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Regularization in State Space

Guy Chavent *f Karl Kunisch *

June 11, 1992

Abstract

This paper is devoted to the introduction and analysis of regularization in state space for
nonlinear illposed inverse problems. Applications to parameter estimation problems are given
and numerical experiments are described.

1 Introduction

The objective of this paper is the study of a regularized least squares formulation for nonlinear
illposed inverse problems. Specifically, let v be a mapping from a subset C of a space E
(parameter space) into a space F' (state space), and let A be a linear operator from F' into
a space G (measurement space). The mapping » may typically be the parameter-to-solution
mapping of a partial differential equation, and A may represent point evaluation or it can
be an injection operator from a function space with finer into a function space with coarser
norm. realizing the fact that in applications it may be more realistic to assume (accurate)
measurements in the coarser rather than the finer norm.

A nonlinear least squares formulations employing regularization in parameter space is
given by :

(1.1) inf | Ap(z) = 21g +¢* | 2 = zeat |-

where = € R is the regularization parameter. = is the measurement and z.s represents an
a-priori guess to the “generalized inverse” z* of A¢ at z,i.e. Z is defined as the solution to :

(1.2) mig | Ap(z) - z &,

provided. of course. it exists. Investigation concentrating on (1.1) (with F = G. A = id)
were carried out in ([2. 7. 13. 16. 17]). for example.

The regularization technique to be studied in this paper will not be in parameter, but
rather in the state space. It is motivated by the following consideration. In applications the
nonlinear mapping ¢ : C C E — F may be wellposed. with the only illposedness arising due
to the linear mapping A which may be compact or may even have finite dimensional range.
Thus we consider the situation :
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It is then natural to regularize in the domain of A rather than the domain of ¢. In this
way we arrive at a formulation of the inverse problem which involves regularization in state
space :

(1.3) inf | Ag(z) - = & +e% | w(z) - £ 1%,

where z € G and € F. Of course, z could be chosen to be Az, but we rather think of
z € G as the available observation and of  constructed from 2. For example, if z represents
pointwise data in a finite dimensional space G and if F is a function space, then % can be an
interpolation in F of the pointwise data. If both G and F are function spaces with F strictly
embedded in G and z € G but =z € F, then Z would arise from Z by a smoothing process.

We shall concentrate on a study of (1.3). In section 2 it will be justified to call (1.3) a
regularization technique for determining # from the data =, by analyzing the properties of
the solutions z° of (1.3) as ¢ — 0 and as (.z) varies in F' X G. These results are based on
a wellposedness assumption of the nonlinear mapping ¢ : E — F. Examples satisfving this
assumption are given in Section 3. Many results in the abstract as well as in the numerical
treatment of optimization problems rely on the “second order sufficient optimality condition”
which, roughly speaking, is the positivity of the Hessian of the cost functional at the minimizer.
Section 4 is therefore devoted to a study of the second order sufficient optimality condition
for the regularized least squares problem with regularization in state space.

Numerical experiments were carried out demonstrating that regularization in state space
can be an effective tool for solving nonlinear illposed inverse problems. These results are
given in Section 3.

2 Basic Properties
Wovnnsider 1o ppebion
(P min b Agia) =z 5 47| g(a) =3 ]f; over r € C,

where = € R. - 2 (7.2 2 F.E and F are reflexive Banach spaces. G is a normed
Htear space. O iy a bouaded sabeet of £ and 4 0 F — G is a continuous linear operator.



In applications 4 may be an embedding, a restriction or a point evaluation operator. The
following hypotheses will be referred to :

(H1) ¢:C C E — Fis weakly sequentially closed, i.e.
T, — z in E with z, € C, and p(z,) — o in F, imply
z € C and p{z) = H.

(H2) ¢ is continuously invertible at £ € C, i.e. if ¢(2,) — 9(2)in F,
then z, — Z in E.

Further we introduce the attainable set V = {Ap(z):z € C}.

Proposition 1 (Existence). For all € # 0 there exists a solution z° of (P*), provided that
(H1) holds. If in addition p(C) is bounded in F, then there ezists a solution T of the unreg-

ularized problem (P°).

Proof

Let ¢ # 0 and let {z}32, be a minimizing sequence for (P?). Then {{(zn,¢(zn))}i%, is
bounded in E x F. Therefore a subsequence, again denoted by {(zn,¢(zn))}2%,; converges
weakly in £ X F to a limit (z°,¢°) € E X F. Due to (H1) we have z° € C and ¢(2%) = ¢°.
Weak lower semicontinuity of the norms implies that z° is the desired solution of ( P¢).

The set of solutions to (P¢) is denoted by X°*.

Proposition 2 (Monotonicity). Let s > ¢, > 0 and let z* denote a solution of (P*).

Then : ‘ .
(i) sup|@(z?)— Z|p<inf | p(z) - 2 |F,
(ii) sup | Ap(z®) - z |g< inf | Ap(z®?) - z |G .

If the unreqularized problem has a solution Z then moreover :

e

(1) (| Ap(x?) — 2 |& +5 | p(22) = 2 |F) < distg(=. V)2 + 25 | w(2) - £ |F

for all z% € X*2,

The sup andinf are taken over z® € X*'.i = 1.2, and distg(z, V) = inf{] z—v |g : v € V}.

