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Abstract

In this paper convergence and rate of convergence results for nonlinear con-
strained ill-posed inverse problems formulated as regularized least squares
problems are given.



1 Introduction

The purpose of this note is to analyze the convergence of constrained regu-
larized least squares problems as the regularization paranieter and the error
level converge to zero. Specifically, consider the problem

(P) min [»(2) — z]? over 2 € C

where ¢ 1s a possibly nonlincar mapping, C is a closed convex set and z is
fixed. Given an a-priori guess x¢ of the solution of (P), we are interested in
retrieving the solution & of (P) which is closest to the a-priori guess zy (“zo-
minimun norm solution™). If the inverse of ¢ lacks favorable properties then
one may choose a regularized least squares formulation to obtain approximate
solutions to the above problem. Thus for small ¢ one introduces

(P,) min |o(0) — 2|2 + 2]a — xo)* over 2 € C.

In the formulation of (P,) we also allow the situation where the data z contain
error. The error corrupted data are denoted by z, and they are assumed to
satisfy |z — z¢| < 6. The uestion of convergence of the solutions «® of (P,)
as 6 — 0.¢ — 0 arises. The main results of this paper can be summarized as
follows:

e Provided that a qualification hypothesis holds, the 2g-minimum norm
solution a satisfies necessarily

(N) r9— 2 € Range ()" +T(C,2)".

Here /(2)" denotes the adjoint of the linearization of ¢ at & and
T(C, z)" is the polar cone of the tangent cone T(C, 1) to C at 2.

o If (N) is satisfied and ¢ is linear, then 2¢ — 2 as soon as ¢ — 0 and
(g — 0.

o If the regularity hypothesis
(R) Ly — & € Range p'(&) + I'(C, &)~

is satisfied (with additional assumptions in the nonlinear case), then
| 28 — & ||g= O(V8) as soon as € — 0 and 6 ~ €.



The proofs involve only “hard analysis”, no weak convergence arguments
are used.

Concerning related investigations we mention the books by Badeva and
Morozov, and by Groetsch [BM,G], and the references given there. In [G]
the rate of convergence question is treated for linear inverse problems us-
ing singular value decomposition. Rate of convergence results for general
nonlinear inverse problems can be found in [EKN. N4]. [n these investiga-
tions constraints are not considered explicity and the regularity condition
(R) for the rate of convergence results mentioned above is z, — £ € Range
@'(2)". - In [N1, N2] Neubauer has given a thorough analysis of Tikhonov
regularization for constrained linear inverse problems. In fact the result on
O(V/6)-convergence is also obtained in [N1] for linear inverse probiems ander
a regularity condition which is formally different from (R). We shall show
that the regularity conditions in 'N1] and (R} are equivalent. Our proof is
different from that in [N1] and it is given in such a way that the extension
to nonlinear problems is rather straightforward.

The paper 1s organized as follows. In section 2 we derive the necessary
condition (V) for the zo-minimum norm solution £ in the case where p 1s
a linear operator A. This justifies to call (R) a regularity condition. It will
also be demonstrated that (R) is equivalent to the existence of a Lagrange
multiplier for the constrained minimum norm problem defining Z. Sections 3
and 4 are devoted to convergence and rate of convergence analysis of linear
and nonlinear problems respectively.

2 Preliminaries

Here we consider the linear case.

(1) The unregularized problem.
We shall use the following sets and mappings:

E.F --. Hilbert spaces.
C ... closed convex subset of E£.

-



A:E — F --- continuous linear operator,

z € [° --- error-free observation.

It is assumed that z admits a projection Z on rg A(C), the range of A
restricted to C'. Due to convexity of C and linearity of A the projection z 1s
unique. The unregularized problem is given by:

(P) { find £ € C such that J(z) = |A(z) — z|? is minimal

over C at .
This problem admits the following set of solutions:
X={2eC:Ax) =1z}

It is a closed convex subset of E.

(i1) The regularized problem.
In addition to the above quantities let us denote by

x9g € E .-+  a-priori guess,
z, € F' -+ sequence of measurements for z with
&, =]z — 2| =0,
¢, >0 ---  sequence of regularization parameters with ¢, — 0.

The n-th regularized problem is defined by:

find &, € C such that
(Py) Ju(a) = |Ax — z, |5 + ]z — xol%
is minimal over C at &,,.

