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QArith: Développement formel de I’arithmétique
paresseuse sur les rationnels

Résumé : Nous présentons une formalisation en Coq de la bibliothéque QArith qui donne
une construction des nombres rationnels comme des séquences binaires sur lesquelles on
peut calculer de maniére stricte ou paresseuse. La représentation utilisée est celle de Stern
et Brocot. Le développement formel utilise des techniques avancées pour la description de
fonctions récursives générales dans le systéme Coq. Ce développement souligne la puissance
de Cog dans le développement de programmes certifiés.

Mots-clés : méthodes formelles, théorie des types, calcul des constructions, calcul exact
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1 Introduction

The present work is the continuation of two earlier parallel works of the authors [3, 12] with
two main goals:

1. To present a library of rational numbers for Cog [17] based on a canonical representa-
tion for rational numbers also known as Stern-Brocot representation!.

2. To verify in Cog the correctness of a family of lazy algorithms for exact rational
arithmetic.

In the present paper we do not detail the lazy algorithms that are described in [12]. For the
complete formal development, we refer the reader to [13].

In Sect. 2, we present the set of rational numbers as an inductively defined set of signed
binary sequences. In Sect. 3, we describe strict algorithms for the field operations. In Sect. 4,
we describe lazy algorithms for these operations, based on homographic and quadratic trans-
formations. In Sect. 5 we discuss the proof of correctness for these algorithms. In sect. 6, we

LA presentation of Stern-Brocot trees and related publications is given in [12]
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4 Nigqui € Bertot

discuss the question of program extraction as it is provided in the Cog type theory and the
impact this question had on our formal work. Possible further work is mentioned in Sect. 7.

2 Rational Numbers as Binary Sequences

We define the set of positive rational numbers, inductively as:

Inductive Q1 :Set := mR: QT —Qt| dL: Q+—QT| One: Qt.

Using this we define the set of rational numbers, merely by adding a sign bit:

Inductive Q : Set := Zero: Q| Qpos: Qt—ql Qneg: Qt—Q.

We provide an encoding function to map pairs of natural numbers p and ¢ to the rational
number representing g. This relies on an auxiliary function where recursion is bounded by
an extra measure argument.

Fixpoint Qj’ [p, 9, n : nat] : qt :=

Cases n of
0 = One

| (Sn’) =
Cases (minus p q) of

0 = Cases (minus q p) of 0 = One | v = (dL @ p v n’)) end

| v= (R (QF v q n?))
end

end.

If either of p or g is zero, the outcome of this function is irrelevant. The main function
always calls this auxiliary function with positive input.

Definition makef{ [m,n:Z]:=
Cases m n of
(POS _) (POS _) = (Qpos (@} (abs m) (abs mn) (plus (abs m) (abs n))))
| (NEG _) (NEG _) = (Qpos (Qj‘ (abs m) (abs n) (plus (abs m) (abs n))))
| ZERO _ = Zero
| _ ZER0O = Zero
[— = (Qneg (QF (abs m) (abs n) (plus (abs m) (abs n))))
end.

Here the function abs is the forgetful projection from Z onto nat. Thus for p,q two
integers, make p q produces the signed binary sequence corresponding to g. For example:

Eval Compute in (make§ €9¢ €14¢).
= (Qpos (dL (nR (dL (nR (nR (nR 0One))))))) : @

INRIA



QArith: Lazy Rational Arithmetic 5

Decoding functions have a similar structure, with a main function and a recursive func-
tion. We proved formally that if Qj’ w = (p,q) then p,q # 0. Here the function inject_nat
is the trivial injection of nat into Z.

Fixpoint Q;r [w : Qt] : nat * nat :=
Cases w of
One = ((S 0), (S 0))
| (R w’) = let (p,q) = (Q w’) in ((plus p @), Q)
| (dL w’) = let (p,q) (Q?‘ w?) in (p, (plus p q))
end.

Definition decodef [q:Q]:=
Cases q of
(Qpos p) = ((inject_nat (Fst (Q?’ p))),(inject_nat (Snd (Qj_ p))))
| (Qneg p) = ((Zopp (inject_nat (Fst (Q} p)))),(inject_nat (Snd (Q; p))))
| Zero = ( ZERO, (POS xH))
end.

We also proved that encoding and decoding are inverse operations.

