds:

LI M({(9,..,0), (S, 00)e1)) # {L}:

((0,...,0) (S0, 0ier) & ((8,--.,0),(5H0)e1)
l* l*
((0,...,0), (nil,&:),¢p) (g, (nil, 6:);¢1)
However, from definition 12 we deduce that A = (9,...,0), hence ¢ = (0,...,0).
Therefore the first diagram of definition 13 is matched.

26

Qv

2. EM(((0,...,0),(S:,0:)i1)) = {L}:

The second diagram of definition 13 is matched.

Theorem 7 The optimization function { -} : L — L is correct.

Proof of theorem 7 By using lemma 4, it is sufficient to show the following diagram:

<Q) (S.',Ui>,~€1> & <q” (S;{,U:)i€1>
}* U l;* ﬂ’

<§, <S"&‘>g€1> <é,’ <S'{’ &£>i61>
la |l a

!

.] & phAw L e,
<‘1’ <Si’ ‘7‘>iel> ~ <q’, <S'{’ U'{>i€1>
With g, u' € {!Ci—»j}:,ja, e€E
e Clearly, we have:
Viel, 6;=6! (10)

¢ From definition 12 and the diagram above, we have:

;= ;- 9i (®i-;(A)) (11)
Gi; = i 0i (Dini(1)) (12)
‘7.,',1' = ‘I:,j * O ((I).'_.,'(u')) (13)

From (11) and (13), we deduce:

Gij =i 0i(Pinj(A - 4)) (14)
From (12) we have:
Gis =G 0i (Bini (™)) (15)
Therefore:
Gy =i 0i (Bimi(u - A 4)) (16)

The execution of a changes equally ¢ and §’, therefore:

i; = Gij- o ((I).'-q'(ﬂ_l A ﬂ')) (17)

27

e The sequence u~1- 4’ is the sequence of outputs performed in the right hand parallel

program and not in the left hand one. From definition 12 we have :

. I Vie I, {S:} = \;S!
. fy., . ’ Lt
I(\) € ({'v‘—‘J}vev.i,jeI) such that { Vi, €1, ®i;(\) = &;_.;(A)

a

Let (:\.) € ({!e‘—'i}:eE, i'je,)l be such that Vi € I, {$:} = Ai;S!. From (12) and
(13) we deduce : :

Vi,j €1 @ij(u™") ®ii(N) - Binsi(w') = Bii ()
Therefore we have:

Vij€l, B () =i (b7 A W) (18)

From equations (10), (17) and (18), we have shown that the last line of the diagram
matches definition 12. Which concludes the proof of theorem 7.

5 Conclusion

We have presented a formal explanation of automated distribution of sequential programs.
Though the technique of data-driven parallelization is widely accepted, it appears that
the formal description of its associated compilation rules, the semantic properties to be
preserved and the correctness proofs are quite difficult to establish. We think however
such a theoretical foundation is necessary to make the discipline in progress.

The main technical contributions of the paper are:

e a formal model based on products of labeled and partially deterministic transi-
tion systems, allowing the comparison of the sequential source behaviour with the
corresponding parallel ones.

e a proof technique based on confluence, which avoids the combinatorics of considering
all the parallel behaviours.

e a complete example of treatment of a simplified sequential language. Compilation
rules were detailed enough to permit a straightforward prototype implementation
in ML (CAML [11]), generating a distributed code written in ESTELLE [6] (an ISO
language to describe communicating processes) and experimented with our favorite
distributed environment [7].

By dealing with an optimization of the refresh mechanism and the formal treatment
of arrays in the language, we have also tried to show that our contribution may serve as
a basis for designing and proving other (and new) parallelizing rules.

28

6

Acknowledgments

The paper has benefitted by informal discussions with the members of the PAMPA team.
In particular, we would like to thank Frangoise André and Jean-Louis Pazat for proof
reading of the paper and criticisms on its practical aspects. Special thanks also to Rod-
erick McConnell.

