archives-ouvertes

Priority Systems
Gregor Gossler, Joseph Sifakis

» To cite this version:

Gregor Gossler, Joseph Sifakis. Priority Systems. [Research Report] RR-5226, INRIA. 2004. inria-
00077205

HAL Id: inria-00077205
https://hal.inria.fr /inria-00077205
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00077205
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5226--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Priority Systems

Gregor Gossler — Joseph Sifakis

N° 5226
Juin 2004

Théme COM

apport
derecherche

Zd I N R I A

RHONE-ALPES

Priority Systems

Gregor Gdossler , Joseph Sifakis*

Théme COM — Systémes communicants
Projet POP ART

Rapport de recherche n° 5226 — Juin 2004 — 19 pages

Abstract: We present a framework for the incremental construction of deadlock-free
systems meeting given safety properties. The framework borrows concepts and basic results
from the controller synthesis paradigm by considering a step in the construction process as
a controller synthesis problem.

We show that priorities are expressive enough to represent restrictions induced by dead-
lock-free controllers preserving safety properties. We define a correspondence between such
restrictions and priorities and provide compositionality results about the preservation of
this correspondence by operations on safety properties and priorities. Finally, we provide
an example illustrating an application of the results.

Key-words: static priorities, dynamic priorities, partial order, controller synthesis, com-
posability, incremental construction, correctness by construction, safety, deadlock-freedom

* VERIMAG, France

Unité de recherche INRIA Rhone-Alpes

655, avenue de I’Europe, 38334 Montbonnot Saint Ismier (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Systémes & Priorités

Résumé : Nous présentons un cadre pour la construction incrémentale de systémes sans
blocage qui satisfont des propriétés de sireté données. Le cadre emprunte des concepts et
résultats fondamentaux du paradigme de synthése de contréleur, en considérant un pas dans
le processus de conception comme un probléme de synthése.

Nous montrons que les priorités sont suffisamment expressives pour représenter les res-
trictions induites par les contrdleurs non-bloquants qui préservent des propriétés de streté.
Nous définissons une correspondance entre ces restrictions et les priorités, et nous donnons
des résultats de composabilité en ce qui concerne la préservation de cette correspondance
par des opérations sur les propriétés de stireté et sur les priorités. Finalement nous donnons
un exemple qui illustre une application des résultats.

Mots-clés : priorités statiques, priorités dynamiques, ordre partiel, synthése de contro-
leur, composabilité, construction incrémentale, systémes corrects par construction, streté,
absence de blocage

Priority Systems 3

1 Introduction

A common idea for avoiding a posteriori verification and testing, is to use system design
techniques that guarantee correctness by construction. Such techniques should allow to con-
struct progressively from a given system S and a set of requirements Ry, ..., R,, a sequence
of systems Si,..., Sy, such that system S; meets all the requirements R; for j < . That
is, to allow incremental construction, requirements should be composable [2, 6] along the
design process. In spite of their increasing importance, there is currently a tremendous lack
of theory and methods, especially for requirements including progress properties which are
essential for reactive systems. Most of the existing methodologies deal with construction of
systems such that a set of state properties always hold. They are founded on the combined
use of invariants and refinement relations. Composability is ensured by the fact that refine-
ment relations preserve trace inclusion. We present a framework allowing to consider jointly
state property invariance and deadlock-freedom.

Practice for building correct systems is often based on the idea of adding enforcement
mechanisms to a given system S in order to obtain a system S’ meeting a given requirement.
These mechanisms can be implemented by instrumenting the code of S or by composing S
with systems such as controllers or monitors that modify adequately the overall behavior.

An application of this principle is the enforcement of security policies which are safety
properties described by automata [14]. A main requirement for the enforced system is that
it safely terminates when it detects a deviation from some nominal secure behavior. A
more difficult problem is also to ensure system availability and preserve continuity of service
[3, 10].

Another application of this principle is aspect oriented programming [8] used to build
programs meeting (usually simple) requirements. Aspects can be considered as requirements
from which code is generated and woven into a program intended to meet the requirements.
In aspect oriented programming, aspect composition is identified as a central problem as it
may cause unintentional interference and inconsistency [15].

Practice for building correct systems by using enforcement mechanisms raises some hard
theoretical problems. For a sufficiently fine granularity of observation, it is relatively easy to
enforce safety requirements (as non violations of given state properties) by stopping system
progress. It is much harder to devise mechanisms that also guarantee system availabil-
ity and avoid service interruption. Furthermore, composability of requirements e.g. security
policies, aspects, is identified as a main obstacle to rigorous incremental system construction.

