-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Compiling Pattern Matching in Join-Patterns
Qin Ma, Luc Maranget

» To cite this version:

Qin Ma, Luc Maranget. Compiling Pattern Matching in Join-Patterns. [Research Report] RR-5160,
INRIA. 2004. inria-00077047

HAL Id: inria-00077047
https://hal.inria.fr /inria-00077047
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50447935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00077047
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5160--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Compiling Pattern Matching in Join-Patterns

QinMa Luc Maranget

N° 5160
5th April 2004

THEME 1

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Compiling Pattern Matching in Join-Patterns

Qin Ma Luc Maranget

Théme 1 — Réseaux et systémes
Projet Moscova

Rapport de recherche n° 5160 — 5th April 2004 — 29 pages

Abstract: We propose an extension of the join-calculus with pattern matching
on algebraic data types. Our initial motivation is twofold: to provide an intuitive
semantics of the interaction between concurrency and pattern matching; to define a
practical compilation scheme from extended join-definitions into ordinary ones plus
(ML) pattern matching. To assess the correctness of our compilation scheme, we
develop a theory of the applied join-calculus, a calculus with value-passing and value
matching.

Key-words: algebraic data type, pattern matching, functionnal programming,
concurrent programming, observational equivalence, join-calculus,

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Résumé : Nous nous proposons d’étendre le join-calcul par le filtrage sur les
données définies par des types algébriques. Nous poursuivons deux objectifs complé-
mentaires : déterminer une sémantique conforme 4 l'intuition de la combinaison du
filtrage et de la concurrence ; concevoir un schéma pratique de compilation de nos
définitions étendues vers le join-calcul plus la construction de filtrage avec priorité
du langage ML. Pour exprimer et prouver la correction de cette transformation, nous
développons la théorie du join-calcul appliqué, un calcul de processus avec passage
de valeurs et définitions par filtrage.

Mots-clés : types algériques, définitions par filtrage, programmation fonctionnelle,
programmation concurrente, équivalence dans les calculs de processus, join-calcul

Compiling Pattern Matching in Join-Patterns 3

1 Introduction

The join-calculus [5] is a process calculus in the tradition of the w-calculus of Milner
and Parrow [15]. One distinctive feature of join-calculus is the simultaneous defini-
tion of all receptors on several channels through join-definitions. A join-definition
is structured as a list of reaction rules, with each reaction rule being a pair of one
join-pattern and one guarded process. A join-pattern is in turn a list of channel
names (with formal arguments), specifying the synchronization among those chan-
nels. Namely, the join-pattern is matched only if there are messages present on all its
channels. Finally, the reaction rules of one join-definition define competing behav-
iors in the following sense: once a join-pattern is matched, then the corresponding
guarded process may be fired.

It is tempting to extend the matching mechanism of join-patterns, so that mes-
sage contents are also taken into account. As an example, let us consider the fol-
lowing list-based implementation of a concurrent stack:!

def pop(r) & State(x::xs) > r(x) & State(xs)

or push(v) & State(ls) > State (x::1s)
The second join-pattern push(v) & State(1ls) is an ordinary one, it is matched
whenever there are messages both on State and push. By contrast, the first join-
pattern is an extended one, the formal argument of channel State is a pattern,
matched only by messages that are cons cells. Thus, when the stack is empty (i.e.,
when message [] is pending on channel State), pop requests are delayed.

It should be noticed that a similar stack can be implemented in join-calculus
without pattern arguments, using instead the match construct of ML:

def push(v) & Empty() > Some (v::[])

or push(v) & Some(1ls) > Some (v::1s)

or pop(r) & Some(1ls) >

match 1s with | x:: [1 — r(x) & Empty() | x::xs — r(x) & Some(xs)

Obviously, the second definition requires more programming effort. Moreover, it is
not immediately apparent that messages on Some are non-empty lists, and that the
match construct thus never fails More generally, encoding the equivalent of pattern
arguments in ordinary join can be quite cumbersome.

Join-definitions with (constant) pattern arguments appear informally in func-
tional nets [17]. We here generalize this idea to full patterns. Semantics remains
smooth, since both join-pattern matching and pattern matching rest upon classi-
cal substitution (or semi-unification). However, efficient implementation is more

1We use Objective Caml syntax for lists, with nil being [] and cons being infix : :

RR n° 5160

4 Ma,Maranget

involved. We address this issue by transforming join-definitions with pattern ar-
guments into equivalent, ordinary, join-definitions, thereby leaving most of pattern
matching compilation to an ordinary ML pattern matching compiler. Such a trans-
formation is not straightforward. Namely, there is a gap between, non-deterministic,
join-pattern matching and, deterministic, ML pattern matching. For instance, in our
example of a stack, State(1s) is still matched by any message on State, regardless
of the presence of the more precise State(x::xs) in the competing reaction rule
ahead.

The rest of the paper is organized as follows: Section 2 gives a rapid review of
pattern matching and describes key ideas of the compilation. Section 3 presents
the semantics of our extended calculus as well as appropriate equivalence relations.
Section 4 presents the algorithm of the transformation, which essentially works by
building a meet semi-lattice of patterns, and Section 5 goes through a complete
example. Finally, we deal with correctness in Section 6.

2 A journey through patterns

2.1 A rapid tour of pattern matching

Patterns and values are built the usual way as (well-sorted) terms, over constructor
signatures defined by algebraic data types. In contrast to values, patterns may have
variables in it, and we restrict all variables in a pattern being pairwise distinct, called
linear. Moreover, patterns may contain wild-cards “_” in place of some variables
when names are irrelevant, and a pattern may of course contain several wild-cards.
A value v (of type t) is an instance of pattern 7 (of type t) when there exists a
substitution o, such that mo = v. In other words, pattern 7 describes the prefix of
instance v, and additionally binds its variables to sub-terms of v. In the following, we
write S(m) for the set of the instances of pattern 7. We have the following relations
among patterns (see [11]):

e Pattern m; and mo are incompatible (71 #me) when S(m) N S(m) = 0.
e Pattern 7 is less precise then pattern 7o (71 < m2) when S(mg) C S(m1).

e Patterns m; and 7o are compatible when they share at least one instance. Two
compatible patterns admit a least upper bound (for <) written 7y 1 2, whose
instance set is S(m1) N S(mg).