Proof
Let z* € X** be arbitrary. Adding (¢} —¢?) | ¢(z°2) — £ |% to both sides of :
| Ag(e™) = 2 |& +e1 [ l2™) = IS AG(2™) = 2§ +e] [ 2(2™) = 2
yields
2.0y 1 AREN) == (G el | o(a) = 2E = ([ (en) - 2R - (o) - 21R)
Sl Ae(e) = 2 g +ed [ o(2®) = Z{ES] Apla™) = 2 G +23 fela™) = 2.
Estimating the first term by the last gives
S(laa™) =2~ pte = 3 F) <23 (1ae™) = 33 - [ A - £ 1F)

v 2 2 v
Since sy < =3 we find :



| ¢(2%2) = 2 |p<| o(z*) - 2 |F,

which implies (i). The first inequality in (2.1) implies :

| Ap(a) = = 2 457 [ 2(z7) = £ [2<] Ap(a) - 2 (% +¢2 [ p(2%2) = 7 [2

and due to (i) this gives :

| Ag(z) = 2 [6<] Ap(z®) - 2 g,
and (ii) follows. Assertion (iii) follows directly from the fact that z*2 is a solution of ( P¢2).

Proposition 3 (Stability). Assume that (H1) holds. Let ¢ # 0 be fized, let {(3n,2n)} be a
sequence in F X G withlim(Z,,2,) = (£,2) in Fx G and let z,, be a solution of (P¢) with (2, z)
replaced by (Z,,zn). Then there erxists a weakly convergent subsequence, every weak limit z*
of such a subsequence {z,.} is a solution of (P%) and p(zn,) — @(z*) in F. If moreover
(H?2) holds at x~. then the sequence r,, converges strongly in E to z~.

Proof

Let {z,} be a sequence of solutions to the problems ( P¢) with (Z, z) replaced by (Z,, zn).
Since C and {(2n,2,)}22, are bounded it follows that {(zx,¢(zn))}3, is bounded in E x F
with z,, € C. Thus there exists a subsequence denoted by the same symbol with a weak limit
(z7,¢") in E x F. Due to (H1) we have z* € C and ¢(z") = ¢". Note that :

| Ap(z™) — 2 &+ | pfz™) - 2 |}
5 <lim, o (| A@(2n) = 20 |5 +€2 | @(%n) = Zn |})
(2.2) . 2 2 s (2
<limp—oo (l Ap(z) = zn 'G +< l W(z) — Zn lF)
=| Ag(z) - 2 &+ elz) - 2 [}

for all z € C. Therefore z~ is a solution of ( P¢). From (2.2) it also follows that :

(2.3) lim (| A¢lza) = 50 & +2 | 2lan) = 5 [7) =] Ap(a”) = 5 1 +e? | @(a™) = 2 [F .

We show next that lim 2(z,) = ¢(27) in F. Since ©(z,) — ©(z*) in F it suffices to show
that lim | @(zn) — £ |F<] @(z") — % |F. So suppose to the contrary that lim | @(zn) — 2 |F=
21 >} ¢{z”) — £ |F. Then there exists a subsequence {z,, }§2, such that lim | @(zn, ) - 2 |F=
21. Using (2.3) we find :

lmj Ag(z,,) - 2 |F=lim (] 4702,,) = i |2 +:2 -;;(.’L‘nk)'— i k) - 2lim | o(zn,) = 3 |5
=l Agle™) =z 1§ 422 [ p(27) = £ E —2tef <J Ae(zm) - 2§

This contradicts the fact that 4yg(z,) converges weakly in G to Ap(z*). Therefore

limp(z,) = ¢(z7) in F and the first part of the proposition is verified. The second part
Ollows from 2V ar F,

Proposition 4 (Concrmence j. Assume ot s (1 holds and that 2(C7) s bounded in . Let
c, — 0 and let 250 be a sequence of solution to ( P™). Then there exists a weakly converyent
subsequence. every wenk lmit & of such a sequence {17} is a solution of the unreqularized
problem ( PYY) and ey — (i strongly in FoIf nworcover ( H2) holds then 25" converges
strongly in E to i



Proof

By assumption {(zn,,¥(z,))}%; is bounded in E x F and hence, without change in
notation, there exists a weakly convergent subsequence in £ x F with weak limit (£,). Due
to (H1) we have £ € C and F(Z) = $. Note that for each n :
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for all z € C. Taking liminf we find :

| Ae(2) - 2 le<] Ag(z) - 2 e,
and hence 7 is a solution to (P°). From Proposition (1) (i) we further have :

limsup | ¢(z™) = 2 {p<] @(2) - 2 |F

and therefore lim (2°7) = () in F. The second part of the proposition follows from
(H?2).

Remark 1 From Proposition (2)(i) and Proposition (4) it follows that :
| w(2) = 2 [p= min{| p(2) = 3 iF 1 | Ap(z) = 2 |g= distg(=, V)}.

which shows that = is an state space Z-minimum norm solution of the unregularized
problem ( P°).

Proposition 5 Assume that (H1) holds and that ¢(C) is bounded in F. Then :

lime? sup [| Ap(z) - = |4 ~distg(z,V)] = 0.

e—0 rteXe
Observe that the expression in brackets in nonnegative.
Proof
The second inequality in {2.1) implies :
(2.4) 0 <| Ag(z®) = 2 |& —dista(=, V) < (| o(e™) ~ £ F - | ¢(2f) = 2}),
where z* is chosen such that :

tp=min {} ()= 2ip ot p(z) = = lg= distg(z.V)}.

tn

| 2(27) -

If Proposition (5) was false. then there would exist # > () and a sequence of solutions z°n
of (P*") with £, — 0, such that :

(2.5) e? ([ Ap(z) -z | —di.stc(z.V)z) > 4§ > 0 for all n.

Due to Proposition (-4). and Remark (1% there exists a subsequence {r®} with limit &
such that -

kli‘r’r:lo [ glatx) = Z|p=|2E) = S p={l plx) =2 |F: | Aple) = 2 lg= distg(z,V)}.

[t follows that (2.5) contradicts (2.4) and the claim follows.