Lemma makef decodef :Vq:Q (make§ (Fst (decodef q)) (Snd (decodef q)))=q.

Note that this equality between the resulting signed binary sequence and the original
sequence is syntactical (Leibniz equality). For the converse direction we can prove the
following lemma:

Lemma decode{make{ :Vm,n:Z let (p,q)=(decodef (maked m n)) in n#0—m*q=n*p.

Here the equality is not syntactical, rather it is the definitional equality on positive
fractions. These lemmata show the advantage of our binary representation for rational
numbers. In a system like Cog, reasoning with data types is considerably easier when we
are dealing with the corresponding syntactical equality, because we can use the rewriting
machinery of the theorem prover to ease the equational reasoning. But the benefits of this
canonical representation are not restricted to machinery of the theorem provers. For a more
detailed discussion and examples of simplified mathematical proofs see [3].

The lemmata makef decodef and decodefmakef demonstrate that the inductively de-
fined set Q is a representation for rational numbers. In the rest of this paper we will show
how we can equip the set Q with the usual algebraic operations and prove the correctness of
these operations.

3 Field Structure: A Strict Implementation

In this section, we present the formalisation of algebraic operations on Q in the natural math-
ematical way. When computing an operation with rational numbers, mathematicians usually

RR n° 5004



6 Nigui € Bertot

perform regular natural number computations with the numerators and denominators and
then simplify the result to a reduced fraction, using a greatest common divisor computa-
tion. For this reason, we shall use the term fraction to denote the pair of a numerator and
denominator.

In our case, we start with values in the type Q and we use the function decodef to obtain
fractions for each operand and then perform the usual natural number computations. At
the end of the computation, the resulting fraction is directly encoded using the function Q7,
because this function already integrates the greatest common divisor computation, as was
shown in [3].

We only provide operations to manipulate positive fractions. The encapsulating functions
that take care of conversions between the type Q take care of sign problems. This means
that we need to provide three basic operations for fractions: addition, multiplication, and
subtraction. Both addition and subtraction on fractions with positive components are needed
for the addition on rational numbers, because adding two numbers with opposite signs
tantamounts to a subtraction. Computing the result sign for an addition when the two
numbers have opposite sign also requires a function to compare two rational numbers. We
do not implement this comparison function at the level of fractions but rather at the level
of the type QT. For multiplication, the situation is simpler, multiplying rational numbers
reduces to multiplying the absolute values and then computing the sign of the result.

Comparing two numbers in the type Q% is simple. The constructors nR and dL can
actually be interpreted as monotonically increasing functions and the former always return
a result greater than 1 while the second one always returns a result less than 1. Thus, it
suffices to compare the two bit bitwise from left to right.

Fixpoint Qt_le_bool [w, w’ : QY] : bool :=
Cases w of

One => Cases w’> of (dL y) = false | _ = true end
| (dL y) = Cases w’ of (dL y’) = (Q*_le_bool y y’) | _ = true end
| (mR y) = Cases w’ of (nR y’) = (QT_le_bool y y’) | _ = false end
end.

This function is used to defined a two argument predicate Q* _le and a strongly specified
test function QT _le_dec which plays key role in the operations implementations, because
the subtraction operation is only meaningful when the first argument is greater than the
second argument.

Definition {plus :=
[x, y:QlCases x y of (Qpos x’)(Qpos y?) = (Qpos (Q*_plus x’ y?))
| (Qpos x’) (Qneg y’) =
Case (QT_le_dec x’ y?’) of
[h:(Qt_1le x* y?)]
Case (Q+_eq_dec x? y’) of
[h:x’=y’]Zero [h:x’#y’](Qneg (Qt_sub y’ x%))
end
[h :=(Q%_le x> y2)1(Qpos (QAt_sub x* y?))

INRIA



QArith: Lazy Rational Arithmetic 7

end

| (Qneg x’) (Qneg y’) = (Gneg (QF_plus x’ y*))

Definition @gmult :=
[x, y:Q] Cases x y of (Qpos x’) (Qpos y’) = (Qpos (QFT_mult x’ y*))
| (Qpos x’) (Qneg y’) = (Qneg (Qt_mult x> y’))

The unary operations of computing the opposite of a rational number is a trivial matter.
To compute the inverse, we need to compute the inverse of a positive integer in Q*. It
actually is a very simple function, where we do not need to convert to a fraction of natural
numbers and back.