INRIA

Compiling Pattern Matching in Join-Patterns 5

e Patterns 71 and 7y are equivalent (7 = m2) when S(m1) = S(m2). If so, their
least upper bound is their representative, written ; $ mo.2

ML pattern matching is deterministic, even when patterns are overlapping (i.e.,
compatible). More precisely, consider the following ML pattern matching
matchewith|7r1—>Q1\7r2—>Q2 ||7Tn—>Qn
Pattern 7; is matched by the values in set S(m;) \ (Ui<;j<iS(7;)) and only by those.
In other words, given some value v, patterns my, o, ... , 7 are checked for having v
as an instance, in that order, stopping as soon as a match is found. pattern matching
is exhaustive when Ui<;<,S(7;) is the whole set of values (of the considered type).

2.2 From patterns in join to ML pattern matching

At the time of join-pattern synchronizations, one should test messages against pat-
tern arguments to avoid inappropriate message consumptions. Therefore, suppose
we want to transform the following join-definition:

def c(m) & d(...) > Py

or c(me) & e(...) > Pg
Our idea is to refine channel ¢ into more precise ones, each of which carries the
instances of patterns m; or mo.

def ¢y (...) & d(...) > Py
or Cry(...) & e(...) > Py
Then, we add a new reaction rule to dispatch the messages on channel ¢ to either
Cry OF Cpyt
or ¢(v) > match v with
| m1 — cry(en)
‘ my — C7r2(...)
| _—0
The notation () stands for the null process, by which, messages that are instances of
neither m nor mo can be safely discarded.
The simple compilation above works perfectly, as long as 71 and w9 are incompat-
ible. Unfortunately, it falls short when 7 and m have common instances. However,
further refinements can handle this situation.

o If 1y <X mo, (but mg £ m), that is if all instances of 7 are instances of w1,
then, to get a chance of meeting its instances, pattern my must come first:

2Equivalence does not reduce to structural equality because of variables renaming or typing. For
instance, we have _ = (_,_) (here we state _$(_,_) = (,_))

RR n° 5160

6 Ma,Maranget

or ¢(v) > match v with
| T — C7r2(...)
| m — C7T1(---)
| _—0

But now, channel ¢, does not carry all the possible instances of pattern m
anymore, instances shared by pattern my are dispatched to c;,. As a conse-
quence, the actual transformation of the initial reaction rules is as follows:

def ¢, (...) & d(...) > Py
or crp(...) & d(...) > Py
or crp(...) & e(...) > Py

Observe that non-determinism is now more explicit: an instance of w5 sent on
channel ¢ can be consumed by either reaction rule. We can shorten the new
definition a little by using or in join-patterns:

def (¢ (...) or crp(...)) & d(...) > Py

or ¢ry(...) & e(...) > Py

e If 71 = mo, then matching by their representative is enough:
def crypmo(--2) & d(...) > Py
or Crypmy(---) & (o) > Py
or ¢(v) > match v with

| 7T1:I:7T2—) C7T1$7T2("')
| =0

e Finally, if neither m; < 79 nor 9 = 7y holds, with 1 and 79 being nevertheless
compatible, then an extra matching by pattern 71 1 7y is needed:

def (¢ (...) of Crytmy(-..)) & d(...) > Py
or (cry(-..) or Crypmo(--.)) & e(...) > Py
or c(v) > match v with

| m T — C,,rlTﬂz(...)

| ™ — C7T1("')

| T2 = cny(.n)

| _—0

Notice that the relative order of w1 and w9 is irrelevant here.

In the transformation rules above, we paid little attention to variables in patterns,
by writing ¢,(...). We now demonstrate variable management by means of our

INRIA

Compiling Pattern Matching in Join-Patterns 7

stack example. Here, the relevant patterns are m; = £ and w9 = x::xs and we are
in the case where m; < 7y (and w9 A m; because of instance []). Our idea is to
let dispatching focus on instance checking, and to perform variable binding after
synchronization:
def push(v) & (State .. (z) or State (z)) > match z with £ — State(v::/)
or pop(r) & State . (z) > match z with x: :xs — r(x) & State(xs)
or State(v) > match v with
| _::_ — State_.. (v)
| _ — State (v)
One may believe that the matching of the pattern x: : xs needs to be performed twice,
but it is not necessary. The compiler in fact knows that the matching of z against
x::xs (on second line) cannot fail. As a consequence, no test needs to be performed
here, only the binding of the pattern variables. Moreover, the existing optimizing
pattern matching compiler of [11] can be fooled into producing minimal code for
such a situation by simply asserting that the compiled matching is exhaustive.

3 The applied join-calculus

To express pattern matching in both the join-patterns and the guarded processes,
we introduce and study an extension of the join-calculus which we called the applied
join-calculus, by analogy with “the applied m-calculus” [1]. The applied join-calculus
builds upon the pure join-calculus [5], and extends it with constructors, value-passing
and pattern matching constructs.

3.1 Syntax and scopes

The syntax of the applied join-calculus is given in Figure 1. Constructors of algebraic
data types have an arity and are ranged over by C. A constructor with arity 0 is a
constant. We assume an infinite set of variables, ranged over by a,b,...,y, 2.

Two new syntactic categories are introduced: expressions and patterns. At the
first glance, both expressions and patterns are terms constructed from variables
and constructors, where n matches the arity of constructor C. However, patterns
may have occasional wild-cards, and we require patterns to be linear. ML pattern
matching is added as a process, which matches the value of the expression against a
list of patterns. Moreover, in contrast to ordinary name-passing join-calculus, there
are two more radical extensions: first, message contents become expressions, that

RR n° 5160

Ma,Maranget

0

z(e)
P& P
def Din P

match e with | m — P; | ...

x

C(m1, T, ..., Tn)

T
C(e1,e2,...,en)

| T — P

Processes

null process

message sending
parallel

definition

ML pattern matching

Join-definitions
empty definition
reaction
disjunction

Join-patterns
message pattern
synchronization

Patterns
wildcard
variable
constructor pattern

Expressions
variable
constructor expression

Figure 1: Syntax of the applied join-calculus

is, we have value-passing; second, when a channel name is defined in a join-pattern,
we also specify what pattern the message content should satisfy.

There are two kinds of bindings: the definition process def Din P binds all the
channel names defined in D (dn[D]) in the scope of P; while the reaction rule J > P
or the ML pattern matching match e with | 7y — P | ... | my — Pp, bind all the
local variables (rv[J] or rv[m;]) in the scope of P or P;, i € {1,... ,m}.