In the following result we consider the case where the error in the data as well as the
regularization parameter converge to zero. The optimization problems are :

(Pr) min | de(2) — 2, ,QG +5ﬁ]99(2:)—2]% overz € C,
where {¢,} and {z,} are sequences in R and G satisfying

(H3) [zn =z |c< 6, with z €V
and

(H4) gn — 0, {i—‘:} bounded .
Proposition 6 (Convergence-Stability). Assume (H1), (H3) and (H4) to hold and let z, be

a solution for (P,). n=1.2..... Then there erists a weakly convergent subsequence of {z,},
every weak limit £ of such a sequence {z,,} satisfies :

Ag() = ¢, Pzn ) — #(2)in F

and :

If & = o(1), then :
@(2n,) = @(2) in F and | () - 2 |p=min {| ¢(z) - 2 |r : Ap(z) = z}.
If in addition (H2) holds, then z,, — 2 in E.

Proof
Due to ( H3) there exists = € C with Ag(z™) = z. For each n we find :

b)
2

(2.6) | Ag(zn) = zn IQG +:n ;(In)-fi% - zn |2G +‘5$1 I‘P‘(I')"él%

< s
< Srale) - EE
Since z, — zin G and z, — 0 it follows that A¢(z,} — z in G. Boundedness of {%f:}
implies that {¢(z,)} is bounded in F. Since C is bounded as well there exists a weakly
convergent subsequence of {z,}. again denoted by r,, with {z,,9(z,)} — (£,3)in £ x F.
As before (H1) implies that & € C and 2(%) = 2. Since Ag(z,) — = in G we also find
that Ap2() = 2. From {2.67 1t follews that L, | A7(2a) = = |g= O(1). The first part of the
proposition is thus verified. Next we assume that %i- = o(1). Analogous to (2.6) one finds :
P & i
[elen) = 2 pS 3+ 10(3) - 2 F

I:|i "lli|~«‘t!::"f':':'. .
| it = 30p<| 2ld) = 2 lp<lim | 2(xq) = 2 |F

Thisimplies that s{r,) — 20y = zin F. For z7 an arbitrary element satisfving d¢(z7) =
T ane obtains



| p(2) = 2 |3=lim | ¢(z,) - % |%

. 1 . . . _
<tim | (1= 20 b =1 Aplan) = 20 1) + [ 0l8) - 2 [} <l old) - 2

n

and therefore :
| () - # |r= min{| p(z™) = 3 [F : Ap(z") = 2).
This ends the proof.
The conclusions of Proposition (6) remain valid if % in (P,) is replaced by %, with 3, — 2
in F.
Remark 2 If the problems ( P,) are not solved exactly, but rather z, satisfies :
| Ap(zn) — 2 }é; -+-€',21 | plzn)— 2 [%Sl Ap(z) - = )2; -+-£’,21 | olzn) = 315 +r7,::. forallz € C.

then the conclusions of Proposition (6) remain correct, provided that Hf =o(l).

<

Remark 3 Proposition (6) can be used to argue that the constraints involved in defining
C need not be active. In fact, assume that int C, the interior of C, is not empty and that
there exists a unique element Z € int C with z = Ag(Z). Then, with (H1)-(H4) holding and
g:‘* = o(1), there exists an index Ny such that z, € int C for all n > Nj.

3 Examples

In this section we give some examples illustrating the applicability of the assumptions in
section 2.

Example 3.1
In ([3]) we considered the problem of estimating the diffusion coefficient a in the one
dimensional equation :

—(auz): = f.
We considered the problemn in reparametrized form with specific boundary conditions :
"(Lux)x =f
3.1 b
(3-1) w(0) = u(1l) = 0.

where f€ H land be C = {be L¥0.1) : 0< b, <b(z) < by ae al0.1]}

In the context of the theory developed in section 2 we take F = [2 F = HL.G = L%
with all funcrion spaces considered over the interval (0.1 and A = /d. i (dentity operator.
The solution « = u(b) to (3.1) is given by :

(3.2) u(r) = —/o by H(y) - f_[;)} dy.

where :



H{y) =/0’ £(s) ds,

and :

i~ Jo bWHQ) dy
1
b by) dy

and  : C — H} is given by o(b) = u(b). Clearly (H1) holds in this case and ©(C) is
bounded. so that the unregularized problem has a solution. We turn to (H2). From (3.2)
and the fact that u(b) satisfies homogenous Dirichlet boundary conditions, we conclude that
uz will vanish at least at one point if f is smooth, or it will have discontinuities if f is e.g.
a linear combination of é-functions. The set of admissible coefficients will be modified such
that the coefficients are held constant in the neighborhood of such points. Let I; be finitely
many pairwise disjoint open intervals in (0.1) and defire :

"

C ={be C:b=b; = unknown constant on I;}.

Clearly (H1) holds with C replaced by C. In [ ([3]). Lemma 2, Theorem 6.1] we specified
conditions on f and [, which guarantee that o : C — Hj has a Lipschitz continuous inverse
when restricted to its range. This gives ( H2) at every z € C.

One could equally well replace the L?-observation by a pointwise observation by choosing
G =R" and Au = {u(z;)},,with0<z; < ... <z, < L.

Example 3.2
Here we consider the multidimensional analog of the problem in Example 3.1 :

(3.3)

~div(a grad u) = fin Q
u|dQ =0,

where Q is a bounded domain in R? or R3 with C'*! boundary 09, f € L?, and a € C,
where :

C={aeW'": az)>a, |a|ya<7y}CL?

all function spaces being considered over the domain Q. In the context of section 2 we
choose E =G = L. F=H? A =id and z(a) = u(a) with u(a) the solution to (3.3). It is
simple to argue that ' is bounded and weakly closed and that (H1) holds. Clearly o(C) is
bounded in H*.

