archives-ouvertes

Deadlock models and general algorithm for distributed
deadlock detection
Jerzy Brzezinski, Jean-Michel Hélary, Michel Raynal

» To cite this version:

Jerzy Brzezinski, Jean-Michel Hélary, Michel Raynal. Deadlock models and general algorithm for
distributed deadlock detection. [Research Report] RR-1776, INRIA. 1992. inria-00077016

HAL Id: inria-00077016
https://hal.inria.fr /inria-00077016
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inria.fr/inria-00077016
https://hal.archives-ouvertes.fr

=T

rLen

ST

2,

_)€Q

3

&,
i

237

S TR L

TR

NPT RPN

32V AUA MR OISV WP 1 S

L Py

< S , o |

& = QoM _

) & < Z O

<= . = S 3 <<

) = = N v 2 =

% = o= - %

= -” ms,m - = E.IA ©

e o I o - R ek 8 :

Q gD @) D = o 2 o _
sm OLBD ﬂwM

oF o 3

p WW LMM .Jk =«

S 3= 24 & —
- aicle . =. |

=.

A

VA
e
e ; 3 AR
Ami RO DTS
M:.,W RN (R

0 AN SIS  FEAS A SYAORY 454 6 1. 30 \ VIR N W, KT LARTING AN Yres T RSP DD N DI TANTALOMIAN L LD RALNTITLE XACHSE SR HISTMIVAV N DD ABBLACY 2 IN 2GRS PX RIS RN/ Y. VA5 A0 YR NAWUN LA € AR D0 FRCTAD §¢77 AT M PR FRCU ) LN W LALAST N D Al COREMAT EONI TS A OS2t ot
1
&
5
( a?
it

/ ..@ﬂ“; R
PR L 3
<r4 T8
%

o

L5514,



-}

.

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Tél. : 99 84 71 00 - Telex : UNIRISA 950 473 F

Programme 1, projet ADP (Algorithmes Distribués et aPplications)
Octobre 1992
Publication Interne n°681 - 26 pages

Deadlock Models and General Algorithm for
Distributed Deadlock Detection

Jerzy Brzezinski', Jean-Michel Hélary, Michel Raynal
Institute of Computing Science IRISA
Technical University of Poznan Campus de Beaulieu
60-965 Poznan, POLAND 35042 Rennes Cedex, FRANCE
e-mail:brzezins @plpotu51.bitnet helary, raynal @irisa.fr

Abstract: This paper deals with the problem of deadlock detection in asynchronous message com-
munication systems. The considered systcm model covers unspecified receptions, not FIFO chan-
nels, and general resource (message) requests including, among others, AND, OR, AND-OR, k-out-
of-n requests. In this context hicrarchics of deadlock models and deadlock detection problems arc
introduced and discussed. Then, a token-based algorithm for detection of deadlocked sets is pro-
posed, formally described, evaluated and proven correct. Morcover, some possible extensions and
refincments of the basic solution concerning individual and global terminations, improvements of
token routing, and parallel detection execution, arc outlined and analyzed. When compared to dead-
lock detection algorithms described so far the solution proposed here behaves favorably with respect
to generality, flexibility and communication complexity.

Index terms: Communication dcadlock, deadlock modcls, distributed algorithms, distributed deadlock dctection,
message commaunication systems, resource deadlock.

Modzeles d’interblocage et algorithme général de
détection répartie d’interblocage

Résumé: On examine le probléme de la détection d'interblocages dans un systéme asynchrone basé
sur la communication par messages. Le modeéle considéré prend en compte le cas des réceptions non
spécifiées, les canaux non-FIFO, et une forme générale de requétes comprenant, entre autres, les
modeles ET, OU, ET-QU, k-parmi-n. Dans ce contexte une hiérarchie de modéles d’interblocage et
de problémes de détection associés est présentée. Puis, un algorithime a jeton permettant la détection
d’ensembles de processus interbloqués est proposé, évalué et prouvé. De possibles extensions ou
améliorations, relatives & la terminaison individuele ou globale, au routage du jeton, et a I'exécution
parallele de la détection, sont proposées et analysées. Par rapport aux algorithmes connus de dé-
tection d’interblocage, la solution proposée ici est avantageuse tant sur le plan de la généralité que
sur ceux de la souplesse de mise en ceuvre et de la complexité.

*, The work of this author was supported in part by INRIA grant (when he was visiting IRISA), and by
KBN Grant No. 335209102 (KBN 2).

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE {URA 2275 UNIVERGITE DE RENNEST INSA DE RENNCS
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET UN AUTOMATIOUE (UNITE DE BECHERCHL DL HLNNEG)



Deadlock Models and General Algorithm
for Distributed Deadlock Detection

Jerzy Brzezinski', Jean-Michel Hélary, Michel Raynal
Institute of Computing Science IRISA
Technical University of Poznan Campus de Beaulieu
60-965 Poznan, POLAND 35042 Rennes Cedex, FRANCE
e-mail:brzezins @plpotu51.bitnet helary, raynal @irisa.fr

Abstract: This paper deals with the problem of deadlock detection in asynchronous
message communication systems. The considered system model covers unspecified
receptions, not FIFO channels, and general resource (message) requests including,
among others, AND, OR, AND-OR, k-out-of-n requests. In this context hierarchies of
deadlock models and deadlock detection problems are introduced and discussed.
Then, a token-based algorithm for detection of deadlocked sets is proposed, formally
described, evaluated and proven correct. Moreover, some possible extensions and re-
finements of the basic solution concerning individual and global terminations, im-
provements of token routing, and parallel detection execution, are outlined and ana-
lyzed. When compared to deadlock detection algorithms described so far the solution
proposed here behaves favorably with respect to generality, flexibility and communi-
cation complexity.

Categories and Subject Descriptor: C.2.4 [Computer-Communication Networks]:-
Distributed Systems-distributed applications; distributed databases; network operat-
ing systems; D.4.1 [Operating Systems): Process Management-concurrency, dead-

locks; synchronization; D.4.4 [Operating Systems]: Communication Management-

network communication.