The definitions of the set of defined channel names dn[-], the set of local variables
rv[-], and the set of free variables fv[-] are almost the same as in the join-calculus,

INRIA

Compiling Pattern Matching in Join-Patterns 9

except for the following modifications or extensions to adopt patterns.
we(r)] ¥ wir]

] o0

= {z}

rv[C (71, T2, .., mp)] Lo rv[mi) W rv[mo] W ... W rv[my]

LN
=)
@
=

vz

fv[match u with |*! m; — P}]
f
E Wu] U (Use; P\ i)

We assume a type discipline in the style of the type system of the join-calculus [7],
extended with constructor types and the rule for ML pattern matching. Without
making the type discipline more explicit, we consider only well-typed terms (whose
type we know), and assume that substitutions preserve types. It should be ob-
served that the arity checking of polyadic join-calculus is replaced by a well-typing
assumption in our calculus, which is monadic and whose message contents can be
tuples. However, one important consequence of typing is that any (free) variable in
a term possesses a type and that we know this type. Hence, we can discriminate
between those variables that are of a type of constructed values and those that are of
channel type. Generally speaking, in name-passing calculi semantics, the latter kind
of variables are (almost) treated as channel names, that is, values. While, in any
reasonable semantics, the former kind of variables cannot be treated so. Reduction
will operate on wvariable-closed (closed for short) terms, whose free variables are all
of channel type.

Finally, we use the or construct in join-patterns as syntax sugar, in the following
sense:

J&(JlorJg)DP: (J&Jlbp) or (J&JQDP)

3.2 Reduction semantics

We establish the semantics in the reflexive chemical abstract machine style [5, 3]. A
chemical solution is a pair D F P, where D is a multiset of join-definitions, and P
is a multiset of processes. Extending the notion of closeness to solutions, a solution
is closed when all the join-definitions and processes in it are closed. The chemical
rewrite rules are given in Figure 2. They apply to closed solutions, and consist of two
kinds: structural rules — or — represent the syntactical rearrangement of the terms,

RR n° 5160

10 Ma,Maranget

STR-NULL FO = F

STR-PAR FP&P = PP

STr-ToP T = F

STR-AND DorD'+ = D,D'F

STR-DEF Fdef DnP = DFP

REACT JoPkFJo — Jp>p Pk Po

MATcH F match mp with |7 = Py | ... | mm = Pn
— FPp

Side conditions:

STR-DEF dn[D] is fresh
REACT o substitutes expressions for rv[J]
MATCH p substitutes expressions for rv[m;] and Vj < i,7; £ mip

Figure 2: RCHAM of the applied join-calculus

and reduction rules — represent the computation steps. We follow the convention
to omit the part of the solution which remains unchanged during rewrite.

Matching of message contents by formal arguments is integrated in the substi-
tution o in rule REACT. As a consequence this rule does not formally change with
respect to ordinary join-calculus. However its semantical power has much increased.
The MATCH rule is new and expresses ML pattern matching.

According to the convention of processes as solutions, namely P as - P, the
semantics is also defined on closed processes in the following sense.

Definition 1. Denote =* as the transitive closure of = U —,

1.P=Qif FP="FQ

2P —Qiff FP="—0="FQ

Obviously, we have the structural rule, namely, if P — Q, P = P, and Q = @/,
then P — @'.
3.3 Equivalence relation

In this section, we equip the applied join-calculus with equivalence relations to allow
equational reasoning among processes. The classical notion of barbed congruence is a

INRIA

Compiling Pattern Matching in Join-Patterns 11

sensible behavioral equivalence based on a reduction semantics and barb predicates.
It was initially proposed by Milner and Sangiorgi for CCS [16], and adapted to
many other process caluli [9, 2], including the join-calculus [5]. We take weak barbed
congruence [16] as our basic notion of “behavioral equivalence” for closed processes.

Definition 2 (Barb predicates). Let P be a closed process, and ¢ be a channel
name

1. P has a strong barb on c: Pl., iff P = (def D inQ) & c(e), for some D, Q and
e.

2. P has a weak barb on channel c: P, iff P —* P’ such that P'|..

Definition 3 (Weak barbed bisimulation). A binary relation R on closed pro-
cesses is a weak barbed bisimulation if, whenever PRQ, we have

1. If P — P, then 3Q', s.t. Q@ —* Q' and P'RQ'. Vice versa.
2. For any ¢, Pl. iff Q..

By definition, Weak barbed bisimilarity (&) is the largest weak barbed bisim-
ulation.

A context C[] is a term built by the grammar of process with a single process
placeholder [-]. An ezecutive contexts E[-] is a context in which the placeholder is
not guarded. Namely:

E[] © []| BHJ&P | P&B[] | def DinE[]

We say a context is closed if all the free variables in it are of channel type.

Definition 4 (Weak barbed congruence). A binary relation on closed processes
is a weak barbed congruence if it is a weak barbed bisimulation and closed by applica-
tion of any closed executive contert. We denote the largest weak barbed congruence
as =~ .

The weak barbed congruence =~ is defined on the closed subset of the applied
join-calculus. Although the definition itself only requires the closure of executive
contexts, it can be proved that the full congruence does not provide more discrimi-
nation power. Similarily to what Fournet has established for the pure join-calculus
in his thesis [4], we first have the property that ~ is a closure under substitution.

RR n° 5160

12 Ma,Maranget

Lemma 1. Given two closed processes P and Q, if P = @Q, then for any substitu-
tion o, Po = Qo.

Then based on this property, the full congruence is also guaranteed.
Theorem 1. Weak barbed congurence = is a closure of any closed contexts.

As for the pure join-calculus, Lemma 1 can be proved by constructing an ex-
ecutive context to mimic the behavior of any subustution. And Theorem 1 holds
basically following the fact that the essence of a guarded context is substitution.

Up to now, we define the weak barbed congruence as expressing the equivalence of
two processes at runtime. However, this is not sufficient for reasoning the behavior
of our compilation, which applies perfectly well to processes with free variables.
In other words, we also need a way to express the equivalence of two processes
statically. Of course, the static equivalence must imply the runtime one. Therefore,
the equivalence relation of any processes, whether closed or not, is defined in terms
of the runtime equivalence relation = , using substitutions to close up.

Definition 5 (Static equivalence). Two processes P and Q are statically equiv-
alent (<), if for any substitution o such that Po and Qo are closed, Po =~ Qo.