For (H2) to hold additional hypotheses are needed. Rather general conditions are given
in [([11]). Theorem (4.1)]. Here we consider only a specific case :

there exist A < 0 and k£ > 0 such that

IR AN ua - —‘—y_ﬁ‘l!tll W < = ae. on .

;U <y

and
in

With (3.1) holding. there exists @ constant ' such that :

Pa— i < Wi = wlay by forall a e €.



so that ( H2) holds.

Example 3.3
Here we consider the estimation of the coefficient ¢ in :

-Aut+cu=finQ
uld =0

where Q is a bounded domain in R? or R® with smooth boundary 9Q and f € L%*(Q).
Let :

(3.5)

ac(u,v): HY(Q)x H}(Q) — R
be the bilinear form defined by :
ac{u.v) =< Vu, Vo >p2q) + < cu.v >12(q),
let ¢g be a reference coefficient and A" a constant such that :
ae(u.u) > 2K | ul?, forall u € HY(Q).
Due to continuous embedding of H}(92) into L*(Q) there exists ¥ > 0 such that :
ac(u,u)> K |u ]i,é for all u € Hy(Q)

and ¢ with | ¢ — ¢g [2< 7. It follows that (3.4) has a solution u(c) € Hj(f2) for each such
c and moreover u € H*N H} [LU]. We define :

C= {c € L¥Q):|e-col2<v, ¢ = unknown const on Q\Q’}

where €’ is a subdomain of @ with @’ C Q. A third subdomain ” strictly containing Q'
and strictly contained in © will be used :

QOO0 and 'O Q.

This hypothesis implies that : restricted to C' the norms | ¢ |r2(q) and | ¢ |z2(qn) are
equivalent.
In the context of section 2 we define :

E=1L*Q), F=HYQ), G-= L*Q). A=id. and 2(c)= ulc).

Assumption (H1) is clearly satisfied and (C) is bounded in H%(Q), see ([14],p.189). We
turn to (A2) and assume that u(é) satisfies :

i3.6) wiéifey > k>0 forall 02O

Then we have for any ¢ € C':
(¢ —c)ul(é) = N(u(¢)— u{e))+ clulc)— ulc)),

and by (3.6) there exists a constant & > 0 independent of ¢ € € such that :



[ ¢ = clpaan< k] ule) - u(@) Iy -

This gives (H2). Note that in the present examp:e the set C has nonempty interior, com-
pare Remark (3).

Example 3.4
In the final example we consider the estimation of (¢,7) in :

(3.7) -Autcu=f in 2
) g—;ﬁﬁ-r(u—g):() on 0%,

with a bounded domain in R? with smooth boundary, f € L*(Q) and g € H'(9§). This
example is motivated by the practical situation where the heat transfer coefficient between
the body Q and the outside through the boundary (7) and the lateral side (¢) has to be
estimated. For simplicity we put [ = Q. The variational form of (3.7) is given by :

< Vu, Vo >L2(Q) - < Cu,v >L2(Q) + < Tyou. YoV >L2(l")

(38) = f v >L2(Q) + < 19,70 >L2([‘) for v € Hl(Q),

where v denotes the zero order trace operator. For 7y > 0 there exists ¥ > 0 such that
the bilinear form :

b(c_,)(u. v) =< Vu. Vo >y + < cu,v >r2(0) + < TYol, Yov >12(r)
is continuous and coercive for all (¢,7) € C, where :
C = {(c,r) € L>™(Q) x H‘(I‘) 0<cemLe(z)<emyaeon, and |7-19 ,Hl([‘)s ‘y}.

Hence for each (¢,7) € C there exists a unique solution u(c,7) of (3.8). Moreover u €
H?() and it satisfies the boundary condition in (3.7) in the sense of H'/}(T'). In terms of
the notation of section 2 we take :

E =LY Q) x LYD). F=HYQ), G=1L%N), A=id, and ¢(c,7) = ule,T).

Clearly (H1) is satisfied and since © C R? it can be shown that ¢:(C) is bounded in H2()
([8]). If u(é.7) satisfies :

(3.9) wlé. 7y > k>0 forall z eq.
then :
| (C.T) - ((}T:) ILZ(Q)XL"’(F)S K | H(C,T) - u(é.f-) |H2(Q)‘

with A" independent af 7o rv 2 0 Thns (3.8) implies ( H2).
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4 Second order analysis

4.1 A general result for problems with bilinear structure

We give conditions which guarantee positive definiteness of the Hessian of :

1 , €& 2
Je($)=§|A¢($)—Zlc+§\&9(r)—2|p-

Positive definiteness of the Hessian of J, is the essential assumption required to guarantee
local uniqueness and stability with respect to (Z,z) € F x G of the solutions to (P¢), see
([1, 4, 5]) and the references given there. It is also essential for arguing convergence and rate
of convergence results for numerical methods to solve ( P¢), compare ([10, 12, 13. 15]).

Throughout this section it is assumed that ¢ : C C E — F is twice continuously Fréchet
differentiable. The following additional hypotheses will be used.

There exist constants &, > 0 and &, such that forallz € Cand he £ :

(H5) | ' (2)h {F> krlhE,
(H6) (i) |A¢"(z)(h,h)lc S ka | AQ'(z)h |l A g, and
(i) | @"(z)(h,h) |F Sk ()b |FlhE -

Before stating the main result of this subsection, the applicability of (#5) and (H6) is
shown by means of the estimation of ¢ in Examples 3.3 and 3.4. The linear structure in which
the unknown coefficient ¢ and the state variable u appear in (3.5) and (3.7) allows to verify

(H6).