We propose a design framework for both safety and deadlock-freedom requirements. The
framework consists of a model, priority systems and results concerning its basic properties
including composability. A priority system is a transition system with a (dynamic) priority
relation on its actions. A priority relation < is a set of predicates of the form a; < Cjj.a;
meaning that action a; has lower priority than action a; at all states satisfying Cj;. At a given
state of the transition system, only enabled actions with maximal priority can be executed.
That is, in a priority system, a priority relation restricts the behavior of its transition system

RR n° 5226

4 Gregor Gassler , Joseph Sifakis

exactly as a scheduler restricts the behavior of a set of tasks. The remarkably nice property of
priority systems is that they are deadlock-free if they are built from deadlock-free transition
systems and from priority relations satisfying some easy-to-check consistency condition.

The proposed framework considers design as a controller synthesis [12] problem: from a
given system S and requirement R, find a system S’ meeting R. S’ is the composition of
S with a controller which monitors the state of S and restricts its behavior by adequately
switching off a subset of controllable actions of S. The controller is usually specified as a
solution of a fixpoint equation.

The simple case where R means that S’ is deadlock-free and does not violate a state
predicate U has been studied in various contexts e.g., in [11, 1]. The corresponding controller
is specified as a deadlock-free control invariant which is a state predicate U’', U' = U, such
that

e it is preserved by the non controllable actions of S, that is if U’ holds at some state
then it remains true forever if only non controllable actions are executed;

e U’ is false for all deadlock states of S.

Given U’, the controlled (designed) system S’ is obtained from S by conjuncting the
guard of any controllable action a by the weakest precondition of U’ under a.

In Section 2, we formalize the relationship between S and S’, by introducing restriction
operators. These are specified as tuples of state predicates in bijection with the set of actions
of S. The application of a restriction operator to S is S’, obtained from S by conjuncting
the guards of its actions by the corresponding state predicates of the restriction. We study
properties of deadlock-free control restrictions, that is restrictions corresponding to deadlock-
free control invariants.

In Section 3, we show that under some consistency conditions, priorities can be used
to represent deadlock-free restrictions. Thus, controlled systems S’ can be represented as
deadlock-free priority systems. Consistency checking boils down to computing a kind of
transitive closure of the priority relation. We show that for static priorities consistency is
equivalent to deadlock-freedom.

Composability in our framework means commutativity of application of priorities on a
given system. As a rule, the result of the successive restriction of a system S by two priorities
<1 and <s depends on the order of application and we provide sufficient conditions for
commutativity. This difficulty can be overcome by using a symmetric composition operator
@ for priorities which preserves safety and deadlock-freedom. The restriction of a system S
by <1 @ <» is a refinement of any other restriction of S obtained by application of <; and
<2.

An interesting question is whether priorities are expressive enough to represent restric-
tions induced by deadlock-free control invariants. We bring a positive answer by using a
construction associating with a state predicate U a priority relation <y. We show that
if U is a deadlock-free control invariant then the controlled system S’ is equivalent to the
system S restricted by <y. Furthermore, we provide results relating the controlled systems
corresponding to Uy, Uz, Uy A Uj to restrictions by <y, , <v,, <v; & <U,-

INRIA

Priority Systems 5

Section 4 illustrates application of the results on an example.
Section 5 presents concluding remarks about the presented framework.

2 Deadlock-free Control Invariants

2.1 Definitions and basic properties

Definition 1 (Transition system) A transition system B is a tuple (X, A,
{G"}oca, {F*}aca), where

e X is a finite set of variables;

e A is a finite set of actions, union of two disjoint sets A* and A°, the sets of the
uncontrollable and controllable interactions respectively;

e G* is a guard, predicate on X;

e ['*: X — X is o transition function, where X is the set of valuations of X.

Definition 2 (Semantics of a transition system) A transition system (X, A,{G"}4c4,
{F%}4ca) defines a transition relation —: X x A x X such that: Vx,x' € XVa € A .x >
x' = G%x)Ax' = F*(x).

We introduce the following notations:

e Given two transition systems Bi, Bs with disjoint action vocabularies such that B; =
(Xi, A, {G%}aca;, {F }aca,), for i = 1,2, their union is the transition system B; U
B2 = (Xl U X27A1 U A27 {Ga}aEAlLJAQa {Fa}a€A1UA2)-

e Given a transition system B, we represent by B“ (respectively B¢) the transition
system consisting of the uncontrollable (respectively controllable) actions of B. Clearly
B =B*U B°.

e Given a transition system B, we represent by G(B) the disjunction of its guards, that
is G(B) =V ,c4 G® where A is the set of the actions of B.

Definition 3 (Predecessors) Given B = (X, A, {G}aca, {F*}aca) and a predicate U on
X, the predecessors of U by action a is the predicate pre,(U) = G* NU([F*(X)/X]) where
U[F*(X)/X] is obtained from U by uniform substitution of X by F*(X).

Clearly, pre,(U) characterizes all the states from which execution of a leads to some
state satisfying U.