Many thanks to Paul Caspi and Alain Girault (IMAG, Grenoble, France) for the
fruitful talks we had with them on the similar problem of distributing reactive programs.

References

[1]

(2]

8]

[4]

[5]

(6]

7]

8]
[9]

[10]

[11]

[12]

Frangoise André, Jean-Louis Pazat, and Henry Thomas. Pandore: a system to
manage data distribution. In ACM International Conference on Supercomputing,
June 11-15 1990.

K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer-Verlag, 1991.

A. Arnold. Transition systems and concurrent processes. Mathematical Problems in
Computation Theory, Banach Center Publications, 21, 1988.

Luc Bougé. On the semantics of languages for massively parallel Simd architectures.
Research report 91-14, LIP/ENS Lyon, April 1991.

David Callahan and Ken Kennedy. Compiling programs for distributed-memory
multiprocessors. The Journal of Supercomputing, (2):151-169, 1988.

ISO 9074. FEstelle: a Formal Description Technique based on an Fztented State
Transition Model. 1SO TC97/SC21/WG6.1, 1989.

C. Jard and J.-M. Jézéquel. ECHIDNA, an Estelle-compiler to prototype protocols
on distributed computers. Concurrency Practice and Ezperience, June 1992,

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

H. R. Nielson and F. Nielson. Semantics with Applications: a Formal Introduction.
Wiley, 1992.

Edwin M. Paalvast, Henk J. Sips, and A.J. van Gemund. Automatic parallel program
generation and optimization from data decompositions. In International Conference
on Parallel Processing, August 1991.

P. Weis, M.V. Aponte, A. Laville, M. Mauny, and A. Suarez. The CAML reference
manual. Rapport Technique 121, INRIA, septembre 1990.

Hans P. Zima, Heinz-J. Bast, and Michael Gerndt. Superb: a tool for semi-automatic
mimd/simd parallelization. Parallel Computing, (6):1-18, 1988.

29

P1

PI

P1

PI

P1

Pl

PI

PI

658

659

660

661

662

663

664

665

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA

MULTISCALE SIGNAL PROCESSING : ISOTROPIC RANDOM FIELDS ON
HOMOGENEOQOUS TREES

Bernhard CLAUS, Ghislaine CHARTIER

Mai 1992, 28 pages.

ON THE COVARIANCE-SEQUENCE OF AR-PROCESSES. AN INTERPOLATION
PROBLEM AND ITS EXTENSION TO MULTISCALE AR-PROCESSES

Bernhard CLAUS, Albert BENVENISTE

Mai 1992, 36 pages.

EXCEPTION HANDLING IN COMMUNICATING SEQUENTIAL PROCESSES
DESIGN, VERIFICATION AND IMPLEMENTATION

Jean-Pierre BANATRE, Valérie ISSARNY

Mai 1992, 38 pages.

REACHABILITY ANALYSIS ON DISTRIBUTED EXECUTIONS
Claide DIEHL, Claude JARD, Jean-Xavier RAMPON
Juin 1992, 18 pages.

RECONSTRUCTION 3D DE PRIMITIVES GEOMETRIQUES PAR VISION
ACTIVE

Samia BOUKIR, Frang¢ois CHAUMETTE

Juin 1992, 40 pages.

FILTRES SEMANTIQUES EN CALCUL PROPOSITIONNEL
Raymond ROLLAND
Juin 1992, 22 pages.

REGION-BASED TRACKING IN AN IMAGE SEQUENCE
Francois MEYER, Patrick BOUTHEMY
Juin 1992, 50 pages.

CORRECTNESS OF AUTOMATED DISTRIBUTION OF SEQUENTIAL
PROGRAMS

Cyrille BAREAU, Benoit CAILLAUD, Claude JARD, René THORAVAL

Juin 1992, 32 pages.

30

Imprimé en France
. Paf
.} Institut National de Recherche en Informatique et en Automatique

ISSN 0249-6399