Fixpoint Qt_inv [w:Q1+]:Qt:=
Cases w of One = One
| (@R w?) = (dL (QT_inv w?))
| (dL w’) = (@R (Qt_inv w?))
end.

With all these operations, it is then quite easy to show that the type Q with comparison,
addition, subtraction, multiplication, and inversion is an ordered field. This ‘natural’ im-
plementation provides a reference implementation (but not a very efficient one) of the field
operations.

Most of these algorithms for the basic operations are strict, in the sense that we need to
process the entire bit strings of both arguments to obtain the numerators and denominators
and start computing the result. Only the inverse and comparison function can start to
return results without having processed their entire input.

4 Field Structure: A Lazy Implementation

4.1 Laziness

Lazy computation is a constructive interpretation of continuity?. The idea is that if we are
computing continuous functions on sequences, it is possible to do this computation in a lazy
manner, outputting partial information about the final result after having processed only
initial segments of the input. If we consider streams (infinite sequences) instead of finite
sequences, we can make this notion more precise by calling a function on streams lazy if it is
continuous with respect to the Cantor space topology on the set of streams. In our case the
operations addition, multiplication, division and subtraction are all continuous both on R
and on QQ with the subspace topology, and we can devise lazy algorithms for these additions.

2There are other aspects of laziness (e.g. laziness in the sense of sharing the reduction) which we do not
consider in this paper.

RR n° 5004



8 Niqui & Bertot

However, the inputs we consider are finite and this explains why we could provide a strict
implementation.

A lazy algorithm on sequences usually consists of two steps: (1) Looking at initial seg-
ments of the input, the absorption step. (2) Outputting an initial segment of the output,
the emission step. An algorithm terminates when it emits the empty sequence. When there
are several inputs, the algorithm also contains an absorption strategy to decide which input
initial segment to absorb next. Classical examples of lazy algorithms are those given by
Gosper [7] for adding and multiplying regular continued fractions. The work by Gosper was
later generalised in for exact arithmetic [18, 11, 16, §].

We devised lazy algorithms to compute directly on the Q* and Q structures without
going through computations on fractions and we then showed their equivalence with the
strict algorithms from section 3. One can show that the lazy approach should have a lower
computational complexity, especially when partial answers are useful (for instance in case
of dealing with fractions with large denominators). But we discover in this work that the
proof complexity has an impact on the usability of the algorithm and the strict approach is
still the most efficient for some purposes. The contrast between these two paradigms will
be discussed again in Sect. 6.3.

4.2 Homographic and Quadratic Algorithms

In this section we briefly discuss the homographic and quadratic algorithms to compute on
signed binary sequences. The algorithms that we use are explained in detail in [12] and
are available on-line as part of the Cog contribution package QArith [13]. Following [7], to
devise the basic field operations, we consider a larger class of unary and binary operations.
The basic operations are then simultaneously obtained from the general algorithms.

A homographic transformation of matrix M is a function of the form:

ar +b
cx+d

hu (@) = c d

a,b,e,d € Z; M:[a b].
A quadratic transformation of matrix T is a binary function of the form:

azy +bxr+cy+d
exy+ fr+gy+h

qT(m,y) = e f g h

By taking special values for T' we obtain the algorithms for basic arithmetic operations.

a,bc,d,e, f,g,h €Z  and T:[“ b e d].

01 10 100 0
Te = 0001] T®_[0001]
01 -1 0 0100
Te_[ooo 1]T®_[0010]

In [12] the homographic algorithm is presented using two auxiliary algorithms: the sign
algorithm and the output-bit algorithm. The sign algorithm is a function & : Max2(Z) X
Qt — {0,41, -1} x Mayo(Z) x Q* (here Myx2(7Z) denotes the type of 2 x 2 matrices
over Z). The output-bit algorithm is a function B : Mayo(Z) x @t —— Q. Finally the

INRIA



QArith: Lazy Rational Arithmetic 9

homographic algorithm is a function H : Msxs(Z) x QT —— Q which combines the two
functions S and B. Both functions S and B are recursive. In the case of S we are dealing
with a simple structural recursion on the binary sequence. The recursion in B is more
complex. If the recursion was structural, then all recursive calls would be absorption steps.
In our case, some recursive calls are only emission steps, but the total sum of the matrix
coefficients decrease while remaining positive. This is one of the main difficulties of the
verification process: in Coq formalising non-structural yet terminating recursion is possible
in various ways but all of the methods either require a priori knowledge of the algorithm
complexity (for example the Balaa and Bertot’s method [1]) or lead to very large proof terms
by changing the representation of the function domain (for example the Bove and Capretta’s
method [5]). In Sect. 4.4 we explain how we used in our formalisation a variant of Bove and
Capretta’s method to formalise the non-structural recursion.