General Terms: Algorithms

Additional Key Words and Phrases: Communication deadlock, deadlock models, dis-
tributed algorithms, distributed deadlock detection, message communication systems,
resource deadlock.

*. The work of this author was supported in part by INRIA grant (when he was visiting IRISA), and by
KBN Grant No. 335209102 (KBN 2).



1 Introduction

Development of distributed systems, such as computer networks and distributed memory
parallel computers, seems to be one of the most important and promising way to meet the ever
increasing demands of computer applications. This is because just distributed systems offer, at
least potentially, dynamic sharing of resources (e.g., servers of one kind or another, peripheral
devices or controllers, specific processing units, program files or data items), communication
between many sites running simultaneously but cooperating with each other in the realization
of a common goal (distributed transactions, parallel algorithms, etc), higher reliability resulting
from redundancy of processing units, as well as modularity and expendability, among other
things. In general these systems may be thought of as a set of nodes interconnected by transmis-
sion channels. Each node is equipped with a processor and a local memory. Communication be-
tween any pair of processors is realized only by message passing as no common memory is
available.

Distributed systems can be classified as synchronous and asynchronous. In this paper we
are only concerned with asynchronous systems, i.e., systems with no known bound on relative
processor speeds or message transmission time. Asynchrony, characteristic for most real sys-
tems, makes coordination between distributed processors difficult. It implies, moreover, that
even classical problems -like: mutual exclusion, termination detection, deadlock handling, de-
termination of global state, election, consensus gaining, transaction control, query optimization,
etc - have to be addressed again to develop new control mechanisms as only distributed algo-
rithms are acceptable in this context. These algorithms are composed of processes which are ex-
ecuted at system nodes and exchange information with each other by message passing. Efficient
distributed control algorithms are necessary to achieve potential profits of distributed systems.

In this paper we focus our attention on the deadlock problem. Informally, deadlock refers
to the situation in which some group of processes exists, such that no process in this group can
send message (release resource) until it receives the required message (resource) from other pro-
cess of the group. When this occurs, the deadlocked processes wait permanently and the
progress of their execution cannot be achieved. In this case, the execution of processes can turn
out completely useless unless proper and careful control is exercised. To handle deadlock one
can try to adapt approaches known from centralized systems, i.e., prevention, avoidance, and
detection with recovery ([8], [16]). Let us recall, that deadlock prevention is based on denying
onc of necessary conditions for deadlock occurrence (e.g., circular wait, no preemption, or hold
and wait condition). In deadlock avoidance the message is sent (resource is granted) when in
spite of this event there is still at least one execution sequence that allows completion of all pro-
cesses. In deadlock detection messages are sent (resources are granted) without any constraints
due to possibility of deadlock. However, the state of the system is checked periodically, or when
a deadlock is suspected, to determine if a set of processes is deadlocked. This checking is per-
formed by a deadlock detection algorithm. If a deadlock is discovered, recovery from it by
aborting one or more deadlocked processes is necessary. The suitability of a deadlock handling
approach greatly depends on the application and environment. In distributed environment dead-



lock handling is peculiarly complex as distributed algorithms are required and no node has ac-
curate knowledge of the system state.

This paper addresses deadlock detection in distributed systems. As was mentioned, it is a
very important problem in various distributed applications including: communication networks,
distributed database systems, massively parallel systems, etc. Depending on the application pro-
cesses can make requests according to different request models (see e.g., [1], [11], [18]). The
simplest possible request model is one in which a process can require at most one message (re-
source) at a time. For example, it refers to buffer requests in packet-switched store-and-forward
networks ([2], [13], {17])). In the AND model (known also as resource model) processes are per-
mitted to request simultaneously a set of messages. A process cannot execute until it acquires
all messages (resources) which it is waiting for ([5], [7], [12]). This model represents, for in-
stance, possible requests of transactions to lock several data items ([1]). Another model of re-
quests is the OR model, called also communication model, where a process can request messag-
es from a set of processes; the process can proceed only if it receives a message from any one
of the processes it is waiting for. This model refers directly to alternative control structures in
programming languages like CSP and ADA as well as to replicated database systems, where
read request for a replicated data item can be satisfied by reading any copy of it ([1], [7]). The
OR-AND model is a generalization of the two previous ones. It can specify any combination of
message (resource) requests expressed by logical and and or operators. For example, a process
may require messages from i and from j or k. If the process receives a message from i it contin-
ues waiting for messages from j or k. On the other hand, if the process receives first message
from j it need not wait for k. Thus, the request for k can be canceled. This model is well suited
to many distributed systems (e.g., distributed operating systems, replicated database systems)
where several sets of equivalent resources are concerned ([1]). In the k out of n model processes
are permitted to request any k messages from a set of n processes ([3]). This model is also a gen-
eralization of OR and AND models since an OR request corresponds to I out of n, and an AND
request corresponds to n out of n one. The k out of n model refers especially to replicated data-
base systems, where a quorum-based replica control algorithm is used to preserve database con-
sistency ([1], [11]). In such an algorithm a transaction that wants to read a replicated data item
must read r copies out of n, and in order to write a transaction must write w copies out of n,
where r+w > n and 2w > n. More general models have not been really considered in the deadlock
detection context as they lead to general problems of global state determination ([4], [18]).

The above hierarchy of request models is useful to classify distributed deadlock detection
algorithms according to the complexity of the resource requests they permit. Several algorithms
have been proposed for one resource and AND models ([5], [7], [12], [20]) as well as for OR
model ([7], [21]). Distributed deadlock detection algorithm for OR-AND model has been devel-
oped by Hermann and Chandy (see e.g., [18]), and for k out of n model by Bracha and Toueg
([3]). Many of the above mentioned solutions have been presented, carefully analyzed and com-
pared in two excellent surveys by Knapp ([18]), and Singhal ([22]).