Following the definition, we can check that < is closed by substitution.
Lemma 2. P & Q = Yo.Po < Qo

Proof. This is equivalent to prove
P = Q = Voi,09. Pojos = Qo109 (%)

where o1 is the substitution of this lemma, and o9 is the substitution in the static
equivalence definition that closes Poy and Qoy. Taking o as o1 o 09, statement (x)
holds by definition. O

More importantly, < 1is also closed by any contexts (see Theorem 2 below). To
prove the theorem, we need the following lemma.

Lemma 3. For any closed process P, if P reduces and only reduces to P', then
PP .

Proof. Let R = {(def DinP & Q, def Din P' & @)} for any closed D and Q. It is
easy to check that (=R =) is a weak barbed congruence, because: if P = Py & Jo,
then P' = P} & Jo where Py reduces and only reduces to Pj; and we have —
preserves barbs. Furthermore, we have P = (def Tin P & §)R(def Tin P' & 0) = P,
i.e. P=R =P O

INRIA

Compiling Pattern Matching in Join-Patterns 13

Theorem 2. The static equivalence < is a full congruence.

Proof. We demonstrate < is closed by executive contexts, definition contexts, and
pattern matching contexts respectively.

1. Closed by executive contexts, namely
P = @ = E[P] < E[Q]

For any substitution o such that (E[P])o and (E[Q])o closed, we should have
(E[P])o =~ (E[P])o. We write (E[P])o as Eco[Po1] and (E[Q])o as Eo[Qo1],
where Eo|-|, Po1, Qo1 closed and o7 is o minus the bindings for the channel
names bound by E in [-]. By hypothesis P < @, we have Po; = Qo1, which
is closed by closed executive context Fol[-], hence we conclude.

2. Closed by definition contexts, namely
P=<=@ = def JbPorDinR <= def JoQorDinR

For any substitution o, such that (def J> Por Din R)o, (def J>Qor Din R)o
closed, we should prove

(def J>PorDinR)o = (def J>QorDinR)o
namely
def J> PoiorDoin Ro =~ def J> Qo or Doin Ro (#)

where Do and Ro closed and o1 = o \ rv[J]. By hypothesis P = @ and
Lemma 2, we have Po; < Qo1.

We build the following relation R on closed processes
R ={(def J>SorDinA,def J>TorDinB)|S < T and A ~ B}

and we analyze the following three aspects of R: closure of closed executive
contexts; refinement of barbs; and reduction bisimulation.

(x) R is a closure of closed executive context up to =.

For any closed E[-], with necessary a-conversion, we have

E[def J>SorDinA] = def J>Sor(DorD')in(A& K)
Eldef J>TorDinB] = def JoTor(DorD')in(B & K)

RR n° 5160

14

Ma,Maranget

where A& K ~ B § K, because = is closed by the closed executive context
[J& K.

For the rest of our analysis, we write C[X,Y] for the closed process def J >
XorDinY. Moreover, because the symmetry of relation R, we only dicuss
from left to right. The analysis for the opposite direction is similar.

(%) R refines barbs, that is C[S, A]|. = C[T, B] ..

Obviously, C[T, -] is a closed executive context, and by hypothesis A ~ B, we
have

C|T,A] ~ C[T, B] (1)
Now we prove
For any closed process Z, C[S, Z|{. = C[T, Z] . (2)

We induce on the length of reduction steps of C[S, Z] before it reaches the
strong barb J..

Base case: n =0, we have C[S, Z]l., thus, Z = Z & c¢(e), hence C[T, Z] ..

Step case: We have C[S,Z] — W —" |, and we distinguish the ways in
which the first reduction can occur.

o Z — 7' and W = C[S,Z']. Then C[T,Z] — C[T,Z']. By hy-
pothesis we have C[S, Z'| —" |, therefore C[T, Z'] |}, by induction
hypothesis, so C[T, Z] |-

o Z=20& Jpand W = C[S, Zy & Sp]. ThenC[T, Z] — C[T', Zy & T'p].
By hypothesis we have C[S, Zy & Sp| —" |, thus C[T, Zy & Sp] |
by induction hypothesis with Z as Zy § Sp. Moreover, since S = T
and Sp, Tp closed, we have Sp =~ Tp, so that Zy & Sp ~ Zy & Tp,
so that C[T,Zy& Sp] =~ C[T,Zy&Tp| by (1). That is we have
C[T, Zy & Tp]., hence C[T, Z] ..

o 7 = Zy& Jipi, D is of the form ...or J;> F; or..., and W =
C[S, Zy & Pip;). Then C[T, Z] — C[T, Zy & P;p;]. By hypothesis we
have C[S, Zy & P;p;] —" |, therefore we have C[T, Zy & P;p;] {. by
induction hypothesis with Z as Zy & P;p;, hence C[T, Z] |-

By (2), (1) and = refining barbs, we get
ClS, Al = C[T,Aly. = C[T, B]{.

INRIA

Compiling Pattern Matching in Join-Patterns 15

(*) R is a reduction-based bisimulation up to = on the right.

We first prove the following statement
If C[S,A] — M, then C[T, A] — N, and MRN. (3)
We distinguish the three cases of M.

e A — A" and M = C[S,A’]. Then C[T,A] — C[T,A’], and CI[S, A'],
C[T, A'] satisfy relation R.

e A= Ay&Jp and M = C[S, Ag & Sp]. Then C[T,A] — C[T, Ao & Tp),
where Sp, Tp closed. Because S = T, we have Sp = Tp, and as a con-
sequence, Ao & Sp =~ Ao & Tp. That is C[S, Ap & Sp] and C[T, Ay & T'p]
satisfy relation R.

o A= Ay& Jipi, D has form ...or J;> P;or..., and M = C[S, Ay & P;p;)-
Then C[T, A] — C[T, Ao & P;p;], and C[S, Ag & Pip;], C[T, Ay & P;p;] sat-
isfy relation R.

Moreover, because of statement (1), we have
If C[T,A] — N, then 3N’ s.t. C[T,B] —* N’, and N = N'. 4)
Statement (3) together with statement (4) justify

If C[S, A] — M, then AN’ s.t. C[T, B] —* N’, and MR ~ N'. (5)

Let R be =R =~ . Following the analysis of R above, one easily checks that
R is a weak barbed congruence. Obviously, the two processes of statement (f)
satisfy relation R, hence R, therefore (§) holds, namely, < is closed by any
definition contexts.