Remark 4 We return to Example 3.3, the problem of identifying ¢ in {3.3) from data for u.
We ask the reader to recall the notation of that example, and we repeat only that C C E = L?,
F = H? and G = L2. Here all function spaces are considered over Q. For ¢ € C we define
A(c) : H*nH} — L* by :

A(c)u = —Au + cu.

One can argue that the mapping ¢ : C C L?> — H*® is twice continuously Frechet
differentiable with :

@'(c)h = =A™ (¢)(hu(c))
and :
(e, h) = =247 (e)(h(e)R).

for c € C and h € L% The assumptions on C imply the existence of constants K, > 0
and A’; such that :

(-ll) [\'1 ' f}LzSI l—l(()j IH-‘S [\.2_‘l

and :

(4.2) [ AT S Ky fl

Lot us again assume (3.6) to hold. This implies the existence of < > 0 such that :
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(4.3) u(c)(z) > = forall z € Q" and c € C;,

&

where :
Cs; = {c € L? :Jc—¢|2. ¢= unknown constant on Q\Q'}
and C5 C C. This is a consequence of the fact that ¢, — ¢ in L? with ¢, € C implies that
u(cn) — u(c) in H? and u(c,) — u(c) in L.

We now verify (H5) and ( H6) with C chosen to be C3. Let ¢ € Cy and h € L?. By (4.1)
and (4.3) we find :

| #0h =l AN BUE) 2 Ko | Bue) a2 SH [,
which gives (H3). Next we use (4.1) and (4.2) :
| () h) [ < 25 AT e)hy' (c)h) |2 < 2K2 | B {2] #/ ()R |2,
so that ( H6)(!) holds. Similarly :

| 2"(e)hh) {2 < 2§ A7He)h ()h) |2 < 2K T | A 2] @'(e)h |1

< 2KT' K3 | b (2| @' (e)h g2,
where K3 is the embedding constant of H2 into L*, and (H6)(i) holds as well. B
Remark 5 We turn to the verification of (H5) and (H6) for the problem of identifying c in :

—Au+tcu= finQ
g‘—,:+7'o(u—g)=00n r,

with © as in Example 3.4 and 7o € HY(T), f € L¥), g € H'(T) fixed. Let E = G = L?,
F=H? and:

(4.4)

C={cel™Q) :0<ecm <c{z)<cm ae on N},
and assume that (3.9) holds for ¢. i.e.
wlé{r;>wn >0 on .

Then there exists ¥ > 0 such that :

K
(4.3) u(c)(z) > §onQ for all c € C5,
where Co=de 2 e =00 <2 The mapping ¢ — (c) = u(e). ¢ € C. with u(c) the
solution of {4 b is twice consiononsiv differentiabie with ek = ¢ and 27(e)(h.h) = 2 €

characrerized by :

(4.6) Aicy = —huleyand A(e)f = =2hn.

where Alegis defindd b



dom A(c)= {¢ € H? :g%-%rog;:Oon I}

and :
A(c)g = ~Ap + ce.

From (4.5) and (4.6) it follows that (H35) holds for ¢ € C5. Since H? is continuously
embeded in L* it is simple to verify (H6)(i7) and it remains to consider ( H6)(:). We find :

| € |L2= sup < €, A(c)p >12= sup < A(C)E, ¢ >12= 2 < hn, >z,

where the sup is taken over ¢ € dom A(c) with | A(c)¢ 2= 1. Consequently :

| €122 Ry sup @L< KA 2] 0],

where I is independent of ¢ € C. This is (H6)(:), and thus we have shown that (H3),
(H6) holds with C = (5. Notice that when tryving to include the estimation of 7 in the
framework of this section, one encounters the difficulty that (¢,7) — u(c, ™) is not welldefined
on L?(Q) x L*T). This can be circumvented by choosing L*(2) x HYT) for E. Then ¢ is
welldefined and differentiable for (¢,7) € (L*(Q) x H'(I))NC, with C as in Example 3.4 and
(H6)(77) holds. But for (H35) only an estimate of the type :

| @'(c,m)(h,v) |22 k1 | (R, ) [L2(q)x L2 ()

with (h,v) € L3 Q) x H(T) and appropriately chosen (¢, T) is feasible.
A similar problem arises if one was to consider Example 3.1 without reparametrization.
This issue is addressed in detail in Section 4.2, B

Theorem 4.1 Let (H1), (H5) and (H6) hold. and assume that o(C) is bounded. Moreover,
let T be an state space - minimum norm solution of the unreqularized problem satisfying :

fo(2) = 2 |p=min{| ©(z) - 2 |p : | Ap(z) - z |g= distg(z,V)},

and define :
% = l%k._z(li.st(;(:.lf)z.
If :
. . k

(4.7) | ¢(2) - 2 |F< \Z/k—l

then

1 2 gt 2

(4.3) JUET)hoh) > = | A (2)h | +Tkl thiz forallh € E.

and all solutions z° of (P%) with =* > 22, In particular. if = is altainable. then ¢ =
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Proof
Using (H6) and (H5) we find for every solution z¢ of (P¢)

J'(z¢)(hoh) = A (z)h & + < Ap(z*) — 2, Ap"(z°)(h, h) >g +€2 | ¢'(z5)h |%
+£2 < @(z°) = 3.9"(2%)(h.h) >F

/ 5 p s p 52 ra & < -

> L] A (z)h | —1k3 | Ag(z®) - 2 B h 1R +5 | W2k |k -5k | o(z%) — 2 |F| b %
’ |do(zf) =2 € -

A 42 1 [oo- 4 (2 ey - )]

We next use (2.4) and (4.7) :

JUao)hk) 2 L1 AR (@R % +5 LR 1% [k = K (1 (@) - £ |3 +4aletl))

%lhu;[kl g dinale V)]

&+
=S AQ ()R E+5 | hIE
which holds for all solutions z* of (P¢) with 2 > 2. This ends the proof.