Although, in general, the literature concerning deadlock detection in distributed systems
is comprehensive, this area still offers a great opportunity for improvement as there is lack of



simple algorithm for more general system models permitting, for instance, requests expressed
by any logical combination of k out of n requests, any (not necessarily FIFO) communication
channels, etc. This paper presents a distributed deadlock detection algorithm allowing such gen-
eralizations in the context of reliable distributed systems. In its simplest form the proposed al-
gorithm applies token passing mechanism as a means for global information exchange. The ap-
plication of token makes the algorithm easy to understand and implement, however, more par-
allel mechanism (e.g., tree diffusion) can be also used by the algorithm to capture global
information. When compared to deadlock detection algorithms described so far, the algorithm
proposed here behaves favorably with respect to generality, simplicity, and communication
complexity.

The paper consists of five sections. Section 2 introduces fundamental definitions and
models for deadlock in message communication systems. In Section 3 the basic formulation of
the proposed algorithm is described and proven correct. Section 4 displays possible refinements
and modifications of the algorithm, and its adaptation to solve the distributed termination prob-
lem. Finally, Section 5 concludes the paper.

2 Basic definitions and problem formulation

2.1 The underlying system model

The underlying communication system supporting distributed applications is made of a
set of nodes sharing no common memory and communicating only by message exchange
through communication channels. These channels are assumed to be asynchronous (transfer de-
lays are unpredictable) and reliable (no message is lost, corrupted or duplicated); they can be
FIFO or not and they have infinite buffer capacity. Moreover there is no global physical clock
accessible to the nodes.

The message sent by a process running on a node is confided to the underlying system.
This system carries the message till the destination node and puts it in a local buffer (the mes-
sage has then arrived). This message can then be extracted from the buffer when the application
process requires it (and the message is then consumed).

2.2 The application program

The application program is composed of a set P of processes P;, I < i <n,communicating
by asynchronous message passing. We suppose that there is one-to-one correspondence be-
tween nodes and processes, and that the assignment is static.

As communication is asynchronous, the process sending a message is never blocked. At
any time a process is either active or passive. Only active processes can send and consume mes-
sages. Moreover, an active process can become spontancously passive requiring some messages
(resources) in order to continue its execution. The requirement is expressed by an activation
condition (detailed in Section 2.3) defined over the set DS; of processes from which passive pro-



cess P; is expecting messages. The set DS; is called dependent set of P;. A passive process can
only become active when its activation condition is fulfilled. (Moreover when a process is acti-
vated messages whose arrivals fulfilled the associated activation condition are extracted from
input buffers and consumed.) The formulation of the activation condition depends on the re-
quest model considered. The next Section presents such models in increasing complexity order.

Let us remark, that this model allows unspecified reception: this occurs when a message
sent by a process has arrived but it will never be consumed by the destination process.

A passive process that has terminated its computation executing, for example, an end or
stop statement is said to be individually terminated: its dependent set is empty and therefore it
can never be activated. We assume for a while that processes are never individually terminated;
this assumption is only for a sake of presentation simplicity and it will be relaxed in Section 4.1.

2.3 Request models

2.3.1 AND model

In this model a passive process P; can be activated (and so the activation condition is ful-
filled) only after a message from each process P; belonging to DS; has arrived. (This models
receive statements that are atomically on several messages.)

2.3.2 OR model

In OR model, a passive process P; can be activated when a message from any process P;
belonging to DS; has arrived. (This models classical non-deterministic choices of receive state-
ments.)

2.3.3 OR-AND model

For OR-AND model, the requirement of a passive process P, is defined by a set R; of set
DS;/, DS2,..., DS, such that for all r, I < r < g, DS;” < P. The dependent set of P, is: DS; =
DS,-I uDSiZ U... U DS; 9. We mean here that process P; waits for messages from all processes
belonging to DS,~1 , or for messages from all processes belonging to DS 2 or..., or for messages
from all processes belonging to DSJi. As an example, suppose P; waits for messages from: P,
or (Py and (P, or (Pgand P,))). In disjunctive form this gives: P; waits for P, or (P and P,)
or (Py and Py and P). In this case DS//={P,}, DS;?={P}, P,} and DS7=(P;, P, P,}. Let us
note, that if messages from P, and Py have arrived, and then message from Py, arrives, the acti-
vation condition of P; is fulfilled (and this activation will provoke consumption of the messages
from Py and P,).



2.3.4 Basic k out of n model

In this model the requirement of a passive process P; is defined by the set DS; and an in-
teger k;, 1 < k; <1 DS; | = n;. Process P;can be activated when messages from k; distinct processes
belonging to DS; have arrived.

2.3.5 Disjunctive k out of n model

A more general request model can be introduced including additionally k out of n requests.
The requirement of a passive process P; is defined by a set R;, as previously (Section 2.3.3), and
by a set of integers K; ={k;, k?,....ki} with I < k7 <1DS;/ | =n/ forall r, 1 < r < g; The
dependent set of P; is: DS; = DS,~1 UDS,'Z U... U DS; 9i. A process P; is activated when:

messages from kiI processes composing DSil have arrived or

messages from kiz processes composing DS,-2 have arrived or

messages from ki processes composing DS; %i have arrived .

Let us note, that if for all r, I < r <g;, k= n;” = IDS;"l this model reduces to the OR-AND
model. On the other hand, when g;=1 and k,-l < IDS‘-I |, then we have the basic k out of n model,
with k = k;and n = n;!. The AND model is deduced when g;=1, DS/=DS; and k;!=n;! = IDS;.
The simple OR model is obtained when ¢; > I and forall r, I S r< g;, IDS;"I = 1.

2.3.6 Predicate fulfilled

Finally, in order to abstract the activation condition of a passive process P; the following
predicate fulfilled; (A) is introduced, where A is a subset of P. Predicate fulfilled; (A) is true if
and only if messages arrived (and not yet consumed) from all processes belonging to set A are
sufficient to activate process P;. Of course, the following monotonicity property is verified: if
X ¢ Y and fulfilled; (X) is true, then fulfilled; (Y) is also true; moreover fulfilled; (D) is

false.