3. Closed by pattern matching contexts, namely
P <= @ = matchewith ...m, = P... & matchewith ...m, — Q...

For any substitution o, such that we have (match e with ... 71, — P...)o and
(match e with ... 7, — Q...)o closed, we should prove

(match ewith ... 71y — P...)o = (matchewith ...7; = Q...)o

RR n° 5160

16 Ma,Maranget

namely
match eo with ... 7, — Po’... &~ match e with ... 71, — Qo' ...)

where eo closed and o’ = o \ rv[my].

Depending on the value of eo, match e with ...m, — Po’... reduces and
only reduces to either P(c'od) or R;0;, where P(c’'ody) closed, and R; is
the ith guarded process in this pattern matching. And we have the similar

statement for match eo with ... 7, — Qo’.... Therefore, by Lemma 3, we
have
match eo with ..., — Po’... =~ P(d'od;) (6)
match eo with ...m, = Qo’... =~ Qo' 0d) (7)
or
match eo with ... 7, — Po’... =~ R;; (8)
match ec with ... 1, — Qo’... =~ R;j; (9)

Because P = (@, according to Lemma 2, we have P(c'od;) ~ Qo' odg).
Then following the transitivity of = , either by (6) and (7), or (8) and (9), we
have the statement () holds.

O

There is still a good property worth noticing: in fact, for the closed subset of the
applied join-calculus, we have < and = coincide. This is almost straightforward
following the definition of static equivalence and Lemma 1.

4 The compilation [P]

We formalize the intuitive idea described in Section 2 as a transformer Y., which
transforms a join-definition w.r.t. channel ¢. The algorithm essentially works by
constructing the meet semi-lattice of the formal pattern arguments of channel ¢ in
D, modulo pattern equivalence =, and with relation < as partial order. Moreover,
we visualize the lattice as a Directed Acyclic Graph, namely, vertices as patterns,
and edges representing the partial order. If we reason more on instance sets than
on patterns, this structure is quite close to the “subset graph” of [19].

Algorithm Y,: Given D, the join-definition to be transformed.

INRIA

Compiling Pattern Matching in Join-Patterns 17

Step 0: Pre-process

1. Collect all the pattern arguments of channel ¢ into the sequence: S =
T} e) Ty

2. Compute the equivalence classes of S, w.r.t. =. Record the representative
patterns of those into another sequence S'.

3. Perform exhaustiveness check on S’, if not exhaustive, issue an warning.

4. TF There is only one pattern in S’, and that S’ is exhaustive
THEN goto Step 5 (In that case, no dispatching is needed.)

Step 1: Closure by upper bound
For any pattern v and pattern sequence X = y1;7y2;...;9n, we define y1 X as
the sequence 17, ;7 1 Visi---37 1 Vi, Where the «;, ’s are the patterns from
X that are compatible with .

We also define function F', which takes a pattern sequence X as argument and
returns a pattern sequence.

IF X is empty
THEN F(X) =X
ELSE Decompose X as v; X' and state F(X) = v; F(X');y 1 F(X')

Compute the sequence U = F(S'). It is worth noticing that U is the sequence
of valid patterns (7, ... (7 _ tm)...), with 1 <4y <ip < ... <i <0,

and 1 < k < n', where we decompose S’ as 7};7g;...; 7.

Step 2: Up to equivalence
Compute the equivalence classes of U w.r.t. relation =. This yields a sequence
of representatives U’.

Step 3: Build DAG
Build a directed acyclic graph G(V, E) corresponding to the semi-lattice (U’, <

).
1. V=0,E=0.

2. For each pattern v in U’, add a new vertex v into V and labeled the
vertex with -, written as label(v) = ~.

3. Y(v,v') € V x Vv # ¢, if label(v) < label(v'), then add an edge from o'
to v into E.

RR n° 5160

18 Ma,Maranget

Step 4: Add dispatcher
Assume following one topological order, the vertices of G are indexed as
UVly.-. ,Up. We extend the join-definition D with a dispatcher on channel
c of the form: ¢(z) > match z with £, where z is a fresh variable and £ is built
as follows:

1. Let j ranges over {1,... ,m}. Following the above topological order, for
all vertices v; in V append a rule “| label(v;) — ¢;(z)” to L, where ¢; is
a fresh channel name.

2. If S is not exhaustive, then add a rule “| _ — (7 at the end.

Step 5: Rewrite reaction rules
For each reaction rule defining channel ¢ in D: J; & ¢(m;) > Q;, we rewrite it
according to the following policy. Let Q) = match z; with m; — Q;, where z;
is a fresh variable.

IF coming from Step 0
THEN rewrite to J; & c¢(z;) > Q)
ELSE

1. Let vj; be the unique vertex in V, s.t. label(v;;) = ;.

2. We collect all the predecessors of v;; in G, and we record the indexes
of them, together with j;, into a set notated as I(m;).

3. Rewrite to J; &(V jer(r,)ci(@i)) & @}, where \/ is the generalized or

i

construct of join-patterns.

To transform a join-definitions D, assuming dn[D] = {a,b,... ,c}, we just do
Y,Yy...Y,(D). And the compilation of process [P] is then defined as follows.

[0 = 0
[z@] = a(e)
PgP] ¥ [Pl&[P
[[def[[D in P% o Eef]]Ya[;},].] .. Yy(D)in[P]
[match e with €7 ; —» P] % match e with [*€7 1; — [B]]

Observe that the compilation preserves the interface of join-definitions. Namely, it
only affects definitions D, while messages sendings remain the same.

INRIA

Compiling Pattern Matching in Join-Patterns 19

5 Example of compilation

Given the following join-definition of an enriched integer stack

def push(v) & State(ls) > State (v::1s)

or pop(r) & State(x::xs) b r(x) & State(xs)

or insert(n) & State(0::xs) > State(0::n: :xs)

or last(r) & State([x]) > r(x) & State([x])

or swap() & State(x1::x9::xs) > State(xg: :x;: :xs)

or pause(r) & State([]) > r()

or resume(r) > State([]1) & r()
The insert channel inserts an integer as the second topmost element, but only when
the topmost element is 0. The 1ast channel gives back the last element in the stack,
keeping the stack unchanged. The swap channel exchange the topmost two elements
in the stack. The pause channel temporarily freezes the stack when it is empty,
while the resume channel brings the stack back into work. We now demonstrate our
transformation w.r.t. channel State.