Similarly in the case of the quadratic algorithm, the sign algorithm is a function Sy :
T2><(2><2)(Z) X Q+ X Q+ — {0,+1,—1} X TQX(QX?)(Z) X Q+ X Q+ where T2X(2X2)(Z) is the
type of 2 x 4 integer matrices. The output-bit algorithm is a function By : Tox(2x2)(Z) x
Q" x Q" —— QT and the quadratic algorithm is a function Q : Thy(2x2)(Z)x Q" x QT +—Q
which combines the two functions S and Bs. The functions S; is a structurally recursive
function with respect to the binary structure of both inputs and the function Bs is not.

4.3 Lazy Proof Obligation

In [12] we implicitly assumed that the denominators of all transformations involved are
nonzero. This imposes a restriction on the formalisation because it makes the algorithms
partial. A standard way to formalise partial functions in type theory is to add a proof
obligation to the function’s arguments, using a predicate to specify function’s domain. For
‘H, the domain predicate has the form

Aa,b,c,d:7;q:Q. Prlc,d,q)

and the predicate ®3; : Z2 x Q — Prop means cxq+d#0, but we want to avoid using the
strict operations to define the predicate. We first define a domain predicate for the sign
algorithm as an inductive property of triples (c,d, p) : Z X Z x Q*, using only operations on
integers and pattern matching on the first bit of bit strings:

Inductive ®gs: Z—>Z—>Q+—>Prop =

®g0:(c,d:Z;p:Q1)p=One—c+d£0—(Ps c d p) (* p=0One *)
| <I>51:(c,d:Z;xs:Q+)((I>3 c ctd xs)—(Ps c d (nR xs)) (* p=(nR xs) *)
| @SQ:(c,d:Z;xs:Q"')((I)S c+td d xs)—(Ps c d (dL xs)). (* p=(dL xs) *)

The domain predicate for homo is obtained by adapting ®s according to the sign bit of
each rational number.

Inductive ®y:Z—Z—Q—Prop:=
®y0:(c,d:Z;q:Q)g=Zero—d#0— (P c d q)

| ®1:(c,d:Z3q:Q;p:Q1)g=(Qpos p)—(®s c d p)—(Py c d q)

| <I>H2:(c,d:Z;q:Q;p:Q+)q=(Qneg p)—(®s -c d p)—(Py c d q).

RR n° 5004



10 Nigqui € Bertot

There is also a domain predicate for the output-bit algorithm, but this is a consequence
of the accessibility predicate (Sect. 4.4).
The precise type of the Coq formalisation of the homographic algorithm becomes

‘H:(a,b,c,d:Z;q:Q;H: (P c d q))—Q.

Note that the type of ($4; c d q) is Prop, the proof obligation is removed during extraction
(Sect. 6.1), and the extracted programs is close to those given in [12]. The same technique
is used for the quadratic algorithm and the Cog function has the type
Q:(a,b,c,d,e,f,g,h:Z;91,92:Q;H: (Pg e £ g h q1 q2))—Q.

We need only one lemma to prove that the usual field operations satisfy the proof obli-
gations:

Lemma addmultPrf:(x,y:Q(®g 000 1 x y).

Definition {plusLlazy[x,y:Q]:
Definition {mult Lazy [x,y:Q]:

x y (addmultPrf x y)).

(Q 01 00001
(10000001 xy (addmultPrf x y)).