Definition 4 (Invariants and control invariants) Given a transition system B and a
predicate U,

RR n° 5226

6 Gregor Gassler , Joseph Sifakis

e U is an invariant of B if U = A, c 4 “preq.(-U) = A,ca(-G* VU([F*(X)/X]). An
invariant U, U # false, is called deadlock-free if U = G(B).

e U is a control invariant of B if U = A c4u —preq(-U). A control invariant U,
U # false, is called deadlock-free if U = \/ 4 preq.(U).

We write inv[B](U) to express the fact that U is an invariant of B. Notice that invariants
are control invariants of systems that have only uncontrollable actions.

Proposition 1 If U is a control invariant of B = (X, A, {G®}aca, {F}aca) then U is an
invariant of B' = (X, A, {(G*)'}aca, {F*}aca) where (G°)' = G AU[F*(X)/X] for a € A°
and (G*)' = G otherwise. Furthermore, if U is a deadlock-free control invariant of B then
it is a deadlock-free invariant of B'.

This result allows to build from a given system B and a safety requirement of the form
Yalways Up” a deadlock-free system B’ meeting this requirement, provided there exists a
deadlock-free control invariant U of B such that U = Uy. The following simple example
illustrates this fact.

Example 1 In o Readers/Writers system, we use two counters, non negative integers, r
and w to represent respectively, the number of readers and writers using a common resource.
The counters are modified by actions of a transition system B specified as a set of guarded
commands:

ai :true—r:=r+1 a:r>0—->r:=r—1
bi:true—w:=w+1 bb:w>0-sw:i=w-1

where a; and by are respectively, the actions of granting the resource to a reader and a writer
and as and by are respectively, the actions of releasing the resource by a reader and a writer.

We assume that the actions a1 and by are controllable and we want to enforce the require-
ment “always U” for U = (w < 1)A(w =0V r =0). This prevents concurrent access among
writers, as well as between readers and writers. It is easy to check that U is a deadlock-free
control invariant. In fact, it is easy to check that U is preserved by the uncontrollable actions
az and by:

(r>0)AU=Ulr—1/r] and (w >0) AU = Ulw — 1/w].
Furthermore, it is easy to check that U = pre,, V preg, V prep, V prep, .

As preq, (U) = w =0 and prey, (U) = (w = 0) A (r = 0), we have inv[B'|(U) where B’
is the controlled transition system:

a:w=0—->r=r+1 az:r>0—r:=r—1
bi:(r=0A(w=0—-w:=w+1 by:w>0—ow:i=w-1

The notion of restriction defined below allows a formalization of the relationship between
the initial and the controlled system.

INRIA

Priority Systems 7

Definition 5 (Restriction) Given a transition system B = (X, A, {G®}aca,
{F®},cAa), o restriction is a tuple of predicates V = (U%)qca. B/V denotes the transition
system B restricted by V, B/V = (X, A, {G* ANU®}aca, {F}aca).

V = (U%)aea is a control restriction for B if \ c 4u(~G*V U®) = true.

V = (U%)aea is a deadlock-free restriction for B if \/ o4 G* AU® =\ c 4 G°.

We simply say that V is a control restriction or a deadlock-free restriction if the corre-
sponding equation holds for any transition system B with vocabulary of actions A = A°U A¥
(independently of the interpretation of the guards).

Definition 6 (U4, V(U)) Given a predicate U, we denote by U? the restriction U4 =
(U)aca, and by V(U) the restriction V(U) = (U[F*(X)/X])aca-

If Vi, Vs are two restrictions, V; = (Uj*)a;ea for j = 1,2, we write Vi A Vy for the
restriction (U AUy)g,ca-

Proposition 2 (Control invariants and restrictions) Given a transition system B and
a predicate U,

a) IfU is a control invariant of B then V(U) is a control restriction of B;

b) If U is a deadlock-free invariant of B then V(U) is a deadlock-free restriction of B;

c) If U is a deadlock-free control invariant of B then V(U) is a deadlock-free control re-
striction of B.

We need the following definitions for the comparison of transition systems.

Definition 7 (Refinement and equivalence) Given B; = (X;, A, {G¢}qca,
{F}aca) for i =1,2, two transition systems and a predicate U we say that

e B refines By under U, denoted by By Cy Bs, ifVa € A. F = F§ and U NG} =
UNGS;

e B is equivalent to By under U, denoted by By ~y Bs, if By Cy Bs and Bs Cy By .
We write By C By and By ~ By for By Cipye By and By ~y.ue Ba, respectively.

Property 1 Given transition systems B, By, By and restrictions V, Vi, Vs,
la B/V C B;

1b (B1UB,)/V ~ By /VUBy/V;

1c (B/W)/Va ~ B/(Vi AVa);

1d B; C B, = (inv[B2](U) = inv[B1](U)) for any predicate U.

Notice that if the conjunction of control invariants is a control invariant, the conjunction
of deadlock-free control invariants is not in general, a deadlock-free control invariant. We
investigate conditions for composability.