It 1s simple to establish:

Theorem 1. For every n € N there exists a unique solution &, of (Fy).

(i11) The minimum norm solution of the unregularized problem.
The choice of an a-priori guess 2y € F implies the selection of a specific



solution Z in the solution set X of the unregularized problem. It is the
element closest to 2y and is found by solving

find & € X such that [z — zo|* is minimal over
Q) X at 2.

Clearly (@) has a unique solution which will be referred to as zo-minimum
norm solution. To exhibit some of its properties we shall utilize the following

notions. For any convex set ¥ C E and z € K the tangent cone to K at
is defined by

T(K,z)={y € E:3x, € K, A, >0 with A\ (2, — ) — y},
and the negative polar cone N(K,z) to K at 2 is given by
N(K,2)=T(K,2)" ={y€ E :<y,z >g<0forall z € T(K, z)}.

The tangent cone to a convex set and the negative polar cone are closed
convex cones. The tangent cones to X and C satisfy:

Lemma 2 For any + € X we have
T(X,z) Cker ANT(C,2).

Proof. Let y € T(X, x). Then there exist sequences {z,} in X and {\,},
with A, > 0, such that y = lim A, (2, —2). It follows that y € ker A and since
z, € X C C we also have that y € T(C, z).0

Concerning the converse to the inclusion in Lemma 2 we make the fol-
lowing

Definition. An element x € X is said to be qualified, if
T(X,z2)=kerANT(C,z),

and X is called qualified if all of its elements are qualified.

The set X 1s obviously qualified if A is injective or if C = £. If

0€ int (C— ker 4) (1)



then X is also qualified [A. pg 37]. Here int denotes the interior of the
indicated set. To describe a situation when x is not qualified let us assume
that C is a closed ball in £ and ker ANC = {a}. If ker A is not trivial, then
z 1s not qualified. - For the case of box constraints we have the tollowing
result:

Proposition 3. Let C be defined by a finite number of linear constraints:
C = {.1' € £ ."],’.’T S [)1.1 € [ = {l, . ..']VC}},

where M, are bounded lincar functionals on £ and b; € R. Then X is quali-

fied.

Proof. Step 1. For any & € C we define

K = {ye€E:3xeC.A>0suchthat y = MNa — 1)}
= JAC -2
AS0

and prove that 1'(C, &) = K. By definition of T(C, #) we see that T(C, ) = K
and hence 1t suffices to show that A 1s closed. Let y, € K and y € £ be such
that limy, = y. As y, € i there exist A, > 0 and z,, € C such that y, =
An(2,2). Let us denote by I(2) the set of active indicesat 2 : I(2) = {1 € I :
M;z = b,}. Then we find My, = A\ (M2, — M;z) = A\, (M2, — b;) <0 for
allz € I{z)and n = 1.2,---. Hence M;y < 0 for all : € I(z). Next we choose
A > 0 small enough so that M2 + AMy < b; for all ¢ g I(z). It is simple to
check that  + Ay € " and hence y € K and K is closed.

Step 2. We prove that (ker AN K) C T(X,:i.). Let y € ker AN K be
given. Then y = Ma — &), where A > 0 and =z € C, and Ay = 0. Hence
Az = Az.so that v € X and y = Az — Z) € T(X,2). This ends the proof.
O

The solution & of () satisfies the following optimality condition.

)



Theorem 4. If the zo-minimum-norm solution # is qualified then

zo—2€rg A+ T(C,2)". (2)
Proof. The Euler condition for (@) is given by
<zg—z,z—><0forall z € X.

It follows that
<zog—z,y><0forally € T(X, 1),

and in trems of the negative polar cone
zo—2 €1(X,2).
The qualification hypothesis on & implies that
zo—2 € (ker ANT(C, 7)),

and, using a property of polar cones

2o — 2 € (ker A)- + T(C,2)~.

This further implies that

xg—1r erg A+ T(C.2).

Let now 1 > 0 be given arbitrarily. Then we can first find z € rg A™ +
T(C,z)~ such that
N n
.y < =
|20 — 2 — 2] < 5
Then z = 2y + z, with ; € rg A” and 2, € T(C, )", and we can find
z3 € rg A such that |2, — a3 < 1.