4.4 Accessibility

The mathematical argument to ensure that the output-bit algorithms terminate is that the
input sequence decreases in absorption steps and that the the total sum of matrix coeflicients
decrease in emission steps. Checking that the total sum is decreasing is not syntactically
possible impromptu. We follow Bove and Capretta’s method of formalising general recursive
functions and define the function domain as an inductive predicate so that the algorithm can
be described as a structural recursive function with respect to this predicate. This method
is also known as recursion on an ad hoc predicate. For the reason that we discuss in Sect. 6.2,
we use a variant of the method suggested by Paulin [14] and further explored in detail in [4,
Ch. 14.4]. The domain of the function B will be

/\a7b7 C,d : Zp : Q+~ \IJ'H(av b,C,d,p),

where Uy (a,b,c,d,p) : Prop is an inductively defined predicate that determines which of
the 5-tuples (a, b, ¢, d, p) are accessible for the recursive branches of the output-bit algorithm
(cf. [12, Def. 4.3]):

Definition 4sdbove [a,b,c,d:Z]:=(c<aAd<b)V(c<aAd<Db).

Inductive Wy :Z—Z—Z—Z—Qt —Prop:=
Uq0:(a,b,c,d:Z;p:Q1)p=O0ne—0<a+b—0<c+d— (¥4 a b c d p)
| \IIH1:(a,b,c,d:Z;p:Q+)p;é(Jne—>(isAbo1}e abcd—
(¥ (a-c) (b-d) c d p)—(¥y a b cdp)
| Upo:(a,b,c,d:Z;p:Q)p#One——(isdbove a b c d)—

INRIA



QArith: Lazy Rational Arithmetic 11

(isdbove c d a b)— (Vs a b c-a d-b p)— (¥ a b c d p)

| \IIH3:(a,b,c,d:Z;xs:Q+)—|(isAbove abcd)——(isdbove ¢ d a b)—
(¥ a atb ¢ c+d xs)—(¥y a b c d (nR xs))

| \IIH3/:(a,b,c,d:Z;xs:Q+)—|(isdbove a b c d)——(isdbove c d a b)—
(U a+b b c+d d xs)—(Vy a b c d (dL xs)).

We use this accessibility predicate to formalise the homographic output-bit algorithm.
This function’s type becomes

H_Qt_to_Q*+:(a,b,c,d:Z; p:Q+; H_acc: (¥ a b cdp))— QF.

After defining this function in Coq, each time we want to use it we should supply a
term H_acc:(¥y a b ¢ d p). But we know that all positive values of a,b,c,d are in the
function’s domain.

Lemma \I/'H_Vf:(a,b,c,d:Z;p:Q+)O<a+b—>O<c+d—>O§a—>
0<b—0<c—0<d—(¥y a b cdp).

We prove this lemma by well-founded induction on the intrinsic order of the accessibility
predicate. We denote this order by <5 and we define it as follows:

4 4
(a1, a2, a3, a4, p)<s(a1, ah, a3, a4, q) iff len(p) <len(q) V (p=q A Y _a:i< Y _al)
i=1 i=1

We prove that this order is well-founded on the set Z** x Q+ (where Z* is the set of
nonnegative integers) and the lemma Uy _Kf is a direct consequence.
We take the similar approach for the formalisation of the output-bit algorithm for the
quadratic function. There we have a accessibility predicate ¥g on Z3 x Q+2. Using that we
can define a function with the following type

Q_Q*_to_QT:(a,b,c,d,e,f,g,h:Z;p1,p2:QF;
H_acc: (Vg abcdef ghpl p2))—Qt.

The well-founded order corresponding to this accessibility predicate is an order on 10-
tuples defined as:

! ! ! ! ! ! ! ! -ﬁ-
(al) az,as, a4, as, ae, a7, as)pl)pQ) <10 (al) a3, as3,a4, a5, ag, a7, asg, q17q2) 1
8 8

len(p1) < len(q1) V (pr=q1 A Y _a:i< » _ai).

i=1 i=1

We can prove that <1 is well founded on the set Z+% x Q*z. Consequently we use well-
founded induction to prove the following lemma:

Lemma \IIQ_Vf:(a,b,c,d,e,f,g,h:Z;pl,p2zQ+)0 <a+b+c+d—
0 < etf+g+h—0<a—0<b—0<c—0<d—
0<e—0<f—0<g—0<h—(¥g abcde fghpl p2).

RR n° 5004



12 Nigqui € Bertot

This lemma shows that we can use the output-bit algorithm (the function Bs) to compute
the quadratic transformations with nonnegative coefficients and with at least one positive
coefficient in the numerator and one positive coefficient in the denominator. In order to
compute the quadratic transformations with negative coeflicients and on negative inputs we
use the quadratic algorithm (the function Q) to modify the coefficients with respect to the
sign bit and call the output-bit algorithm with nonnegative coefficients.