RR n° 5226

8 Gregor Gassler , Joseph Sifakis

3 Priority Systems

We define priority systems which are transition systems restricted with priorities. Priorities
provide a general mechanism for generating deadlock-free restrictions.

3.1 Deadlock-free restrictions and priorities
3.1.1 Priorities

Definition 8 (Priority) A priority on a transition system B with set of actions A is a
set of predicates <= {Cij}a;,a;c4- The restriction defined by <, V(B,<) = (U%)aca is
U% = Ny,ea—(Cij ANG*).

The predicates C;; specify priority between actions a; and a;. If Cj; is true at some
state, then in the system restricted by V(B, <) the action a; cannot be executed if a; is
enabled. We write a; < Cjj.a; to express the fact that a; is dominated by a; when Cj;
holds. A priority is irreflezive if Ci; = —C}; for all a;,a; € A.

Definition 9 (Transitive closure) Given a priority < we denote by <t the least priority
such that <C<™, obtained by the rule:
a; <t Cij.aj and a; <t C’jk.ak implies a; <+ (Cjk A Cjk).ak.

Proposition 3 (Activity preservation for priorities) A priority < defines a deadlock-
free restriction if <t is irreflezive.

Proof. Suppose that <7 is irreflexive. Consider some transition system B = (X, A, {G°},c 4,
{F°}aca), and let G = \/,.,G* and V(B,<) = (U%)aca. Let x be a state of B
such that G(x), let A' = {a € A | G%x)}, and define a relation <’ on A’ such that
Vaj,aj € A' . a; <" aj < C;j(x). As <1 is irreflexive, <’ is a partial order on A’, and
thus acyclic. If A’ # @ then max A’ exists and is non-empty. Thus, (\/,c4 G* AU®)(x) =

(Vaea G)(x) = (Vaea G9)()-]

The above proposition motivates the definition of priority systems which are transition
systems restricted by priorities.

Definition 10 (Priority system) A priority system is a pair (B, <) where B is a transi-
tion system and <= {Cj;}a;,a;eA is a priority on B such that C;; = false for all (a;,a;) €
A x A.

The priority system (B, <) represents the transition system B/V (B, <).

The following propositions give properties of priority systems.

Proposition 4 If (B, <) is a priority system, then V (B, <) is a control restriction for B.

INRIA

Priority Systems 9

Proof. If V(B,<) = (U%),,ca then for all uncontrollable actions a;, U% = true because
Ci; = false. [|

Corollary 1 If U is a control invariant of B then U is a control invariant of (B, <).

Proposition 5 If U is a deadlock-free control invariant of a transition system B then for
any priority < such that <* is irreflezive, U is a deadlock-free invariant of (B/V (U), <).

Proof. If U is a deadlock-free control invariant of B then U = G(B/V (U)) and inv[B¥](U).
As < defines deadlock-free restrictions, (B/V (U),<)* = B* and G(B/V(U)) = G(B/V(U),
<) n

3.1.2 Static priorities

Definition 11 (Static priority) A static priority is a priority <= {Cij}a;,q;ca such that
the predicates C;; are positive boolean expressions on guards. We call static restrictions
the corresponding restrictions V (B, <) = (U%)qca, that is restrictions which are tuples of
negative boolean expressions on guards.

It is easy to check that any static restriction defines a static priority. Notice that in a
priority system with static priorities, the choice of the action to be executed at some state
depends only on the set of the actions enabled at this state. For example, a restriction
with U% = =G A (=G V =G?) means that in the restricted system the action a; can
be executed only if ay is disabled and a3 or a4 is disabled. The corresponding the priority
relation is: a; < true.as,a; < G*®.a4,a; < G*.a3

Notation: For a static priorities the notation can be drastically simplified.

If (U)a;ca is a static restriction then it is of the form, U% = A g, =M} where M}
is a monomial on guards M} = A, ., G®v. Each monomial M}, corresponds to the set
of priorities {a; < A, cw 41 G .a;}iew. This set can be canonically represented by
simply writing a; < A, cw k., -

For example if M} = G A G* A G instead of writing a; < (G** A G%?).a3, a; <
(G A G®).az, a; < (G® A G%).a1, we write a; < ajazaz. We propose the following
definition for static priorities.

Definition 12 (Static priority — simplified definition) A monomial m on a vocabu-
lary of actions A is any term m = a;, ...a;, obtained by using an associative, commutative
and idempotent product operation. Let 1 denote its neutral element, and M(A) the set of the
monomials on A.

A static priority < on A is a relation <C A x M(A).

Example 2 The static priority < corresponding to the static restriction U** = true, U*? =
true, U* = -G V -G*, U** = -G A -G*?, U% = -G A =G* V -G®? A -G* =
(G AG2)A=(G* AG*)A=(G*® AG2)A=(G®B ANG*™) is: a3 < a1a2, a4 < a1, a4 < a2,
as < a0, as < @104, As < A302, G5 < A304.