Hence we obtain
|eo — & — (w3 + 22)| 2 |vo — & — 2|+ |o — a3 — 22| > 7,

which proves the announced result. O
It is a simple consequene of the poof of Theorem 4 that (2) is not only
necessary but also sufficient for & to be the solution of (Q). We have
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Corollary 5. If @ satisfies (2) then it is the zg-minimum norm solution

of (P).

Under assumption (1) the conclusion of Theorem 4 can be sharpened:

Theorem 6. If 0 € int (C —ker A), then the zy-minimum-norm solution
z satishes
zo—2 €rg AT+ 1T(C,2)7,
Proof. Under the assumption of the theorem we have

T(X,3)” = g A"+ 1(C,3)7,

[A, pg. 57]. Referring back to the proof of Theorem 4 we obtain the desired
result. O

(iv) The regularity condition.
In order the obtain convergence rates for the regularized problem as é, — 0
and €, — 0 we shall require the condition

:I:O_i‘e rg A.+T(Cai’)_a (3)

which is referred to as regularity condition. We give now an interpretation of
this condition in terms of the existence of a Lagrange multiplier. Condition
(3) implies the existence of w € F and fi € T(C, )~ such that

To— 2T = A0+ ft.
It follows that
<zg—2,2-I>p=<w,Alz—-2)>p+ < pax—21>g foralla e C
and therfore
<t—-zp,x—T>p+<w, Al —2) >p>0forall 2 € C.

This 1s equivalent to saying that the Lagrangian

1 .
L{z,w) = ;l(L‘ — x0|§5+ <w,Ar - :I>fp

7



satisfies
L(z,w) < L(z,w) for all z € C,

which means that @ € F is a Lagrange multiplier for the constraint Az = 2.
Hence we see that the regularity condition (3) is equivalent to the existence
of a Lagrange multiplier w € F for the problem of projecting the a-priori
guess xo onto C under the constraint Az = 2.

3 Convergence of regularized linear prob-
lems

Concerning convergence and rate of convergence of the solutions &, of (P,)
we have the following result.

Theorem 7. (i) If the zo-minimum norm solution & satisfies

(H1) zo— 1 €1g A+ T(C, %)

(which is the case if 2 is qualified) and if ¢, — O,f: — 0, then the
solutions &, of (P,) converge strongly to z.

(1) If the regularity assumption

(H2) zo—2 € 1g A"+ T(C,2)”

holds, then

. . ) .
&, — 2|g < 6—” + €:|W|F

n

and
|Ad, — 3| < 26, + |0|F),

where w € F'is any element satisfying

xo—2 = A"w+ g with g € T(C,z)".

8



In particular, if ¢, — 0 and €2 ~ 9, then
|, — &g = 0(8)/?),

and

F = O(én)

Proof. Step 1. We prove that (H1) implies the following a-priori esti-
mate:

|Ad, — 3

for all n > 0 there exists w € F such that
|AZ, — 2| < e +2(6, + 2|ww|p) (4)
|3, — 2 < 2n + :5:* + €, |w|F.

Let 7 > 0 be given. Then (H1) implies the existence of w € F and u €
T(C.2)” such that
g — & — (A™w + p)|e < 1.

Since &, 1s a solution of (P,) it follows that
Jo@,) < Jp(x) for all 2 € C.
Choosing ¥ = @ vields:
| Az, — :,L|i~ + 62|i‘n — l‘u|35 < |Az — :,1|§; + ci]x — 170[?5-

Now we proceed similarly as in [EKN, Theorem 2.4]. Since the aim is to
estimate |AZ, — Z| and |2, — | we rewrite the above inequality as

|AZ, = 2[F + i, — & < |AZ — zalk + €1]E — zol}

E
+Az, — 2E + Eld, — 2L - |Ad, — z|3 — €2, — 20|,

Using the identity a® + 6% — (¢ + b)? = —2ab yields

I ~

. ~2 24 2 s s 0,4 . .
|Az, = 2|+ e l|t, — 2| <2< Al — 2.2, — 2 >p +26fl < Tp—2T,29—1 >f .

This further yields
|AZ, — 2]% 4+ €Eli,— 3L <2< A%, — 3,2, —2>p +2< A, — 3,2 —%>p
+ 2 <, —2x0— 32— (Aw+p) >g 26 <&, — 2, A"w >g

2 “ A
+ 2, <3, — .0 >F.