If we consider the previous disjunctive k out of n model the predicate is expressed as fol-
lows. Let P; be a passive process whose requirements are defined by the sets R; and K;. Then
we get the following definition:

fulfilled; (A) =3r:1sr<q;: | DS/ NAl2k"

Similar definition can be obtained for the other models.



2.4 Deadlock definition

Let deadlock (B) be a predicate meaning, at time moment ¢, that the nonempty set B of
processes is deadlocked at this time. If deadlock (B) is true at some time moment, it remains
true as deadlock occurrence is persistent: deadlock (B) is stable property ([4], [6], [14]). Ac-
cording to the request model the formal definition of this predicate can take several forms. In
order to state these definitions, the following variables are introduced:

* passive;: true iff P; is passive.
* arr;(j): true iff a message from Pj has arrived and has not yet been consumed by P;.

* empty (j, i): true iff all messages sent by P;to P; have arrived.

All these elements allow to give precise definitions of deadlock (B) within the different
models.

AND model

deadlock (B)= (B #J) A (VP;: P;€B:
(passive; A 3P;: P;eDS; N B:
(empty (j, i) A = arry (/)

OR model

deadlock (B)= (B #J) A (VP;: P;eB:
(passive; A (DS; T B) A (VP;: P;eDS;:
(empty (), i)A — arr; (D))

EXAMPLE: Let us consider a sample underlying system consisting of nodes N, Np, N, Njand
N,, whose topology is presented in Fig. 1a. Processes P, Py, P, P;and P, compose the appli-
cation program. We analyze system state at time f. At this moment processes P, Py, Pyand P,
are passive, but process P, is active. Dependent sets are as follows (see Fig.1b.): DS, = {P,,
P4}, DSy ={P,},DS,=3,DS;={Pp, P,} and DS, = {P,}. Local buffers of nodes N, N., N,
and N, are empty. In local buffer of node Ny, is a message m’ arrived from P, (but Py, is not ex-
pecting messages from P, at this moment). Moreover, a message m sent by P, to P has not yet
arrived and thus empty (a, b) is false. However, P, ¢ DS, and therefore when message m will
arrive at N it will not be able to activate Py, (unless Py, will become active and then passive again
with different dependent set). In this state only process P, can be activated by active P.. Con-
sequently, as far as OR request model is concerned, deadlock (B) is true at time ¢, for B = { P},



Pg4, P,}. On the other hand, if P, needs for its activation messages from P, and P ; (AND request
model), then at this time the set of deadlocked processes is equal to {P,, Py, Py, P,}.

a) b)
N, Ny P, Py

Ny N, Py P,

Fig. 1. An illustration of deadlock in the OR model.

a) The topology of underlying system
b) The graph representing the requests of processes

R-AND model

deadlock (B) = (B # ) A (VP;: P;eB:
(passive; A (Vr: ISr<g;:
(BP] PJG DS,rﬁB
(empty(j, i) A —arr; (j)))))

k out of n model

We have n; =| DS; |, 1< k; < n;

deadlock B)= (B %) A (VP;: P;eB:
(passive; A
(BDI' D" Lo DS, N B:
(A DS;\D;| <k;) A (VP;: PjeD;:
(empty (j, i) A = arr; ()N

This means that with each process P; belonging to B can be associated a set D; such that
arrivals of new messages from processes belonging D; are not possible as D; € B and VP;: P;
e D;: empty(j, i). Thus, one can await at most| DS; \ D;| expected messages, but it is not suffi-
cient to activate P; when | DS; \ D,~| <k;and VPj: P;e D;: = arr; (j).



Disjunctive k out of n model

deadlock (B)= (B # ) A (VP;: P;eB:
(passive; A
(Vri1sr< g;
(3D,'r: D,’r(;DS,'rﬁ B:
(A DS/\D| < kA (VP;:PED/":
(empty (j, i) A= arr; ())N)))

neral 1

Let ARR; denote the set of all processes Pj such that arr; (j) = true. Moreover, let NE; denote
the set of all processes P; such that — empty (j, i).

deadlock (B)= (B # D) A (VP;: P;eB:
(passive; A — fulfilled; (ARR; U NE; U (P \ B))))

This predicate means that any P; € B cannot be activated even if messages from all pro-
cesses belonging to ARR; U NE,; and from all processes not deadlocked, will arrive.

2.5 Deadlock detection problems

With the previous precise deadlock definitions various formulations for deadlock detec-
tion problem can be considered.

2.5.1 Detection of deadlock occurrence

In this formulation the question is: does there exist set B, B ¢ P, such that deadlock (B)
is true. The answer yes or no does not depend on process obtaining it.

2.5.2 Detection of a deadlocked process

In this formulation the question is: given a process Py, is this process deadlocked or not,
i.e., does there exist a set B such that deadlock (B) = true and Py € B. The answer yes or no
depends on the process P,.

2.5.3 Detection of a deadlocked set
In this formulation the problem is: find B, B ¢ P, such that deadlock (B) = true. Of course,

9



when as a result of searching for B we conclude B = &, then there is no deadlock.

2.5.4 Detection of the maximum deadlocked set

In this formulation the problem is: find B, such that:
(B < P) A (deadlock (B)) A (VQ: Q o B: — deadlock (Q))

It is easy to note that deadlock detection problems have been presented in increasing com-
plexity order. Simultaneously, this order is consistent with increasing amount of information
available at the time the detection terminates. This additional information is important as it is
useful for deadlock recovery. Solution of any of the above problems is difficult in distributed
message communication systems because no process has accurate knowledge of the global sys-
tem state, i.e., the global state is not visible to any real observer. Thus, in practice, only states
related to earlier observations can be obtained. However, during the collection of local states,
these states are dynamically changing. Therefore, any deadlock detection algorithm in a distrib-
uted system can ensure only that deadlock which has occurred before the initiation of the algo-
rithm will be detected, and that a detected set B of deadlocked processes is really deadlocked at
the moment when the detection algorithm terminates.