RR n° 5226

10 Gregor Gassler , Joseph Sifakis

Definition 13 (Closure) Let < be a static priority. The closure of < is the least static
priority <1 containing < such that

o ifap <% asms and ay < ms3 then ap <t moms;

e if a < am, then a <t m for m # 1.

Example 3 For <= {a < bc,b < ad}, <F={a <* be,b <T ad,a <t acd,a <T cd, b <T
bed,b <7 ed}.

Lemma 1 If for any a; € A, a; < m; with m; a monomial on A, then a; <t q; for some
a; € A.

Proof. Omitted.

Proposition 6 (Activity preservation for static priorities) A static priority < de-
fines a deadlock-free restriction if and only if <1 is irreflexive.

Proof. “if”: suppose that <7 is irreflexive. By definition, only top elements in < can be
non-trivial monomials. Thus, < is acyclic, and all ascending chains in < are finite. Consider
some deadlock-free transition system B = (X, A, {G®}4ca, {F%}aca), andlet G =\/ ., G°.
Let x be a state of B such that G(x), and let A' = {a € A | G*(x)}. As < is acyclic, max A’
exists and is non-empty. It remains to show that some element of max A’ is not dominated
by any monomial in 24", Suppose that for any a; € A’ there is some m; € 2A', a; <m;. In
that case, <1 has a circuit by lemma 1, which contradicts the hypothesis. Thus, at least
one action in max A’ is maximal in <.)

“only if”: suppose that a <T a for some a € A. By construction of <%, this means that
(AUM(A), <) contains a tree (A'UM(A’), <') with root a such that all leaves are monomials
consisting only of the action a. Take B = (0, A, {G%}ecn, {0}aca) with G*) = true if
a' € A', and G(*) = false otherwise. By definition of /, all guards in B/V (B, <) are false,
whereas B is clearly deadlock-free. [|

Example 4 Consider the static priority < on the actions a1, az,as, as such that, az < azay,
a3 < asa4, ay < asas. It is easy to see that <% is not irreflezive, thus < does not define
a deadlock-free restriction. By elimination of a4, as in the proof of Lemma 1, we get:
as -<j_‘ asas3, as -<11 asas which gives by application of the second closure rule, as <% as,
a3 <1 az. Thus <71 is not irreflezive.

Consider the slightly different static priority <1 on the actions ai,a2,as,as such that,
a2 <1 A10304, a3 <1 G204, G4 <1 a2a3. It can be checked that -<f is irreflexive and thus
deadlock-free and contains the chain a4 -<f' as -<f as -<f ai.

Clearly, < is not irreflexive as a3 <1 G*.a4,a4 <1 G*.a3. This example shows that
for static priorities the use of the specific closure gives finer results than by using Proposition
3.

INRIA

Priority Systems 11

3.2 Composition of priorities

Notice that given B and <, the predicate V (B, <) depends on B. The property ((B, <!), <2
) = ((B, <2),<!) does not hold in general. For instance, consider a system B and priorities
< and <’ such that a; < as and ay <' a3 where ay, as, as are actions of B. If from some
state of B the three actions are enabled then in ((B, <), <') only a3 is enabled while in
((B,<"), <) both a; and a3 are enabled.

We define two composition operations on priorities and study composability results.

Definition 14 (Composition of priorities) Given two priorities <' and <?* their com-
position is the operation @ such that <' ® <?= (<! U <*)*. Furthermore, if <' and <>
are static priorities we define another composition operation, © such that <! & <?= (<!
u=<3)"t.

Proposition 7 The operations ® and @ are associative and commutative.

Lemma 2 Let <=<7 be an irreflexive closed static priority. Then, any non mazimal action
a is dominated by some monomial m on maximal actions.

Proof. Omitted.

Proposition 8 (Composability for static priorities) Given a transition system B and
two static priorities <! and <2, if <! U <>=<! & <2 then ((B,<!),<?) ~ (B, <! & <?).

Proof. Let G, (G%), (G*)", and (G*)" be the guards of action a in B, B/ <!, (B/ <!
)/ <2, and B/(<! & <?2), respectively. For some state x, let 49 = {a € A | G*(x)},
Ay ={a e A | (G")(x)}, A2 = {a € A | (G")'(x)}, and A3 = {a € A | (G")"(x)},
respectively. Notice that A, U A3 C A; C Ag. We show that Ay = As.

If a € A, then there is no monomial on Ay dominating a in <!, and there is no monomial
on A; dominating a in <2. Thus, either there is no monomial on Ay dominating a in
<P U <?=<' @ <2, and a € A3, or there is a monomial m on Ay such that a <> m.
In the latter case, m = m'm” with m' a non-empty monomial on Ay \ A;, and m" a
monomial on A4; (i.e., product of actions that are maximal in <'). Thus, for any factor a;
of m' there is a monomial m; on A4y (and by lemma 2, on A;) such that a;(<')*m;. Since
(=xH)t C<! U <2=<! & <?, we have a(<! U <*)my---mym/, and a ¢ Az, which is in
contradiction to the assumption. Thus, a € As.