9



Since by assumption 2 is the projection of z onto rg A(C) and since
u € T(C,z)” the second and the last term on the right hand side of the last
inequality are negative, and we obtain

|AZ, — 2% 4+ |3, — 22 <2< Afy— 3,2, — 2 >p

+ 262 <Tp—T,29— T — (A"w + ) >g —+—‘2631 <T,—Z,A%w >g.
Rearranging terms yields

|Az, — 215 4+ E|3, -3 <2< A%, - 2,2, — 24+ Ew >p

+ ‘Zc:f1 <Tp—T,29—-2—(ATw+ p) >g .
Since [z, — z|F < 6, and |xg — & — (A™w + )| <y we obtain
|AZn — 2|7+ ealdn — &g < 2060 + Clwlr) AT, — 2[F
+ 2|, — e,
which can be expressed as
a® + b* < 2aa + 23b.
with the obvious definition for a.b.a. J. This last inequality 1s equivalent to

(a — a)’ + (b - 3)7? < a? 4+ 3%

which implies
max(« — a,b— 3) < (0,2 + ’,32)1/2_‘

and since (a? + $%)1/? < o + B, we have
a<2a+ 3 and b< a+ 283,
which gives the desired estimates (4).
Step 2. Let ¢ > 0 and choose = 5. From Step | we know the existence

of w € F such that

|.f7,l - ilE <



Using the asymptotic assumptions on 6, and ¢, this implies the existence of
no such that |z, — |g < € for all n > ng, and therfore limz, = z.
n

Step 3. The regularity assumption (12) allows to take = 0 in (4).
Together with the assumptions on the asymptotic behavior of 4,, and ¢,, this
implies part (ii) of the theorem. 0

Remark 8. Concerning the first part of the theorem, we note that if &
is qualified (e.g. if C = E, or if A i1s injective, or if C is defined by a finite
number of linear constraints, or if 0 € int (C' — ker A)) then (H1) is satisfied
due to Theorem 5 and strong convergence of &, to Z holds. Using weak
subsequence arguments it can be shown [N2] that (H1) is in fact superfluous
and strong convergence of z, to Z holds in any case. The advantage of (H1)
are the explicit estimates (4).

Remark 9. The conclusion of the second part of Theorem 7 is also ob-
tained in [N1] for the case v¢ = 0 under the condition that £ € rg (P A"),
where Pc denotes the metric projection in F onto C. The analogous condi-
tion in the case that a nontrivial a-priori guess x¢ is used is given by

(H2') £ € Pc(rg A" + {20}).

We now argue that (H?2') and (H2) are equivalent. In fact (H2') is
equivalent to the existence of y € rg A* such that

<y+ayg—T,c—T><0forallxeC,

which 1n turn is equivalent to

<y+zo—E,h><0forall heT(C, &)= |JANC - {i}).

A>0

The last fact can be expressed as
y+ao—2e€T(C.2)

11



or equivalently as
zo—1 € g A"+ T(C,z)",

which i1s (H2), as desired.

In the following result rate of convergence is obtained by assuming regu-
larity of o — & in terms of fractional powers of A*A.

Theorem 10. If for some v € [0, 3] the 2¢-minimum norm solution &
satisfies the regularity assumption

(H3)  ao—& € g (A"A) + T(C, )",

and € = ¢(4) is choosen according to c(€)e?“*! ~ § where

) 62(1—21/)t'2|/

2 —
[ (6) = /0 H-—cszt

2

w|*,

To— & = (A"A)"w + 1 for some 7 € T(C,z)” and E, is the spectral family
of A*A, then

(627 for v € [0, 1)
. . olé2*' ) for v € [0, 2
Eu = dle = { 0(6}/2) for v = 1 :

2

as § — 0+,

Proof. Step 1 (Disguise of c?(¢)). Applying Holder’s inequality (with
p=1,9=:L) wefind

1-v

62(1—21/) t?u

c*le) = /0 (L + €)= (¢ & )2

2

Y 12y 1-v 50 v
o] [[ ot
) 2 1 =20 1-v
[/0 (t_iez) o dEtMﬂ :

12
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and hence c(e¢) = 0 as e — 0 if v € {0,1) and c(€) is bounded if v = 3.

Step 2. The optimality condition for the convex problem (F,) is given
by
<(ATA+ ), — A"z, —xg,c — 2, >p> forallce C.
Introducing the inner product
<ay>,=< (A"A+¢€)z,y >

on E the optimality condition can be equivalenty expressed by

<3p— (ATA+ ) YAz, + €€2¢),c— 3, > > 0forallz € C
T, € C.