5 Correctness Proofs

5.1 Using Strict Implementations

In Sects. 3 and 4 we showed how we formalised strict and lazy arithmetic operations on the
data type Q. In this section we discuss how the lazy algorithms were formally proven to
be correct. One possible approach is similar to what we did for strict operations: to prove
that the lazy operations satisfy all the axioms of a field. The second possibility is to use the
strict algorithms as a specification for the lazy ones, with lemmata of the following form:

Lemma {plusLlazy_Qplus:(x,y:Q) (fplusLlazy x y)=(fplus x y).

In our development we took this approach and proved two general theorems. The one
for the quadratic algorithm has the following form, momentarily using & and ® do denote
the strict operations.

Theorem Q_Correctness:(a,b,c,d,e,f,g,h:Z;91,92:Q;
H: (((((e®q1)®@q2)B(f® q1))D(gRq2))D h) # Zero)
(Qabcdefghql q2 (Q_nonzeroCorrect e f g h ql q2 H))=
((((((a®91)®q2) D (bRq1) ) D (c®q2)) Bd) R
(@inv (((((e®q1)®q2)D(f®q1))D(g®q2))Dh))) .

The correctness of field operations is just a special instance of the general theorems.
In the statement of the above theorems, the term Q_nonzeroCorrect correspond to the
correctness of the lazy proof obligations that we defined in Sect. 4.3. It shows the equivalence
of the inductively defined predicate with the strict predicate stating that the denominators
are not zero.

Lemma Q_nonzeroCorrect:(e,f,g,h:Z;q1,q2:Q)
(Q_nonzero e £ g h q1 q2)—(((((e®Rql)®q2)D(£fRq1))P(gRq2))D h)#Zero.

INRIA



QArith: Lazy Rational Arithmetic 13

5.2 Using the Field Tactic

The Field tactic was devised by Delahaye and Mayero [6] to ease the equational reasoning on
field structures in Cogq. It is a decision for simple equations that generates proof obligations
for each occurrence of division.

We could use this tactic directly after proving that the strict operations of Sect. 3 satisfy
the field axioms. It was of great help in the correctness proof. However there were instances
where we had to fine-tune the reduction behaviour of the Field tactic to prevent unnecessary
reduction that slowed down the tactic behaviour to an unacceptable level. The default
reduction behaviour is based on eager reduction, probably because the original design was
based on an axiomatic field structure. Our experience shows that the Field tactic will be
more useful for equational reasoning on concrete fields (as opposed to abstract axiomatic
fields), if this reduction behaviour is less eager. Note that the Ring tactic, which is the Cog
tactic for equational reasoning on rings, does not have this problem with eager reduction
and hence it is very useful in reasoning about concrete rings such as the ring of integers.

After proving the correctness of the lazy algorithms, we could define a second field
structure based on lazy operations. Therefore we have a single data type with two different
field structures on it. This is an interesting situation and deserves a deeper investigation of
whether it is useful — from the theorem proving point of view — to have two underlying
fields on the same carrier type, or whether it adds to the complexity of the proofs.

5.3 Functional Induction

As it is obvious from the quadratic and homographic algorithms given in [12] and the for-
malisation we discussed in Sect. 4, we are dealing with functions of up to 11 arguments (in
quadratic algorithms) which are defined by case distinctions of up to 43 cases (in homo-
graphic and quadratic sign algorithms). The case distinctions in the definition of functions
gets in the way when we want to prove these functions’ properties. This means that if we
want to prove the correctness of the homographic sign algorithm, we should consider 43
different cases. During the proof of correctness many of these cases should be handled in
a similar way, they can be solved by automatic tactics or are degenerate cases. The tactic
Functional Induction and its variant Functional Scheme are designed by Barthe and
Courtieu [2] to assist the user in dealing with this kind of situations by providing some
automation. When given a Cog function, the tactic Functional Induction tries to auto-
matically generate an elimination principle which is tailored to the shape of that function;
and then applied this elimination principle on the current goal which generates all the pos-
sible different cases based on the case distinctions in the definition of the function. This
will generate one subgoal for each case. The tactic then applies some heuristics to solve as
many subgoals as possible. In the course of developing the QArith in proving the correctness
of the lazy operations, we benefited immensely from the beta version of this tactic. Our
usage also contributed in making this tactic more efficient by exposing some of the bugs
of that version. Our experience shows that this tactic can make Cog a better framework
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for reasoning about realistic algorithms which are often based on heavy case analysis on a
multitude of arguments.