3 A token-based algorithm for detection of a deadlocked
set

3.1 Required properties of the algorithm

As usual, the specification of the detection algorithm can be stated using classical decom-
position into safety and liveness properties. A boolean flag dd and a set PD constitute the results
of a detection and express deadlock occurrence and a set of deadlocked processes, respectively.

* Liveness (progress): Each execution of the algorithm terminates in finite time.

» Safety (consistency): Let #; and ¢, be time moments of detection initiation and termi-
nation, respectively

- 1. If the algorithm terminates with dd = false, then for any set B such
that B < P, the predicate deadlock(B) was false at the time ¢,

- 2. If the algorithm terminates with dd = true, then the predicate
deadlock(PD) is true at the time ¢,; moreover, for any set B such that
B c P and deadlock(B) at t;,, we have B < PD.

3.2 Informal description

A control process C;, called controller, is associated with each application process P;. Its

10



role is, on the one hand, to observe the behavior of P; and, on the other hand, to cooperate with
other controllers Cj in order to consistently detect, if any, deadlock occurrence. (In general, con-
trollers need not be separated as special processes since their tasks can be incorporated into ap-
plication processes using the superposition rules described e.g. in [6]. Thus, the separation of
controllers is merely a matter of interpretation).

State variables

Each process P; is endowed with a state variable state; whose value, readable by C;, is ac-
tive or passive; passive; will be used as a shortcut for the boolean value state; = passive. More-
over, as announced in Section 2.1, the node associated with P; is endowed with input buffer
where messages arrived and not yet consumed are stored. Let us recall that ARR; is the set com-
prising the senders of all messages arrived but not yet consumed by P;. Controler C; can atom-
ically read ARR,.

Tok | virtual i

In order to detect deadlock a control process, say Cy, , initiates at a time moment #, a de-
tection by sending a valued token to its next on a virtual ring covering all the controllers C;. The
token carries a set PD of processes which, according to present knowledge, are potentially dead-
locked since the first visit of the token relatively to this detection; initially PD=P. Controller C;
can only remove P; from PD when it has the token. So the token moves around the virtual ring
and when Cj notices that the value of the set PD has not changed since the previous visit, it
concludes that set PD of processes is deadlocked (dd is set to true by Cy); if it notices PD = &
it concludes there was not deadlock at the moment ¢, of detection launching (dd is set to false

by Co)-

The basic test

The core of the algorithm is the rule C; has to follow to execute PD:=PD\ {P;}. Gener-
ally, controller C; removes P; from PD when, according to its present knowledge, P; was cer-
tainly not deadlocked at time #, i.e., when at any time ¢ 2 ¢}, the process was active or potentially
active (could be activated by known not deadlocked processes).

First, the activation of P;, even temporary, can be locally detected by controller C; and re-
corded by triggering boolean variable cp; (continuously passive) to false. More precisely, at any
time after the first token visit, relative to the current detection, the control variable cp; is true if
and only if C; has observed that P; was remaining continuously passive since the previous visit
of the token. Second, let us note, that passive process P; is potentially active during token visit,
when fulfilled; (ARR; U (P\PD)) is true, as the set ARR; U (P \ PD) represents the set of the
processes that sent or could potentially send messages to P;.

Channel states
In order to be consistent the detection must not forget in-transit messages, i.e., messages
sent and not yet arrived, as arrival of such messages could possibly give the value true to the
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predicate fulfilled;. To solve this problem one can utilize an acknowledgment mechanism real-
ized usually by underlying communication system, and observe whether all sent messages have
been acknowledged. If this mechanism is not available, then each controller has to acknowledge
every message as soon as a message has arrived and to count the number of messages sent by
P; and not yet acknowledged; a variable notack; initialized to O is used for this purpose. Now,
if P; is potentially deadlocked when C; receives the token (condition P; € PD and cp;), C; keeps
the token until either new arrival of messages will give the value true to the predicate fulfilled;
(and cp; will become false) or notack; will be reduced to zero (channels will be empty). This
ensures that messages sent by P; have arrived and so they are ready to be consumed by their
destination processes.

First token turn

Finally, the token carries a second field fv, a boolean value, indicating whether it is, or not,
the first turn of the token relatively to this detection. The first turn is used to properly initialize
the boolean variable cp; indicating that P; has been continuously passive since the previous visit
of the token, and to guarantee that outgoing channels of passive processes are empty before the
next turn of the token.

3.3 Formal description

The local variables used by each C; have been introduced in the previous sections. The
behavior of C; is described by the following statements S1 to S5. All the statements are executed
atomically except the one including keep the token which can be interrupted whilst its condition
is false.

S1:  when P, sends message to any Pj
notack; := notack; + 1

S2:  when message arrives from any P;
send ack to C;

S3:  when C; receives ack message from any q
notack; := notack; - 1

S4:  when P; becomes active
cp; := false

SS5:  when C, receives token(PD, fv)
if P, €PD then
if fv then cp; = (state; = passive) fi;

keep the token until (—~cp;) v fulfilled; (ARR; U (P\PD)) v (notack; = 0);
if (—cp) v fulfilled; (ARR; v (P\PD)) then PD:= PD\ {P;} fi;
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cp; = (state; = passive)
Y
send token (PD, fv) to next

The controller C,, initiating deadlock detection executes the previous S1, S2, S3 and S4
statements with i = o.. Moreover it executes the following statements S6 and S7. The result of
detection is recorded by the boolean variable dd (deadlock flag).