Conversely, if a € Az, then a is not dominated by any monomial on Ag in <! U <2.
Thus, a is maximal among Ag and A; in both priorities, and a € As.]

Proposition 9 (Composability for priorities) Given a transition system B and two
priorities <1, <2, if <' U <?=<! @ <2 then ((B,<"),<?) ~ (B, <! ® <?).

RR n° 5226

12 Gregor Gassler , Joseph Sifakis

Proof. Consider some state x, and let <% be the static priority defined by <¢ at state x:
a; <% a; < C}(x), i = 1,2. Notice that <} @ <3 is irreflexive whenever <' @ <? is
irreflexive. The proof follows that of proposition 8 for the static priorities <1 and <2 at
state x. |

Propositions 8 and 9 provide composability conditions, that is conditions guaranteeing
commutativity of two restrictions defined by priorities. The following proposition is easy to
prove by using monotonicity properties C and the definitions of composition operations. It
shows that the successive application of priority restrictions can be safely replaced by their
composition.

Proposition 10 For any transition system B and priorities <', <2 we have
e if <'=<2 then (B, <?) C (B, <');

e (B, <! @ <?) C (B,<' U <?) C ((B,<'),=<?). Furthermore, for static priorities,
(B,<' & <?) ~ (B, <! @ <?).

3.3 Safety and deadlock-freedom

We present results relating deadlock-free control invariants to priorities. We show that
priorities can be used to define any restriction corresponding to a deadlock-free control
invariant.

Given a transition system B and a predicate U, the restriction V(U) guarantees the
invariance (safety) for U in B/V(U), that is inv[B/V(U)](U). Furthermore, if U is a
control invariant then V(U) is a control restriction, that is a restriction that does not affect
the guards of uncontrollable actions. As a rule, V(U) is not deadlock-free. We define for a
predicate U, a priority <y and study relationships between its restrictions and V(U).

Definition 15 Given a state predicate U on a transition system, the associated priority <y
is defined by <u= {pre,(=U) Aprea (U)}(a,a)eacxA-

Property 2 The priority <y 1is transitively closed and irreflexive and thus it defines a
deadlock-free restriction.

Proposition 11 For any transition system B and predicate U, B/V(U) Cy (B, <v). Fur-
thermore, if U is a deadlock-free invariant of B, B/V(U) ~y (B, <v).

Proof. As we consider B with initial set of states satisfying U we assume that all the guards
G* of its actions are such that G* = U. Let’s verify that if (G%)’ is the restricted guard of
action a; in (B, <y), then G% A pre,, (U) = (G*)'.

We find (G%)" = G* AN, ca ~(Preq, (FU)Apreq, (UYAG) = G AN, c a(—preq, (ZU)V
—preq, (U)) = G% A —preq, (-U) V G* A /\aJEA —preg; (U).

Given that G% A —pre,, (-U) = G* A pre,, (U), we have

INRIA

Priority Systems 13

(G¥) = G% Apre,,(U)VG*% A /\ajeA —preg; (U).

From this follows that B/V(U) Cy (B, <v)-

If U is a deadlock-free invariant then for any guard G%, G% = U = Va]-e abreq; (U).
Thus, we have G* A\, 4 7preq; (U) = false. Consequently, (G*)" = G* Apreq,, (U) which
completes the proof. [|

A direct consequence of this proposition is that for any deadlock-free control invariant
U, B/V(U) ~y (B,<y). That is the effect of deadlock-free controllers can be modeled by
restrictions induced by priorities.

From this proof it also follows that the guards of B/V (U) and (B, <y) agree at deadlock-
free states of B/V(U) in U. They may differ at deadlock states of B/V(U) where B
is deadlock-free. In other words (B, <y) is a kind of “best deadlock-free abstraction” of
B/V(U) under U.

Example 5 We apply the previous proposition for B and U of Example 1. We show that
(B, <u) behaves exactly as B' = B/V (U) from any state satisfying the deadlock-free control
invariant U.

We have prég, (_'U) A prep, (U) =w > 0: preép, (_'U) A prep, (U) =w 2>]-; pres, (_'U) A
preq,(U) =1 > 0 and pre,, (—U) Aprey, (U) = prep, (-U) Apre,, (U) = false. This gives the
priority

<v={a1 <y (w > 0).by,b; <y (w > 1).b2),b1 <y (r > 0).a2)}. It can be checked that
(B, <) is indeed equivalent to (B/V(U)). The computation of the restricted guards (G*)'
and (G*)' gives
(Gn) =G A (—~w >0V -G*?) =w =0 and
(G =GMr A (~w > 1V -G2)A (-r >0V -G®2) = (w=0)A(r =0).

The following propositions study relationships between safety and deadlock-free restric-
tions.