6 Programs vs. Proofs

The algorithms for lazy arithmetic on QF were first implemented in Haskell. The origi-
nal Haskell implementation was about 16 kilobytes of code. The Coq formalisation of the
lazy algorithms led to fixing some exception handling bugs in the original Haskell code.
Moreover the Coq formalisation highlighted the symmetries between fractions, homographic
transformations and quadratic transformations as members of the larger family of multi-
linear functions. This resulted in generalising the algorithms for multilinear forms of n
variables [12]. Such improvements show some advantages of formalising functions in type
theory. There is however, the disadvantage that formalising the programs in type theory is
a time consuming process and the amount of automation and heuristics available in present
day theorem provers is not satisfactory.

Table 1 shows the relative size (in kilobytes) of the various phases of formalisation.
During this project we used the most novel facilities of Coq. The statistics in table 1 might
thus discourage people from using type theoretical tools for verification purposes. Our
answer is that, without the existing automation tools in recent versions of Cog, and without
the recent theoretical advances, such a project would seem impossible only a couple of years
ago. This makes us confident that in coming years, similar projects will help improving
theorem provers to make them more programmer-oriented and will alleviate the task of
formalising and verification of the algorithms in theorem provers based on type theory. Our
second argument is that such formalisations have a generic nature which can be applied
to similar algorithms. The lazy algorithms of QArith, are inspired by and very similar to
the existing algorithms for arithmetic on continued fractions [7, 18, 11]. We believe that a
verification of the continued fraction arithmetic is possible based on our QArith project (cf
Sect. 7).

6.1 Extraction

One important aspect of type theory of Cogq is the distinction between informative and non-
informative objects. The informative objects are terms of type Set, and consist of those
whose computational content is important for the programmer. The non-informative objects
are terms of type Prop which bear solely a logical and not computational importance. Inside
the type theory of Cogq, however, these non-informative objects are first class citizens and
they should be type checked and evaluated when necessary.

In order to recapture the computational content of the formalised programs Cog has
the program extraction mechanism, which is a tool to extract the underlying program of an
object in type theory into a program in a conventional programming language [15, 9].

In our case, after finishing the formalisation of the lazy algorithms, we used the program
extraction into Haskell, to obtain the verified version of the algorithms. It is interesting
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to compare the Cog-generated Haskell code (postverification code) with the original hand-
written Haskell code (preverification code). Not surprisingly the basic algorithms have the
same time and space complexity. The main difference is that in the postverification code all
the usual data types such as natural numbers, booleans and integers are reimplemented as
new algebraic data types in Haskell, while in the preverification code we use the data types
already defined in the standard prelude of Haskell (and sometimes even built-in as primitive
data types). This makes the preverification code much faster and also is the main reason of
the difference of size of pre- and postverification code (see table 1).

Table 1: Comparison of the ASCII size of programs and proofs.

development Coq code

strict operations 112 KB
lazy operations 748 KB

correctness 304 KB

total project 1164 KB
function preverification Cog code postverification
homographic 8 KB 200 KB 20 KB
quadratic 8 KB 476 KB 60 KB
total lazy 16 KB 748 KB 88 KB

There is another difference between the pre- and postverification codes. Recall that in
Cog we had to add lazy proof obligations and accessibility predicates to the definition of
the functions. Those terms were non-informative objects from the programmer’s point of
view, hence they had the type Prop. During the extraction all the terms of type Prop will
be replaced by the sole constructor of the unit data type, which is merely a dummy term
in Haskell. Thus for example the homographic function in the postverification code has 6
arguments, while in the preverification code it has 5 arguments. This difference is practically
negligible and doesn’t affect the performance of the postverification code.

6.2 Prop-sorted Accessibility

Originally, in Bove and Capretta’s method, the inductive domain of a non-structurally recur-
sive function is a term of type Set. This is because Bove and Capretta work in Martin-Lof
type theory where there is no distinction between Set and Prop. In the case of function B
of Sect. 4.2, in every recursive branch we will once evaluate the the value of the function
(based on input sequence and four coefficients which we carry around) and once evaluate the
new subdomain of the new recursive call. Recall that if we extract this term from Cog to a
Haskell program, all the terms of type Set will be extracted. This means that if we follow
Bove and Capretta’s method and take the domain of the function B to be an inductively
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defined set rather than a predicate, in the Haskell extraction of the function the inductively
defined accessible domain is also extracted, and this will considerably decrease the efficiency.