S6:  when controller C, decides to check deadlock occurrence
PD:=P;
Jvi=true;
previous :=|PD|;
send token (PD, fv) to pext

S7:  when initiator C, receives token(PD, fv)
if Py PD then the same behavior as the corresponding part in S5 fi;
if (v v previous | PD|) A (PD|0)

then

fvi= false;

previous :=|PD|;

send token (PD, fv) to next
else

dd .= (PD # Q)

fis

3.4 Performance analysis

It is not hard to note that the number of token transmissions is equal to n(n-1) in the worst
case, where n={ P|. The maximum deadlock detection delay is the same. Each controller requires
only an acknowledgment counter and a boolean flag cp;. The size of token is fixed and equal to
(n+1) bits, as one bit per process is enough.

3.5 Proof of the algorithm

In order to prove correctness of the algorithm we have to show its liveness and safety
properties as stated in Section 3.1.
3.5.1 Notation

Considering one execution of the algorithm, let us denote by tik the time moment at the
end of the k-th visit of the token at the controller C; (i.e., just before the token leaves C;). Con-
sequently, ¢.* denotes the end of the k-th token’s visit at the initiator C,, i.e., the time when k-
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th token turn terminates. We have ti" < t,-k” . Also, for any entity X (variable, predicate, etc) and
any time ¢, X[f] will denote the value of X at time r. In particular, PD[t,-k] denotes the value of
set PD contained in the token at the end of its k-th visit at controller C;. Moreover, we will use
the following definition:

cont_pasi(t, t)=(tst) A (Vo:t<o<t‘:passive;[q])

3.5.2 Liveness

Theorem 1:
If the detection algorithm is initiated at time 1, then it will stop a finite time after #,.

Proof. When the token visits controller C;, either it is sent immediately to the next (if
P, e PD )or it is kept by C; until one of the three conditions holds:

M
* fulfilled,(ARR; U (P\PD))
* notack;=0

But (cp; A notack; # 0) cannot hold indefinitely, since a passive process cannot send mes-
sages, and all messages sent are acknowledged in finite time. Thus, the condition under which
controller C; releases the token will hold eventually.

Consequently, each complete turn of the token is accomplished in finite time. The next
turn k+2 is launched provided that |PD [tﬁ]' > |PD [tff 1] | Thus, the non-negative function
k— |PD [tﬁ] | is monotonically decreasing, with initial value [P}, whence the number of turns
is finite.

Q.E.D.

3.5.3 Safety

Theorem 2:
Let #; and 1, be the time moments of the detection initiation and termination, respectively.

i. If the algorithm terminates with dd=false, then for any set B such that B ¢ P the pred-
icate deadlock(B) was false at time 1,

i1. If the algorithm terminates with dd=true, then the predicate deadlock(PD) is true at
time t,; moreover, for any set B such that B € P and deadlock(B) was true at time tp,
we have:B c PD.

Proof of point i. We will prove the equivalent implication:
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1) (3B:B ¢ P:deadlock(B) [t,]) = dd[t,]

According to the assumption, at time ¢, we have: B # @ and deadlock(B). By construction
initially PD is equal to P and thus at t, B ¢ PD. As deadlock(B) is a stable property, we have:

V1.t 2t,:deadlock (B) [t] whence, according to the definition of predicate deadlock:

Vt:t21t,: (VPP B:passive;[t] A —fulfilled,(NE,;[t] UARR,;[t] UP\B))

(NE; has been defined in Section 2.4; it denotes the set of all Pj such that —~empty(j, i))

All processes P; belonging to B are continuously passive since time 1 and, hence, since
the first visit of the token. We are going to show, by contradiction, that no process belonging to
B can be removed from PD. Suppose, thus, this is not the case; let P; be the first process of B
which can be removed from PD. Thus, at time ¢ > ¢, just before this possible removal, the rela-
tion B < PD holds. The continuously passive process P; can be removed from PD provided that
the following condition is satisfied at #:

fulfilled, (ARR,[t] UP\PD [t]) = true. Butit is easy to note that:

ARR;[7] = ARR,[¢,] u {processes whose messages arrived at P; between 1, and ¢}

Let us consider a message arrived at P; between ¢ and ¢. Its sender either belongs to P\B
or it is a process belonging to B whose outgoing channel towards P; was not empty at time 1,
Thus,

ARR;[1] cARR;][1,] UNE;,[t,] UP\B. Hence, as by hypothesis

fulfilled, (ARR,; [t] UP\PD [t]) = true, we have:

fulfilled;(ARR;[t,] UNE,;[t,] UP\B UP\PD [¢]) = true

As B C PD [¢], this reduces to: fulfilled,(ARR,[¢,] UNE;[s,] UP\B) = true.

The last statement contradicts the assumption that deadlock(B) is true at time f. Thus, no
process P; belonging to B can be removed from PD and this proves point i. Moreover, when the
algorithm terminates with dd = true, we have:

@) B+ and B PD

Proof of point ii. According to the construction, the algorithm terminates at ¢, = tak”

with result dd=true if and only if [PD [#*']|=|PD (]| and PD [¢£*'] #D. Let 6* be a
time moment such that max {#*} < ¢*<min {#*!}. A time moment o* exists as it can be
equal to tfl for instance. We have, in particular,

VP:P,e Pt sat<Hicht!
We note that, since the set PD can only decrease, then

VP;:P,e P:PD[] 2PD[{] o PD[c*] 2PD[#* ! o PD [£*!
Thus, if algorithm terminates at ¢ = tak” with dd = true, then

VP,;:P,e P:PD[1t]=PD[c*]=PD[¢;*']=PD[£*]

Let PD denote this set. We will prove that deadlock(PD) holds at time ¢ = o, i.e. the fol-

lowing conditions hold at time o
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(C1) PD+J and
(C2) VP;.P; e PD: passive,[cX] and
(C3) VP;:P; € PD: —fulfilled;(NE; [c*] U ARR,; [6*] U P\PD)

We show step by step that these three conditions are directly implied by detection termi-
nation with dd = true.

* By construction detection terminates with dd = true only if PD # . The condition
(C1) for deadlock occurrence at time o is thus verified.