Remark 6 The two terms on the right hand side of (4.8) express the degree of wellposed-
ness. They separate the weak wellposedness which is present in the problem itself without
regularization from the uniform wellposedness due to regularization.

Let us also compare (4.8) of Theorem (4.1) to analogous estimates when regularization in
parameter space is used ({4, 5}). To obtain positivity of the Hessian in the case of regular-
ization in parameter space the regularization parameter has to be chosen in an interval, the
lower bound of which is zero or positive depending on whether z is attainable or not. For
regularization in state space there is no upper bound on the regularization parameter. If one
regularizes in parameter space with a term of the form €2 | £ — z,4 |* where z,,, represents
an a-priori guess to the unknown parameter, then this information does not enhance the pos-
itivity of the lower bound to the Hessian. For regularization in state space the role of Z is -in
some sense- taken by Z. For nonlinear problems the term containg : does not vanish and z
must contain sufficient information -compare (4.7)- to guarantee positivity of the Hessian.

4.2 Second order analysis for Example 3.1

In section 4.1 we gave conditions guaranting positivity of the Hessian. We recall that the
topology for F has to be fine enough for (H3) to hold and it has to be sufficiently coarse so
that ¢ allows a second derivative and (H6)(:7) holds. This may lead to difficulties as was
seen in Remark (3). If we consider the mapping @ — 2(a) = u(a) from L?(0.1) to H(0.1).
with « positive and « = u{«) the solution of :

—(aug)r = f, u(0) =u(l) =

then (H3) holds under appropriate conditions on f, but 2 is not even well defined ({3}).
In this subsection we shall show that the reparametrization a — % as in (3.1) provides a
techimigue to ciretvent this peessom and ro obtain positivity of the Hessian of the regularized
cost functional.

We consider here the problem :
(101 { - (,‘711_,_.\)‘5_ = }:‘jlzlfjb(.t —-&,). in(0.1).

witdr = Ly = 0.
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withz; < rj41,7 €(0.1), f; € Rand é(z) the delta function with impuls at z. Let 7 = col
(M, ...,ns) be such that [; = (z; = n;,z; + 1;) satisfy [; N [;41 =0 forj=1,...,J -1, and

define :
D, ={be H'(0,1) :0 < by < b{z), ace. on (0,1),] b | < bas,b= b; on I;},

where b;,7 = 1,...,J are unknown constants. Unless indicated otherwise the function
spaces are taken over the interval (0,1) in this subsection. We ask the reader to recall the
definitions of H and H, of Example 4.1. The following assumption will be used :

(HT7) there exist constants 0 < Hyp, < Hys such that :

Hm <| H(z)— Hy |< Hpy forall z € {0.1] and b € D,

In the context of the general theory :

E=G=1%0,1), F=H) A=id

and :
2t6) = u(e) = = [ b(w)(H () - Tl dy.
0

The mapping ¢ is twice continuously Fréchet differentiable and for b € D,, h € L?

h
AGB = ~(uo)e,

(4.10)
h2
(4.11) A(%)u"(b)(h,h) = Q[Zgu, - %(u’(b)h),],,

= —(}vz)s.and v = ATYDS.

where A(}) : Hj — H™!is given by A(})v
The regularized cost functional is given by :
2

£ o
Je(b) = = Ju(b) - = |iz +E [ u(b) -z |i13=

[l ]

for b e D,.
Theorem 4.2 Assume that (H7) holds, let z € L? € H}, ¢ € R and denote by b¢ any
solution of :

rgbnn | w(b) — z |%2 +¢? lu(b) -2 ]i{(;
with u(b) a solution of ({.9). Assume that the unregularized problem has a solution and

let b be one such solution satisfying :
1

Vo

<. )

| uih) -z ],,,g: min {[ w(b) -2 [,,0\ by =z o= dist o
where V = {u(b) : b€ D,} C L* Then there exist constants xy.K2.x3 > 0 and xy > 0
independent of h € L? such that :

fa(d®) = 3 I,_,(; <Ky and s > nydist (V)
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tmply :
JU(6)(hoh) > 22 IA“( )( )z 1 +e¥ma | R L2,

for all :
h€L3={h€L23h=hj€Roan7 j=17-"’J}'

Proof
In the first estimate we utilise two lemmas which are stated and proved below. We find :
J;’(b’)(h.h) =| w(b°)h |2; + < u(b®) — z,u”"(b%)(h, h) >z
2| u’(b‘)h I?{' +e < u"(b%)(h,h), u(b®) - 2 >
0
2 +2 fol (bfzu, dz < u(b®) - z, A" (ENE): > 12

> K3 | A7 (51'
(b5)h H) +2 fo ——,—u, dz < A~ 1(517)(3’}),,u(b‘) -z >ui -

+e% | W

We choose constants ks, xe. K7 such that :

(4.12) { | Jo frus(d) dzi<ms | Al [ATNE(3)z lgp< me | A L2,

| uz(b)h |y > /R7 [ |12, for all b€ Dy and h € L2,

see ({3]). Using (4.12) we find :

JU)(hah) > ] AT (B 2 —%né | A 72| u(6®) - 2 |3,
+%k- | h |2, —25 KsKe | h 2,] u(be) — 2 lizg

Let kg = max (% % Znsne), then :
lu(b¢)—-z -
TN Ba) 2 5 AT N R e [ 67 1 13 + [ = e (S0 u) - 2 1 )]
% - dis WV -
> 5 LAT B e 442 [ I [ — o (2220 ) - 217, )|