Step 0 We collect the pattern arguments of channel State into S
S =1s; x::xs8; 0::xs; x::[1; x9::x9::x8; []

Because none of these patterns is equivalent to another, S’ = S. Additionally,
S’ is exhaustive (pattern 1s alone covers all possibilities).

Step 1,2 We compute all possible least upper bounds among several patterns from
S’ and record the representatives of the resulting equivalence classes into U’.

U' =1s; x::xs; 0::x8; x::[]; xy::x0::x8; [1; 0::x9::xs; 0::[]
Notice that the last two patterns are new, where

0::x9::x8 = O::xstx7::x9::x8

0::01 = O::xstTx::[]

Step 3 We build the semi-lattice (U’, <), see Figure 3.

Step 4 One possible topological order of the vertices is also shown at the right of
Figure 3. Following that order, we build the dispatcher on channel State.

RR n° 5160

20

Ma,Maranget

or State(y) > match y with

| 0::x9::xs — State;(y)
| 0: [] — Statez(y)
1¢ :xs — States(y)
0::xs — State4(y)
x::[1 — States(y)
x::xs — Stateg(y)

[1 — Stater(y)
1s — Stateg(y)

ol

Step 5 We rewrite the original reaction rules. As an example, consider the third re-
action rule for the insert behavior: the pattern in State(0: :xs) corresponds
to vertex 4 in the graph, which has two predecessors: vertex 1 and vertex 2.
Therefore, the reaction rule is rewritten to

insert(n) & (State;(x3) or States(xs) or States(xs))
> match x3 with 0::xs — State(0: :n::xs)

where State;, States and Statey are the fresh channel names corresponding
to vertices 1, 2, 4 respectively, and x3 is a fresh variable.

As a final result of our transformation, we get the disjunction of the following rules
and of the dispatcher built in Step 4.

def push(v) & (Statej(x1) or ... or Stateg(x1)

or

or

or

or

or
or

)

> match x; with 1s — State (v::1s)
pop(r) & (State;(xg) or ... or Stateg(x2))

> match xo with x: :xs — r(x) & State(xs)
insert(n) & (State;(x3) or Statey(x3) or Statey(xs))

> match x3 with 0: :xs — State(0: :n: :xs)
last(r) & (Statea(x4) or States(x4))

> match x4 with [x] — r(x) & State([x])
swap() & (State;(x5) or States(xs))

> match x5 with x7::x: :xs — State(xy::x;::x8)
pause(r) & Stater(xg) > r()
resume(r) > State([]) & r()

As discussed at the end of Section 2, ML pattern matchings in the guarded processes
are here only for binding pattern variables. Therefore, if the original pattern does
not contain any variables (c.f. the pause rule), we can discard the explicit match
construct from guarded processes, as shown in the above program.

INRIA

Compiling Pattern Matching in Join-Patterns 21

1. 0::x9::xs
2. 0::01

3. xX1::xX2::XS
4. 0::xs

5. x::[]

6. x::xs

7. 0O

8. 1s

Figure 3: The semi-lattice of patterns and the topological order

6 Correctness

A system written in the extended join-calculus of Section 3 is a process P. The
compilation [P] replaces all the join-definitions D in P by Y,Y;...Y.(D), where
dn[D] = {a,b,... ,c}. To guarantee the correctness, we require the systems before
and after the compilation to be statically equivalent. Namely, the following theorem
should hold.

Theorem 3. For any process P, [P] < P.

Proof. Obviously, applying the transformation to all join-definitions in P simultane-
ously or one by one yields the same result. Therefore, [P] can be viewed as the result
after a sequence of Y -formed transformations, each of which deals with one D of P
w.r.t. some channel ¢ € dn[D]. If we can prove for any Y.-formed transformation,
= is preserved, then by transitivity, this theorem is also proved. U

Denote the system as C[def D in P] to highlight the join-definition that we com-
pile. To guarantee the correctness of the transformer Y., we require

C[def Din P] = C[def Y (D)in P]

which reduces to the following lemma as an immediate consequence of the fact that
< is closed under any context C[], as stated in Theorem 2.

Lemma 4. For any join-definition D, channel name ¢ € dn[D], and process P,
def DinP < defY.(D)inP

Before giving the proof of the crucial Lemma 4, we first study some properties
of the transformation of Y.

RR n° 5160

22 Ma,Maranget

6.1 D and Y,(D)

According to the algorithm of Section 4, there are two cases during the procedure
of Y., as decided in Step 0:

Case “jump” : For any reaction rule of the form J; & c¢(m;)> Qi in D, i =1...n,

the pattern ; is irrefutable, namely, m; = _, and in Y (D), we have the corre-
sponding reaction rule J; & c¢(z;) > match z; with m; — @Q;, where z; is fresh.

Case “go through” : The general case. We recall the notations of the DAG
G(V, E) built by the algorithm. G has m vertices, and following the topological
order, the vertices are indexed as v1,... ,vn. Let j ranges over {1,... ,m}.
Each vertex v; is labeled by a pattern, denoted as y; = label(v;). Each vertex
is also assigned with a fresh channel names, called c;.

For any reaction rule of the form J; & c¢(m;) > @Q; in D, i = 1...n, there exists
a unique vertex in G called vj,, such that -y, = m;. We use I(m;) to record the
indices of the predecessors of v, as well as j;. Notice that we have m; < «y; iff j €
I(m;). InY,(D), we have a corresponding reaction rule as J; &(V jcr(x,) ¢j (#i))>
match z; with m; — @;, where the variable z; is fresh. Moreover, we add a
dispatcher on channel ¢ in Y. (D) as
c(z) > match z with

|71 = ei(z)

| Ym — cm(x)

|_—0 (*if non-exhaustivex)

where z is a fresh variable.

6.2 Property of the dispatcher

Let u, v, etc. range over closed expressions, that is over values. In some sense, that
is modulo pattern equivalence =, the patterns of the dispatcher (the -y;’s) are all the
least upper bounds of the patterns of the original D (the m;’s). Thus, the m;’s and
the v;’s admit the same instances: Uj<;<nS(m;) = Ui<j<mS(7;).- As an immediate
consequence, let us consider X = {u | Vi,u € S(m;)} the set of values that do not
match any the the original 7;. Then, the values of X do not match any «y; either, and
those values are silently eaten by the dispatcher. Thus, given any value u such that
there exists at least one 7; such that u € S(m;), then the dispatcher must forward u
onto some channel c¢;. In that case, let us temporarily denote j as a function of u
alone: j = f(u).