* Let P,e PD. By construcnon only processes continuously passive sxnce the first
visit of the token at t can belong to PD. Hence, we have cont_pas; (t,, tf* ') and

passive; [oX]. The second condition (C2) for deadlock occurrence at time o" is thus
verified.

* Since P, e PD ,we have by construction —fulfilled,(ARR,[£:*!] UP\PD}, oth-
erwise P would be removed from PD. But as ARR; can only increase and P\PD is con-
stant in time interval ( ta , -k”) we have:

3) ARRJc*] UP\PD ¢ ARR:}*]] U P\PD
By construction all output channels of processes belonging to PD are empty at time tf,
as the token is kept by each controller associated with passive process belonging to PD,
until all sent messages are acknowledged (notack; = 0). Because these processes are
continuously passive since the first token visit, their output channels are empty also at
time o*. Hence:

NE;{c*] "PD = @ and therefore NE,[c*] < P\PD. Consequently:

@) NE; [0*] UARR,[0*] UP\PD = ARR{c*] U P\PD
From (3) and (4), we obtain:

(5) NE; [¢*] UARR[c*] UP\PD ¢ ARR;[+**/] U P\PD

But from definition of predicate fulfilled; we have:

if X CYand —fulfilled; (Y), then —fulfilled; (X). Thus, from this definition and from
(5) we can conclude that if

(6) —fulfilled; (ARR[}*1] U P\PD),

then —fulfilled( NE; [¢*] U ARR{c*] U P\PD).

By construction (6) is satisfied for each P; € PD. Thus, the third condition (C3) for
deadlock occurrence at time of is verified.

The above points proved that deadlock(PD) is true at of. As deadlock is stable property
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and o* < t,, then predicate deadlock(PD) is also frue at time t,; that proves the first assertion of
point ii.

Finally, if there is a set B such that deadlock(B)[1;], then from properties (1) and (2) (see
point i) we conclude that B ¢ PD. That proves the second assertion of point ii of the safety prop-
erty.

Q.E.D.

3.6 Initiation of deadlock detection

For completeness of the proposed deadlock detection approach it is still necessary to pre-
cisely define when controllers should initiate deadlock detection (i.e., make up decision to
check deadlock occurrence), in order to guarantee that every set of deadlocked processes will
be detected in finite time. We will mention two possible solutions to this problem.

The first solution is a natural extension of the basic token-based algorithm. It assumes that
token travelling along virtual ring is either busy or free. Token is busy when it is just involved
(used) in deadlock detection which is controlled by the algorithm directly corresponding to the
basic one. When the detection terminates, the initiator switches token to free and sends it to the
next controller in the ring. The free token received by a controller C; associated with active pro-
cess P; is sent further immediately; however, if P; is passive, then C; is obliged to switch token
to busy and initiate in finite time subsequent deadlock detection.

The second solution of detection initiation problem is based on the rule requiring that con-
troller initiates deadlock detection every time its application process becomes passive (immedi-
ately or after a finite delay). As a consequence several tokens can travel simultaneously in the
system. To distinguish these tokens they can be endowed with the unique stamp (j, s) composed
of the initiator identity j and sequence number s of token initiations, as in [7] for instance. In this
context, the basic algorithm requires, of course, some extensions, to guarantee detection consis-
tency. Thus, controller C; is endowed with variables latest;(j) and cp,(j) which are associated
with each possible initiator C;. The variable latest{j) is equal to the largest sequence number s
of tokens initiated by C;. The boolean variable cp,(j) denotes that P; has been continuously pas-
sive since the last visit of the token initiated by C;. The variable cp;(j) can be updated (set to
true) only by the token with stamp (j, s), such that s 2 latest(j).

Embedding consistently one of the above mentioned ideas to the basic algorithm, we ob-
tain algorithm call extended one.

Theorem 3:
The extended algorithm detects every set of deadlocked processes in finite time.

Proof. According to the proposed constructions, each deadlocked process entails an ini-

tiation of deadlock detection after it became passive the last time. For the second extension it is
trivial as every passive process initiate detection whenever it becomes passive. For the first one
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it is also true because every detection is terminated in finite time as shows Theorem1, and then
the free token is sent immediately to the next controller in the ring. Thus, the controller of a con-
tinuously passive (deadlocked) process will receive in finite time the free token, and then it will
initiate detection.

Consequently, in both cases, the controller associated with a deadlocked process which
becomes passive as the last one, will initiate detection in finite time. According to Theorem 1
and Theorem 2, this detection computation will detect all deadlocked processes infinite time.

Q.E.D.

It should be stressed that, according to classification of deadlock detection problems given
in Section 2.5, the extended algorithm solves the problem of the maximum deadlocked set de-
tection.

4 Refinements

4.1 Individual termination

As was introduced in Section 2.2, individually terminated process P; is characterized by

the following predicate:
state; = passive and DS; =&

To take into account such individual terminations the definition of predicate deadlock(B)
introduced in Section 2.4, has to be slightly modified. Let T be the set of individually terminated
processes. As a process belonging to T cannot send messages which a passive process P; is wait-
ing for, we consider that P; as deadlocked. Thus, for the AND request model the predicate dead-
lock (B) becomes (for other models a similar modification has to be done):

deadlock (B)=(B#J) A(VP;: P;eB:
(passive; A (3Pj: P;eDS;n(BUT):
(empty (J, i) A = arr; (j)))))

Let us note that with this definition a circuit in the classical wait-for-graph representation
(which can be associated with AND request model) is no more a necessary condition for dead-
lock occurrence.

In the proposed extension of the basic algorithm, token carries an additional field IT rep-
resenting the set of individually terminated processes. When a controller C; receives the token
it simply adds P; to IT if P; is individually terminated, and proceeds as previously (of course
the predicate fulfilled; evaluates to false for every individually terminated process P;). So PD
includes the set of potentially deadlocked or individually terminated processes from the token
viewpoint. At the end of the detection PD \ IT defines the set of deadlocked processes.
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4.2 Termination detection

The termination detection problem (global termination) consists in detecting a state from
which there is no more activity in the program execution ([9],[10]). A lot of particular algo-
rithms have been proposed to solve it (see e.g., [19]). This problem is in fact equivalent to one
presented in Section 2.5.3, namely: compute a set B of deadlocked processes in which the set B
is predefined and equal to the set P of all processes. Thus, the set B is now fixed and known a
priori, and the question is: are all processes globally terminated? Consequently the answer is
yes or no.