Let b satisfy :
| uh) = 3 3y < ko=
u(b Ky i= —.
Hl 1 4Kg

Then :

1" e K3 1, 1 h 3 K8 . .
JE0F)(hh) 2 | 4 ](b-)(b_c')z: 12, +e% | h | [wa - ;z-dzstu(:,\/f
For x; := Nl-l. and =2 > h'_’([i..\li:(:.V) one finds :

2"'

.1_:'(bf)(h.h)z%|.4 (— (— )e 122 +62 25 [ B |2,

= 5i

for all h € L2. Thus the claim holds with x4 = 5.
Remark 7 Wo soinr onr "l o less precise estimate than the one used for the second term
i JYDT. siven by

< ulh®y =z "7y h.h)>p2< const | w(h®) — 2|2 h !iz.

would not allow ro draw rhe same conclusion, since in general | u(h®) — = |2 converges

too slowly (e.e. like 07z).1f = 2 V. see Proposition 3).
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Lemma 1 Forbe D, and h € L2, let £ := u"(b)(h.h). Then ¢ is characterized as the unique
solution of :

)5—2/ u,d:z:—x.

Proof
Using (4.11) we find :

.-4(%)5 =2 [% (F + % (A-‘(-;-)FIL)L.

where F = f‘yuz, and further :

A(%)g =2 [%(1 - P)F} ,

T

where P = —%D.&‘l(};)D. is considered as a bounded linear operator on L2 and D
denotes differentiation. [t is simple to show that P is a projection. wnh kerP set of
constant functions and (I ~ P)F = fo F dz. It follows that A(b)f = Zl 0 b2 Uz dx] . as
desired.

Lemma 2 Let (H7) hold. Then there ezists a constant k3 > 0 such that :

1 _h
[ w/(b)h {[22> k3| A (b)b )z |2

for allb € D, and h € L.

Proof

For simplicity of exposition we assume that J = 1, and we write 7 in place of 7;. The
general case requires only minor technical modifications. We choose a € (0,7n), and we put
! =(0,z; — a)U(z; + a,1). Throughout K denotes a generic constant that is independent
of b€ D, and h € L* We find :

| w(O)h Iga=l A7M(3) (Bue) o=l ATNE) [2(H - Bb)] 112
> K| [3(” - H")]x l2nmy-= K sup < XH - Hy), 0z >r2001)s
where the sup is taken overall : s € Hln H? with | - ltinH2= 1.
For the inequality we made use of the fact that .4(,)1’) is an isomorphism between Hg N A*

and L* uniformly in b € D, : here we also used the assumption that b6 € H'. We further
obtain :

. h - . h -
CLID Lt 2> K sup < —=(H = Hy) gz >24= N FCH = H)z |2 -
y o b 2 3 12()
£ € H5()
|'~PiH2(Q)

where :

II(E(Q) ={s € HYQ): £(0)= plz,—a) = fla +a) = 2(1)= ',,’«‘,;(:L‘l.—f)) = polz+a) =0},
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Next it will be shown that :

1 h

AR ENVENS ']— | [
The assertion of the lemma then follows directly from (4.13) and (4.14). To verify (4.14)

we first observe that there are constants H; and H; such that :

(4.14) | A71(=) (H - Hy)); 20y -

H; on (0,z;)

H- 1= { Hyon (z,,1).

Further % equals a constant k = k(h,b) on (z; — 1,2, + n). Let @ € H} n H? with

| & |a2am2=1 be chosen such that :

h h
( (E)r l(HinH?)= 7

We then find :

| ATYE (R IS K | (B)2 [(Hinm?)-= K < rZr >0
" -1 h = I = [ —
<K [HI < Hi3 @0 20200000y ¥ < L3z >12(2)2 0.0y 4n) +HL2 < Hag o 3r 202z 4m0)| -
(4.15)
We choose functions :

@' € Hy(0,zy —a)N H?(0.z; — a) and 3* € Hi(z) + a. 1) N H2(z; + a,1)
such that :

U0,z =)= 0.2 -1, @iz -a)=0,

P+ 0l =2+l &z+a)=0,
and :
& m20.0-a0S Ko 19% |2z, 40) S K.
Using these functions in (4.15) we obtain :

l AT ( :(I)x iLlul)\ H- \Hl >L (0.5y—a) — "<1 7’1, >L("—7~1 —aj
-1
7'/‘ < 1. Y >[? (ry=n.xi+n) T 1 < H’b Yz >L2(rl+al) k <l ‘r‘J: > tr1+a.r1+7)
<k <I (Hlb)r |H2(0z;—::)' +l H2b |Hg(z,+a.1)-)

<K | (H - Hy) |H2(Q)--
wWhere J2a0 s 0 =00 e defined anadogousiviro M Qe Tlis gives (L,
for an appropriaice caotee of A s e ool s dinished.
! ! i



5 Numerical experiments

We describe some numerical experiments for estimating the diffusion coefficient a in :

= —(aux)x = f in (Ov 1)
(0.1) { u(O) — u(l) =0,

by minimizing the cost functional :

(5.2) J(a) ={u—2° |32 +€% | uz — % |32 +6° | az |72 +K | az — al 132y,

where 2% denotes noisy data in L? = L%(0,1) ; ¢, B and K are constants, a® € H, [ is a
subset of (0,1) and u is a solution of (5.1). Numerically we did not use explicit constraints.