Proposition 12 If Uy, U, are two state predicates and <y, , <u, the corresponding prior-
ities, then BV (Uy A Us) Cu,av, (B, <vu, ® <v,) Cu,avs (B, <UyAU,)-

Furthermore, if Uy AUs is a deadlock-free invariant then B[V (Ui AUs) ~y, av, (B, <u,
D '<U2) ZULAU;, (Ba '<U1/\U2)'

Proof. Omitted.

This proposition says that (B, <y, @ <u,) is an upper approximation of B/V (U A Us).
The following proposition shows an even stronger relationship between the two priority
systems.

Proposition 13 If Uy, Us are two deadlock-free invariants of B and <y, ® <y, is irreflez-
we then B/V (U AUs) ~u,avus (B, <u, ® <u,) is deadlock-free.

RR n° 5226

14 Gregor Gassler , Joseph Sifakis

Proof. We have from B/V(U1) ~y, (B, <uv,) and B/V(Uz) ~u, (B, <w,), (B, <v;, ® <uv,
) Cu, (B7'<U1 U '<U2) Lo, B/V(Ul) and (B7'<U1 D '<U2) Cus, (B7'<U1 U '<U2) Cu,
B/V(Ug) This gives, (.B,-<U1 (&) -<U2) Cu,avs B/V(Ul) A V(UQ) ~ B/V(U1 A Uz) From
the previous proposition we get the result. [|

The following proposition provides for static priorities, a result similar to Proposition
11. It is very useful for establishing safety by using static priorities.

Proposition 14 Given a state predicate U on a transition system B = (X, A,{G"}4ca,
{F}aca), let <u be a static priority such thatVa € A . prea(=U) = V.. 4ovm Na,em G-
Then, inv[(B, <y)](U).

Proof. By Definition 10 of the semantics of (B, <y). []

As shown in the following example, this proposition provides a means to ensure invariance
of an arbitrary predicate U by static priorities. The choice of <y is a trade-off between
completeness and efficiency. Extreme choices are given by

e a <y d < pre,(-U) Aprey (U) # false, which is a priority with singleton mono-
mials only; the closure of this priority may easily be not irreflexive.

e a<ym <> Ix. (pre,(-U))(x) A m={a| G® (x)} which is the most fine-grained
static priority ensuring invariance of U.

4 Example

We consider a robotic system controlled by the following processes:

e 3 trajectory control processes TCy, TCy, TC _man. TCy is more precise and needs
more resources than T'C'y; TC'_man is the process for manual operation.

e 2 motion planners, MP;, MP>; MP> is more precise and needs more resources than
MP;.

We consider for each process P predicates P.halted and P.running such that P.halted =
—P.running. Each process P can leave states of P.halted (resp. P.runming) by action
P.start (resp. P.stop), as in figure 1. The robotic system must satisfy forever the following
constraints:

1. In order to ensure permanent control of the position and movements of the robot, at
least one trajectory control process and at least one motion planner must be running
at any time: (TCi.running V TCs.running V. TC man.running) A (MP;.running V
MP5.running).

INRIA

Priority Systems 15

start

halted running

stop

Figure 1: Transition system of a process.

2. In order to meet the process deadlines, the CPU load must be kept below a thresh-
old, which excludes that both high-precision processes can be simultaneously active:
TCs.halted V MP5.halted.

The problem is to find a deadlock-free controller which restricts the behavior of the system
so that the above requirement is met. A similar problem has been solved in [13] by using
controller synthesis [12]. We propose a solution by finding an appropriate static priority.

We put the global constraint to be satisfied as a predicate U in conjunctive form: U =
(TCy.running V. TCs.running V. TC man.running) A (MP;.running V MPs.running) A
(TCy.halted vV MP;,.halted).

Invariance of U requires the invariance of each one of the three conjuncts, disjunctions
of predicates. We define the static priority <y in the following manner.

For each conjunct D consider the critical configurations where only one literal of the
disjunction is true. The priority <y prevents critical actions, that is actions that can turn
this term to false, by keeping them dominated by safe actions enabled in the considered
configuration. More formally, for each disjunction D, each critical action a (for which
D A preq(—D) # false) is dominated by the monomial consisting of the safe actions enabled
in D.

For example, take D = TCj.running V TCs.running V. TC man.running. Consider the
critical configuration where T'Cj.running = true, TCs.running = false, and TC _man.running
= false. Clearly, TC].stop is a critical action for this configuration. Its occurrence can
be prevented by the static priority T'C;.stop < TCs.start - TC _man.start. The monomial
TCs.start- TC'_man.start is the product of the safe actions enabled at this configuration. In
this way, we compute the static priority <y which guarantees invariance of U:

TC, .stop <y TCs.start - TC man.start

TCs.stop <y TCi.start - TC man.start
TC man.stop <y TC).start - TCs.start

MP; .stop <y MPs .start

MP,.stop <y MP; .start

TCs.start <y MPs.stop

MPy.start <y TCs.stop

RR n° 5226

16 Gregor Gassler , Joseph Sifakis

It is easy to see that -<?§ is irreflexive. By Proposition 6, <y is a deadlock-free restriction.
By Proposition 14, U is an invariant of (T'Cy U TC> U TC _man U MP; U MP», <y).