Incidentally that is the approach we took in the beginning. Later we modified the whole
formalisation and we used the Prop-sorted accessibility. Our tests showed a 25% to 30%
decrease in both time and memory usage of the extracted algorithms. However for evaluation
inside Cog, the time and memory complexity of the proof objects does not change. This
emphasises the importance of program extraction as one of the basic philosophies behind
the design of the type system of Coq versus Martin-Lof type theory.

We mentioned that our first approach was to follow Bove and Capretta’s original method
and use Set-sorted accessibility. This is because unfortunately the second approach is more
technical and requires an advanced knowledge of the internals of Coq [4, Ch. 14.4]. The
first author initially applied the original Bove and Capretta’s method and the second author
showed how it is possible to modify the proofs to suit the Prop-sorted variant. During this
modification a detailed study of the proof terms of Cog was necessary.

6.3 Computations Inside Cogq

One of the main goals of the project was to supply Cog with a library of arithmetic on
rational numbers. This library had to be similar to the existing libraries for natural numbers
and integers. This means that we should at least be able to perform easy computations
in the language of Cogq. The QArith library fulfills this requirement. After defining the
strict operations, one can add pretty printer and parser for expressions involving rational
numbers. This is especially facilitated in recent versions of Cog, where user can easily extend
the grammar of Coq. The syntactic sugars for work with current version (7.4) of Cog can
be found in the file Qsyntax.v [13].

In Sect. 4.1 we argued that lazy functions on sequences are more efficient. This is true
in a programming language like Haskell where we do not bother with termination checking.
But could we use the lazy operations in order to do arithmetic inside Coq? The answer
is negative, and the reason is that inside Coq all the proof obligations and accessibility
predicates, albeit computationally irrelevant, should be type-checked and evaluated. Conse-
quently a full evaluation of the quadratic function inside Cog results in a explosion of proof
terms and with current computational power is impractical. However as we discussed in
Sect. 6.1, the program extraction will obviate all the non-informative terms and we end up
with an efficient program. Therefore for computations inside Cog we use the strict version
of field operations.

7 Conclusion and Further Work

The experience with formalisation of QArith library shows that the Cog theorem prover, in
its current state, not only is a good framework for formalisation of mathematical structures
and their purely algebraic properties, but also is capable of being used to verify nontrivial
algorithms. The algorithms we formalised, have the same underlying complexity as the
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state of the art algorithms in the field of exact arithmetic [16]. We also contrasted the
preverification code versus postverification code. This consists of starting from a hand-
written code, formalising it in a theorem prover which offers the possibility of program
extraction, and extracting into the verified executable code in the programming language of
the origin. We believe that a more careful investigation of the difference between pre- and
postverification codes gives the designers of programming languages (resp. theorem provers)
valuable insight into logical (resp. computational) power of their creations.

We discuss two possible extensions of our work. One is to use the intrinsic similarity
between our algorithms and the algorithms of continued fraction arithmetic in order to
verify the correctness of those ubiquitous algorithms. This requires a clever reuse of the
proof objects we supplied during the present work, in order to minimise the amount of
additional effort. The recent work by Magaud [10] seems to provide a useful theoretical
background for this approach.

The second possible improvement on our work is to extend the inductive data types
and the lazy algorithms on them to coinductive data types and corecursive functions on
them in order to obtain a verified exact arithmetic on real numbers. In Haskell there is
no distinction between inductive types (data) and coinductive types (codata), so all our
algorithms written in Haskell are valid for potentially infinite sequences. But in Coq there
is a clear distinction between infinite and finite objects and one has to use coinductive
types in order to formalise algorithms which work on streams, even though the extracted
algorithms into Haskell will be identical to those for the finite sequences. In an upcoming
work the first author will describe admissible representations — those which come with
a intuitive notion of computability induced by Cantor space topology — based on Stern-
Brocot tree and formalisable by means of coinductive types. A problem to tackle is the
syntactic constraints that Coq puts on corecursive functions. These constraints are the dual
constraint of structural recursion, and require similar approaches to the ones we discussed
in Sects. 4.4, 6.2.
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