INRIA

Compiling Pattern Matching in Join-Patterns 23

Lemma 5. For any m; that admits value u as an instance, then f(u) € I(m;).

Proof. Given some value u, we assume the existence of 7; from the original patterns,
such that u € S(m;). Let K be the set of indices {k | u € S(m)} and let v be Tycx ™
(v exists, since u € S(m;)). By steps 1-3 of the the compilation algorithm Y, there
exists some vertex v; with label(v;) = 7.

Then, on one hand, since m; < 7, we have j € I(m;). On the other hand, the
dispatcher forwards message u onto c¢;. For, we have :

1. Value u is an instance of 7.

2. Furthermore, by the subset lattice construction, - is the most precise from the
patterns of the dispatcher, such that u is an instance of 7. And thus, since the
patterns of the dispatchers are ordered topologically (with precision order <),
value u cannot be an instance of the patterns of the dispatcher that appear
(strictly) before ~.

0

6.3 Proof of Lemma 4

Following the definition of = , we should prove, for any substitution § such that
(def Din P)é and (def Y.(D)in P)d closed, then the two closed processes are weak
barbed congruent. Because (Y,.(D))d = Y.(Dd), that is

def Déin Py ~ def Y,(Dé)in P, (1)

where 01 = ¢ \ dn[D], and D, Pd;, and Y (D4) are closed. We prove (t) for the two
cases of Y, respectively.

“go through” case We construct the following relation R
R = {(def Din(P & Q), def Y,(D)in(P&Q))}
for any closed D and P, and @ and @ stand for

Q = (Ilpegelmio)) & ([Iyew@i®) & ([Tucve(w))

~

Q = (Haech(mg)(ma)) & (Hwe\l,match mio" with m; — Q;0)

I is the generalized parallel composition; ¥ is a multiset of substitutions on domain
rv[m;] for some 4, ranged over by o; ¥ is a multiset of substitutions on domain

RR n° 5160

24 Ma,Maranget

rv[J;] W rv[m;] for some i, ranged over by 1, where for any 9 € U, let 0" = 4 [rv[n;] 3
and 0 = 9 [rv[J;], we have ¢y = 0&® ", and we require 00 = 6Do"; U is a
multiset of the elements from X. Note that >, ¥ and U range over all appropriate
multisets. N
Intuitively, we use @ and @ to fill up the differences caused by D and Y.(D). More
specifically: a message c(m;0) may be forwarded to cf(r,,)(mic) by the dispatcher in
Y.(D); furthermore, if a guarded process ;¢ is triggered from D, then from Y, (D),
we have the corresponding guarded process match m;o” with m; — Q;0 triggered;
finally, a message on channel ¢ with a non-matchable content will be eaten by Y.(D).
We prove R is a weak barbed congruence up to =.
(%) For any closed executive context E[:|, we have

E[def Din(P& Q)] = def DorD'in(P & P' & Q)
E[def Yo(D)in(P& Q)] = def Yo(D)orD'in(P&P' & Q)

where dn[D]Ndn[D'] =, so that Y.(D)or D' = Y.(D or D'). Namely, R is a closure
of closed executive contexts up to =.

(¥) We now show that R is a reduction bisimulation up to =. We only detail the
non-trivial cases in the following.

(1) If there is a message ¢(m;0’) in P, the right part can forwarded it to a message
Cf(r;o)(mio") by the dispatcher in Y, (D). This reduction is simulated in the left part
by no reduction, and we add the new substitution ¢’ into .

(2) Similarly, if there is a message c(u') in P, for some u' € R, the right part
can eats the message by the dispatcher in Y, (D). This reduction is simulated by no
reduction in the left part and we add v’ into U.

(3) If a reduction uses the reaction rule J; & c(m;) > Q; to consume a molecule
Ji0' & c(m;io) in the left part for some o € ¥ and dom(6’) = rv[J;], it can be sim-
ulated by consuming the molecule .J;6' & Ci(ri0) (mio) in the right part using the
corresponding reaction rule J; &(Vjel(m) ¢j(z;)) > match z; with 7; — @Q;, because of
f(mo) € I(m;) by Lemma 5. The derivatives are still in R up to =, with ¥ shrinks
to X\ {o}, and ¥ expands to U {#' @ o}. We assume a-conversion when necessary
to guarantee o6’ = 0’ @ 0. Vice versa.

(4) Similar to (3) but the left part consumes a molecule J;6' & c(m;o’), where o’
is not from 3. Then the right part simulates this reduction by first forwarding the
message ¢(m;0’) to the message cf(r, o) (m;0") as in (2), then consuming the molecule
Jio} & cf(r;o1y(mi0"). ¥ expands to ¥ U {0’ @ o'}

34 |V denotes the restriction of the substitution ¢ on the set of variables V.

INRIA

Compiling Pattern Matching in Join-Patterns 25

def Din(P & Q) def Y. (D) in(P & Q)

Ji0 & c(m;0) Ji0 & c(m;0)

'

Ji0 & Cp(r;0)(Ti0)

match ;0 with 7; — Q;8

o

Qi(6® o)

c(u) c(u)

Figure 4: Reduction bisimulation in “go through” case

(5) The match m;o” with m; — Q;0 in @ of the right part can be reduced to
(Q:0)c" by the MATCH rule. Because we have ¢ 00 = 0@ o”, the result of the
reduction equals to Q;(6®c”), that is Q;1. This reduction is simulated by no
reduction in the left part. However, the process P becomes P § Q;1), and ¥ shrinks
to U\ {y}.

(6) If a reduction involves Q;¢ from @ of the left part, for some ¢ € ¥, it can
be simulated by first reducing the correspondent match m;0” with m; — Q;6 from Q
into Q;% as in (5).

The bisimulation of reductions in R is also illustrated by the diagram in Figure 4.

(%) Considering the barb refinement. First, it is easy to check that R preserves
strong barbs. Moreover, as discussed above, we have that R is also a reduction
bisimulation up to =. Therefore, R refines weak barbs.

The two processes in (1) satisfy relation R with D as D4, P as Pé1, Q and Q as
(), therefore satisfy the weak barb congruence =R =. Hence, we proved (7) for the
“go through” case.