For a — u(a) from C = {a € L*0.1) : 0 < am < a(z) < ars} C L? — H? to have
a continuous inverse, see condition ( H2), it is necessary to constrain the class of admissible
coefficients a in neighborhoods of the singular points of the observations, i.e. in neighborhoods
of zeroes of u(a); if u(@) € C! and of discontinuities of u(), otherwise. see Example 3.1 and
([3]). This can be accomplished with & > 0, for example. If a® = 0 the coefficients are
forced to be almost constant on I. The term 2 | a; |7, can also be thought of as eliminating
underdetermination due to singularities of u(a),. It is a regularization term in parameter
space which also has the effect of penalizing oscillations of the coefficient.

The optimization problem was solved by the augmented Lagrangian technique described
in ([9]). The discretization of the state variable u was carried out by linear splines on the grid
{2N }‘_ and of the coefficient a by linear splines on the grid { }:\:0 Noisy data z* were
produced by adding uniformly distributed random numbers from the interval (-6,6) to the
unperturbed observation z® = u(&) at the gridpoints {m}i: 1. The specific choices for the

unperturbed observation 20 and the “unknown” coefficient @ were made as follows :

Example 5.1
20 = u(a) = exp(z)sin(rz),
a= %a.rctan(40(;r - %)) + %
Example 5.2
+ for z<.65
L =ua) =
£ for > .65,
1
a= }-arctan(40( §)) + g

With a and u(a) given. f is calculated from (5.1). We point out that with these choices
for @ aud =Y the resulting inverse problem is (numericallv) not a simple one. since :

(i) the maximum of the slope of @ occurs near a singular point of = in both examples.

(i1) in our calculations we chose N = 32, which is a reasonably fine resolution allowing for
many undesirable oscillations.
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(iii) absolute. not relative noise was used.

In the numerical results below. the values for ¢, 3% and K are zero, unless specified other-
wise, and “L*-error” denotes the L?-distance between the numerical result for the coefficient
and a. In all cases. where &' > 0. we took [ = (.56,.64) for Example 5.1 and I = (.61,.69)
for Example 5.2. We begin with numerical results for Example 5.1 with noiseless observations.

[able 1
Ex3.1 {|2=0|e2=10"%] ¢ =103 e =103
6=0 zZ= z=2° ;=20 K =10
L%-error || .23 | .15 | .09 I .04

For the last entry in Table 1. @ was chosen as a constant function with value equal to
the slope of the tangent to @ at 2. The graphs of @ and the numerical result corresponding
to the last entry in Table 1 are given in Plot 1. Next we consider noisy observations:

Table 2
Ex51 ||e¢=0]¢e =103 e =103 e =103
§=.02 3=0 ;=4 K=10]:=2°K=10
L?-error “ 44 ] .16 l .74 I .13

Here a® = 0. For the same specifications as in the last column but with Z = 0 the L2-error
is .15. The graph corresponding to the last entry in Table 2 is included in Plot 2. Note the
difference in the behavior of the numerical solutions of Plot 1 and Plot 2 on the interval I.
This is primarily due to the different choice of a®. The result of the next to last column shows
that the choice of Z as the noisy data does (of course) not give a good result. In fact, 2 =10
is preferable. as can be seen from column 3. If one desires to use the information of the noisy
data z% for the choice of Z. then one must regularize or precondition z°. In the best possible
situation one would obtain the noisefree data z®. The result for 3 = 20 is given in the last
column of Table 2.

Before turning to numerical results for Example 5.2 we point out that the singular sets of
the unperturbed observations in Examples 5.1 and 5.2 are very different. The unperturbed
observation of Example 5.2 has one isolated singular point at which the derivative is not de-
fined. The coefficient « is identifiable from =¥ in the class of H' functions. but not in the class
of L? functions. In Example 5.1 the unperturbed observation is such that its derivative is zero
at one point. Moreover 2 is small in its neighborhood, which causes additional numerical
instabilities. In the class of H! functions, a is uniquely determined by . We first give the
results for noiseless data.

Table 3

Ex 5.2 |
b=0 |
L-error




For the last entry in Table 3 we chose a2 as a constant function with value equal to the

slope of the tangent to a at % The graphs for the results of entry one and four a given in Plot
3 and the graph for the last entry is given in Plot 4. A comparison of these graphs suggests
that there is nonuniqueness (possibly in H~! for the infinite dimensional problem) which is
eliminated by K > 0 ; compare also the numerical result for 8 > 0. Additional numerical
experiments showed that the range of successfull numerical results with 3 > 0 is enlarged by
choosing ¢ > 0. Results with noisy data are given next.

Table 4

Ex32 [[e=0]e&=10""] =107 | =103 € =10"" € =103
§=.02 2=10"%| 2=2:° |:=0,K=10|2=2%K=10
Lerror | 67 | .33 | .09 | .23 | 27 | 06

For the last entry a° is again chosen to be the tangent to a at

U

In Table 3 and 4 some results are given for €2 = 10~2 and others for €2 = 107%. In all
cases the algorithm converges for both choices of €2, but the results are better for that value
of €2 which is shown in the tables.

While the primary importance of the numerical results here is to demonstrate that regu-
larization in state space is effective, we also carried out numerical tests with two other cost
functionals, which we briefly report upon. In the first we changed the €*-regularization term
and took

512 2 2 12
Ji(a) = |u—2°|72 + €“luzy — 25,012

For Example 5.1 with § = .02,7 = 0 and €2 = 1073 the L2-error is .106 (compare Table 2).

For the second cost functional we combine regularization in state- with regularizations in
parameter space. This leads us to consider

a

Jola) = |u— %% + lug - 2], + 5zlm[iz,

where the €’-term regularizes noise and the 3%-term regularies the effects of small values of
|zz(+)|. For Example 3.1 with €2 = 1073,3% = 1077, and 3 = 0 (§ = :°) the L%error is
.074(.077), compare Table 2.
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