Thus £, = PR((A"A+ €2) (A2, + 220)), where PZ denotes the projection

onto C with respect to the < -,- >, inner product. Since A*AZ = A*Z we
also find

<(AA+ ) — i — Az —€ehc—i>>0forall ceC,
and equivalently
<E—(AA+E)NEL+ A2+ €24)),c— & >,> 0 for all ¢ € C,
and therefore
&= PR(AA+ &) N Ed + A7z + 7).
Since the projection onto a convex set is a contraction we obtain
|0 — &0 S (A"A+ ) A (20 — 2) + e (ATA + €1) (2o — & — 1)
This further implies

~ ~

T, —z| <

€n

Ep = &l SNA"A+E)TV2A (20 — 2)| + E(ATA + €2) V(AT A) D)

— 1+2v
= O(8,) + ¢ [/0
= 0(6,) + &, c(e),

oo 62(1_2U)t2'/ 1/2
B
t+€?

13



and therefore

T, — 2| = O(f—n + 6721”6(6)) = 0(6% : c(e)ﬁ)

n

In view of Step 1 this ends the proof. O

Remark 11. It can be seen from the last step of th(g proof that if € is
chosen according to €(6) ~ §T% then |z, — Z|g = 0(673”7) for v € [0, 3].
In the unconstrained case the result analogous to Theorem 10 holds for all
v € [0,1] and the optimal rate O(6%/3) is obtained for v = 1, see [G], for
example. In the constrained case we failed to increase the rate beyond O(v/8)
by extending the range of v beyond ,1—, Some rather involved conditions for
convergence of &, to & like O(6%3) are given in [N1].

Remark 12. The regularity condition (H3) can be equivalently expressed
as
(H3) ¢ € Po(rg (A"A)Y + {x0}).

In the noise free case (i.e. z, = z for all n) and under additional conditions
different from (H3') the conclusion of Theorem 10 was also obtained in [N3].
In the unconstrained case the result analogous to Theorem 10 holds for
all v € [0,1] and the optimal rate is obtained for v = 1, see [G] for example.

4 Rate of convergence for regularized non-
linear problems

The following assumptions will be made throughout this section:
p:CCE—F

p is weakly sequentially closed and continuously Fréchet differentiable,
z € p(C), i.e. z = I in the notation of section 2.

14
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Here ¢ is called weakly sequentially closed if for any sequence {z,} in C,
weak convergence of z,, to z in E and of ¢(z,) to y in F imply ¢(z) =y.

(i) Necessary optimality condition for zo-minimum norm solu-
tion.
Due to the attainability assumption z € ¢(C), the problem

(P) find z € C such that J(z) = |p(z) — z|% is minimal over C at &

admits the solution set X = {2 € C : ¢(z) = z}. The regularized problems
are given by

find z, € C such that

(Pn) ‘]n(l) = |‘P($) - 2n|%‘ + Gill‘ - x0|2E
is minimal over C at z,,,

where z,,, z¢ and ¢, are defined as in section 2. Weak closedness of ¢ implies
existence of solutions z, of (P,). It will be shown that these solutions con-
verge with rate O(\/8,) to an z¢-minimum norm solution of (P), i.e. to a
solution of

(Q) find £ € X such that |z — zo|? is minimal over X at 2,

provided zy — % satisfy an approriate regularity condition. Again weak se-
quential closedness of ¢ implies the existence of a solution to (@) [EKN],
but differently from the linear case, X is not convex and solutions to (Q)
are not necessarily unique if ¢ is nonlinear. To state a necessary optimality
condition for solutions to (@) we define the sequential tangent cone to X at
r€ X as

T(X,z)={h€ E:3z, € X,\, >0,\, = 0, with AJ (2, — z) — y}.