“jump” case We build a similar relation R, but with ¢ and @ as follows:

Q = TlyewQut

~

Q = Hwe\pmatch mo’ with m; — Q;0

RR n° 5160

26 Ma,Maranget

def Din(P & Q) def Y, (D) in(P & Q)

Ji0 & c(mio) J;0 & c(m;o)

match ;0 with 7; — Q;6

/

Figure 5: Reduction bisimulation in “jump” case

Qi(0®o) Qi(6®0)

and the reduction bisimulation illustrated in the diagram of Figure 5.

7 Conclusion and future work

In this paper we have introduced the applied join-calculus. The applied join-
calculus inherits its capabilities of communication and concurrency from the pure
join-calculus and supports value-passing. The one significant extension lies in pro-
viding the power of pattern matching. Thus, the applied join-calculus is a more
precise and realistic model combining both functional and concurrent programming.

Our calculus is thus “impure” in the sense of Abadi and Fournet’s applied =-
calculus [1]. We too extend an archetypal name-passing calculus with pragmatic
constructs, in order to provide a full semantics that handles realistic language fea-
tures without cumbersome encodings. It is worth noticing that like in [1], we distin-
guish between variables and names, a distinction that is seldom made in pure calculi.
Since we aim to prove a program transformation correct, we define the equivalence
on open terms, those which contain free variables. Abadi and Fournet are able to
require their terms to have no free variables, since their goal is to prove properties
of program execution (namely the correctness of security protocols).

Our compilation scheme can be seen as the combination of two basic steps: dis-
patching and forwarding. The design and correctness of the dispatcher essentially
stems from pattern matching theory, while inserting an internal forwarding step in
communications is a natural idea, which intuitively does not change process behav-
ior. Various works give formal treatments of the intuitive correctness of forwarders,
in contexts different from ours. For instance, forwarders occur in models of concrete
distribution in the 7m-calculus [14, 8]. Of course, our interest in forwarders has quite
different motivations. In particular, our dispatcher may forward messages on several
channels, taking message contents into account, thereby performing some demulti-

INRIA

Compiling Pattern Matching in Join-Patterns 27

plexing. However, the proof techniques and objective (which can be summarized as
“full abstraction”) are quite similar.

As regards implementation, we claim that our transformation can be integrated
easily in the the current JoCaml system [10]. The JoCaml system is built on top of
Objective Caml [12], a dialect of ML, which features a sophisticated pattern match-
ing compiler [11]. Our transformation naturally takes place between the typing and
pattern matching compilation phases of the existing compiler. More significantly,
this should be the only addition. In particular, our solution does not require any
modification of the existing runtime system since the join-pattern synchronization
remains as before. It is worth observing that a direct implementation of pattern
matching at the runtime level would significantly complicate the management of
message queues, which would then need to be scanned in search of matching mes-
sages before consuming them.As a side note, an attempt to transplant our compila-
tion scheme to a similar extension of the w-calculus would be problematic, since, in
the m-calculus, the receivers on some channel are scattered in the full program and
might even not be known statically.

The integration of pattern matching into the join-calculus is part of our effort
to develop a practical concurrent programming language with firm semantical foun-
dations (a similar effort is for instance Scala [18]). In our opinion, a programming
language is more than an accumulation of features. That is, features interact some-
times in unexpected ways, especially when intimately entwined. Here, we introduce
algebraic patterns as formal arguments of channel definitions. Doing so, we provide
a more convenient (or “expressive”) language to programmers. From that perspec-
tive, pattern matching and join-calculus appear to live well together, with mutual
benefits.

In previous work, we have designed an object-oriented extension of the join-
calculus [6, 13], which appeared to be more difficult. The difficulties reside in
the refinement of the synchronization behavior of objects by using the inheritance
paradigm. We solved the problem by designing a delicate way of rewriting join-
patterns at the class level. However, the introduction of algebraic patterns in join-
patterns impacts this class-rewriting mechanism. The interaction is not immediately
clear. Up to now, we are aware of no object-oriented language where the formal ar-
guments of methods can be patterns. We thus plan to investigate such a combination
of pattern matching and inheritance, both at the calculus and language level.

RR n° 5160

28

Ma,Maranget

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’01), pages 104-115, 2001.

R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous n—calculus. Theoretical Computer Science, 195(2):291-324, 1998.

G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217-248, 1992.

C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998.

C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of the 23th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’96), pages 372-385, 1996.

C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join
calculus. Journal of Logic and Algebraic Programming, 57:23-69, 2003.

C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Implicit typing & la ML for
the join-calculus. In Proceedings of 8th International Conference on Concur-
rency Theory (CONCUR’97), LNCS 1243, pages 196-212, 1997.

P. Gardner, C. Laneve, and L. Wischik. Linear forwarders. In Proceedings of
the 14th International Conference on Concurrency Theory (CONCUR 2003),
LNCS 2761, pages 415-430, 2003.

K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 151(2):437-486, 1995.

F. Le Fessant. The JoCaml system. Software and documentation available at
http://pauillac.inria.fr/jocaml, 1998.

F. Le Fessant and L. Maranget. Optimizing pattern-matching. In Proceedings of
the 6th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2001), pages 26-37, 2001.

X. Leroy, D. Doligez, and et al. the Objective Caml System, version 3.07.
Software and documenation available at http://caml.inria.fr/, 2003.

INRIA

Compiling Pattern Matching in Join-Patterns 29

[13] Q. Ma and L. Maranget. Expressive synchronization types for inheritance in
the join calculus. In Proceedings of the 1st Asian Symposium on Programming
Languages and Systems (APLAS 2003), LNCS 2895, pages 20-36, 2003.

[14] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Pro-
ceedings of the 25th International Colloquium on Automata, Languages, and
Programming (ICALP’98), LNCS 1443, pages 856-867, 1998.

[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100:1-40 and 41-77, 1992.

[16] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of the
19th International Colloguium on Automata, Languages, and Programming
(ICALP’92), volume LNCS 623, pages 685-695, 1992.

[17] M. Odersky. Functional nets. In Proceedings of the 9th European Symposium
on Programming (ESOP 2000), LNCS 1782, pages 1-25, 2000.

[18] M. Odersky. the Scala Language. Reference available at http://lamp.epfl.
ch/"odersky/scala/, 2002.

[19] P. Pritchard. On computing the subset graph of a collection of sets. Journal of
Algorithms, 33(2):187-203, 1999.

RR n° 5160

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