To solve the termination detection problem one can use the basic algorithm proposed here
with the following slight modification: the last statement of S7 (i.e., dd := (PD # J)) has to be
augmented by 1d := (PD = P), where td is a boolean variable indicating whether the global ter-
mination occurred. If individual termination of processes is also permitted, the additional in-
struction should be the same (¢td := (PD = P)) as IT ¢ PD. Moreover, as soon as a controller C;
removes P; from PD the answer will be td = false, hence the algorithm can be easily further
modified to take this into account and answer no quicker.

Finally, let us emphasize that the obtained termination detection distributed algorithm al-
lows non FIFO channels and unspecified receptions. From practical point of view, that consti-
tutes advantageous characteristics when this solution is compared with other termination detec-
tion algorithms.

4.3 Token routing

Analyzing the basic algorithm described in Section 3, one can easily note that token man-
agement leaves opportunity for improvement. First of all, number of token transmissions can be
significantly reduced, directing token only to the controllers associated with processes compos-
ing the set PD, or to the initiator controller Cy. It can be realized introducing notion next(PD)
meaning next along the ring from controllers C;, such that P; e PD U { P}, and substituting next
by next(PD). Then, at most (n+2)(n-1)/2 transmissions of token are needed, in the worst case.

If we are interested only in detection of a deadlocked process (see Section 2.5.2), then we
can apply the following modification to the basic algorithm, resulting in the algorithm which is
more efficient with respect to detection delay. The general idea is to change the first turn of the
token, taking into account that activation of any process P; depends directly only on processes
belonging to its dependent set DS;. This observation has been utilized successfully in many dis-
tributed algorithms detecting a deadlocked process (see e.g., [3], [7]), Thus, the proposed mod-
ification is as follows. During the modified first turn token carries, apart from PD and fv, a set
V of processes already visited in this turn. The controller C, that wants to know if P is dead-
locked, behaves as initiator and before the first token launching, sets PD := DS, U {P,}, V :=
@, and then sends the token to next(PD). Controllers C; associated with processes active during
token visit set PD :=PD\ {P;}, V:= V U {P;}, and send the token to next(PD \ V). On the other
hand, each controller associated with passive process P;, sets PD :=PD U (DS;\V)and V :=V
U {P;} (we subtract V from DS; because processes already visited in this turn and removed from
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PD as active need not be visited again). Then, C; sends the token to next(PD \ V). When the
modified first turn terminates, one can continue detection, launching the token with fv = true
and PD initiated to value obtained as a result of the modified turn, and control further detection
according to the basic algorithm. The above outlined approach seems to be very efficient in all
cases where only a few processes are involved in a deadlock. In this context it is worth mention-
ing theoretical and empirical studies showing that for most distributed database applications
over 90% of deadlocks involve only two processes (see e.g. [1], [18]).

4.4 Parallel detection execution

All proposition presented here till now apply one token in every detection computation.
Hence, detection process is in fact sequential, and therefore detection delay is O(n2) in the worst
case. However, this disadvantage can be overcome using the following parallel scheme.

Let us assume that the set P of processes is fully connected. Thus, virtual star structure
with the initiator C, as the center node is available. The initiator begins detection broadcasting
query message to all controllers (including itself). The query message is endowed with set PD
and flag fv, like the token in the basic algorithm. Receiving a query, controller C; executes op-
eration according to the basic algorithm, but it sends reply message with updated PD = PD; di-
rectly to the initiator. Controller C, collects all reply messages and constructs globally updated
set PD with the following assignment:

PD :=PD; "PD, Nn.."PD,

Then, depending on termination conditions equivalent to those of the basic algorithm, the
next query- reply exchange is eventually initiated.

The correctness of the above parallel algorithm results directly from the observation that
a sequential order in which controllers are visited by the token is not material provided that ev-
ery full turn is completed before initiating the next one. This essential property, together with
conditions under which the visit is allowed to progress (expressed in the ring structure by con-
struction like keep the token until) has been abstracted as the “guarded wave sequence” concept
[15]; this concept is a tool for methodological design of algorithms detecting stable properties
(in particular, deadlock detection). Thus, any process structure allowing to implement the con-
cept of wave (star, more general tree, ring, etc) can be also easily applied.

Let us note, that application of the parallel algorithm to the star structure reduces deadlock
detection delay to O(n) in the worst case.

5 Conclusion

In this paper deadlock detection in asynchronous message communication systems has
been considered. It is a very important problem for various applications including computer net-
works, database systems, massively parallel systems, etc. In distributed asynchronous environ-
ment deadlock detection is peculiarly subtle and complex, as distributed algorithms are required
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and no node has accurate knowledge of the whole system state. These difficulties brought about
a large number of errors in published deadlock detection algorithms. To reduce as much as pos-
sible this danger, the paper has first introduced formal deadlock models and hierarchy of dead-
lock detection problems. Then, a general algorithm detecting sets of deadlocked processes has
been proposed, described formally and proven correct. This algorithm has used token passing
mechanism, however, it has been shown, that other more parallel mechanisms can also be ap-
plied to improve efficiency of the detection computation. Moreover, some extensions of the al-
gorithm have been outlined to cover individual and global termination detection problem, and
to improve token management. The very important and advantageous characteristic of the pro-
posed algorithm is possibility of its straightforward application in distributed systems even with
unspecified receptions, not FIFO channels, and general request models permitting, among oth-
ers, AND, OR, AND-OR, k-out-of-n requests. Thus, the solution presented here has a superiority
over the deadlock detection algorithms considered up to now.
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