In the case of convex X this cone coincides with the cone where the condition
An — 0 is omitted. A short calculation using the fact that  is Fréchet
differentiable shows that

T(X,z) C kerp'(z)NT(C, z) (5)

15



for any z € X. Any xo-minimum norm solution of (Q) clearly satisfies
zo—2€T(X,2)". (6)

To further exploit this fact we again require a qualification condition,
which generalizes the one given in the linear case. The clement £ is called
qualified, if

T(X,%) =ker'(2)NT(C, £). (7)

We next give a sufficient condition for 2 to be qualified in the case where
C={x€F:g(x)e K},

and
rg (p) C G C F,

where K is a closed convex cone in a real Banach space Y, g is a continuous
mapping from E to Y, which is convex with respect to the ordering induced
by K, and where (G is a real Banach space. It is also assumed that ¢ and ¢ :
C — G are twice Fréchet differentiable at . The motivation for introducing
G is given by the fact that the regular point condition below will require ¢'(2)
to be surjective. If ©'(Z) was surjective onto F, however, then this would
imply existence of a continuous (generalized) inverse of ¢'(Z), an assumption
which we clearly want to avoid.

Lemma 13. If in addition to the above assumptions on ¢ and ¢, K +
Ry(2) is closed and & is a regular pointof X = {z € F: p(z) = z,g9(z) € K},

T )0
g(@)) K +Rg(z)) \Y)’

Proof. In view of (5) we need to show that

then z 1s qualified.

kero'(2)NT(C,2) C T(X,z).

L6



The regular point condition implies that
kero'(2) N L(C,2) C T(X,2),
where L(C,2) = {x € E : ¢'(&) € K + Rg(2)} is the lincarizing cone of C at
z [MZ, Lemma 2.1]. Since i\ + Rg(#) is assumed to be closed, the linearizing
cone coincides with the tangent cone and we obtain

ker o' (#) N L(C, 3) = ker o'(2) N T(C, #) C T(X, %),

as desired.

Theorem 14. If an xg-minimum norm solution & is qualified, then

v — T € g (@) +T(C,2).
If, moreover, 0 € int (C — ker p'()), then
vo— & € g (&) + T(C,2).
Proof. Due to (6)
< a0 —3.h >< 0, for all h € T(X,#).
The proof is now identical with that of Theorems 4 and 6 when A is replaced

by ¢'(&).

(ii) Rate of convergence

Theorem 15. Let 2 be an 2¢-minimum norm solution which satisfies

(H4)(1) 2o — T € rg p'(2)" + T(C, &)™ (regularity condition)
(i1) there exists L > 0 such that || ¢'(2) — ¢'(2) ||€ L]z — | for all z € C,
(ii1) Ljw|r < 1, where i@ € F is an element satisfying



To— 2 = (z)w+ 4 with 4 € T(C, 1),
and let {Z,} be any sequence of solutions to (P,). Then

. . 1 6

n 2y
En = 2|p € —x= (" + |0

-l u‘;|p<cn r)

lp(@n) = 2lF < 2(6a + enld]r).

and

In particular, if ¢, — 0 and €2 ~ §,, then |&, — 2|g = O(6}/?) and

lp(Zn) = zlF = O(dn).

Proof. Due to (H4)(i1) there exist r, € E such that

O(2n) = w(2) = ()2, = ) + 70 (8)
and |r,|p < 3L|2, — &[*. Following the argument in the proof to Theorem 7
we find
Ip(2,) — 2|2 e a2 €9 e s(h ) s s
Yo ln) ara + 671|:l’71 :Z’iE = = < ‘r’(:l'n) ~e<n ~ >F
+ 22 < i, —F,20— & > .
By (H4)(i) this implies
|“ro(i‘7l) - Zﬁ;- + 6n‘;i'n - :1‘125 S 2 < Y(ln) I In— T >F
+ 26 <, - P(R)T+ i >
with w € F and g € T(C,2)~. This further gives
]‘P(in) - :‘?P + 6,21 -;i'.n - :i‘2E S 2< 99(in) — Iy T I >F
4+ 22 < (@) (@0 — 2), 0 >p=2 < p(dn) — 2,20 — 2+ E€0 >p
+ EL|b|r|da. — &%,

where we used (8). Rearranging terms we obtain

(&) = =l7 4+ eh(l = Liblr)l&, - &k
< 2Abu + lile)le(Ea) = <l
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and the desired result follows.

Remark 16. Using weak subsequential arguments one can show that any
sequence {Z,} of solutions of (P,) contains a subsequence which converges
strongly to an 2zg-minimum norm solution of (P), provided that ¢, — 0 and

€n

&a _, 0. We also observe that under the assumptions of Theorem 14, the

To-minimum norm solution & is unique in C.
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