This approach can be applied to find deadlock-free control restrictions of arbitrary sys-
tems of processes {By, ..., B, } abstractly modeled as the deadlock-free transition system of
figure 1, preserving a predicate U, boolean expression on atomic predicates B;.running and
B;.halted. For example, U can express requirements on the global system state such as:

e 3 safety-critical process must not run unless a failure-handling process is running;

e mutual exclusion between concurrently running processes, e.g., between a safety-
critical and an untrusted process.

We suppose U to be written as a conjunction of disjunctions

U= /\(\/ Bj.running Vv V Bj.halted)

el jeJ; JEJ]

where I, J; and J] are index sets such that any conjunct has at least two atoms that are
predicates on two different processes (this is always possible for any predicate U if we have
at least two processes).

Invariance of U is equivalent to invariance of all of its conjuncts D;. Consider the
conjunct \/,c ;. By.running V \/;. ; By.halted. As in the previous example, consider a critical
configuration, that is, a conﬁguré‘cion where only one literal is true. We distinguish two
cases:

o if that literal is B;.running (thus j € J;), then B;.stop violates U from this configura-
tion characterized by A;¢;, ;) Bi-halted A /\leJ,fu{j} By.running. This action can be
prevented by the static priority Bj.stop <y HleJ,-\{j} By.start - [[, Bi.stop. In this
relation, B;.stop is dominated by the monomial consisting of the actions of the other
processes involved in this configuration.

o if the literal is Bj.halted (thus j € J;), then Bj.start violates U, and we apply a similar
reasoning and get Bj.start <u [[;c 5, Bi-start - [[;c g Bi-stop.

Let <y be the union of the so defined priorities for all i € 1.

By definition of <7, for any disjunct D; of U, any critical action a is dominated by
at least one monomial m(a,D;) = []Bi.start - [| B;.stop consisting of safe actions en-
abled in D;. Thus, prea(=Di) == Agcm(a,ny) G and preq(-U) = preq(= Niey Di) =
prea(Vier 7Di) = Vierprea(=D;) = V,ic; Naiem(a,p;) G*- By proposition 14, U is an
invariant of (|J; Bi, <v). Notice that <y is minimally restrictive, that is, only transitions
violating the invariance of U are inhibited.

Deadlock-freedom of (|J; Bi, <) is established by Proposition 14 if <, is irreflexive,
which depends on the actual predicate U.

INRIA

Priority Systems 17

5 Discussion

We present a framework for the incremental construction of deadlock-free systems meeting
given safety properties. The framework borrows concepts and basic results from the con-
troller synthesis paradigm by considering a step in the construction process as a controller
synthesis problem. Nevertheless, it does not directly address controller synthesis and other
related computationally hard problems. Instead, it is based on the abstraction that the
effect of the controller corresponding to a deadlock-free control invariant can be modeled by
deadlock-free control restrictions.

Priorities play a central role in our framework. They can represent any deadlock-free
control restriction. They can be naturally used to model mutual exclusion constraints and
scheduling policies [4, 2]. They are equipped with very simple and natural composition
operations and criteria for composability. We provide an equational characterization of pri-
orities and a sufficient condition for representing deadlock-free restrictions. Static priorities
are solutions expressed as boolean expressions on guards for which a necessary and sufficient
condition for deadlock-freedom is provided.

The use of priority systems instead of simple transition systems is a key idea in our ap-
proach. Of course, any priority system is, by its semantics, equivalent to a transition system.
Nevertheless, using such layered models offers numerous advantages of composability and
compositionality:

e The separation between transition system (behavior) and priorities allows reducing
global deadlock-freedom to deadlock-freedom of the transition system and a condition
on the composed priorities.

e The use of priorities to model mutual exclusion and scheduling policies instead of using
transition systems leads to more readable and compositional descriptions [2].

e In [6, 5] priority systems are used to define a general framework for component-based
modeling. This framework uses a single associative parallel composition operator for
layered components, encompassing heterogeneous interaction. Priorities are used to
express interaction constraints. For systems of interacting components, we have pro-
posed sufficient conditions for global and individual deadlock-freedom, based on the
separation between behavior and priorities.

Our work on priorities found application in generating schedulers for real-time Java
applications [9]. This paper uses a scheduler synthesis algorithm that generates directly
(dynamic) priorities. Another interesting application is the use of priorities in the IF toolset
to implement efficiently run-to-completion semantics of the RT-UML profile [7].

Priority systems combine behavior with priorities, a very simple enforcement mechanism
for safety and deadlock-freedom. This mechanism is powerful enough to model the effect of
controllers ensuring such properties. They offer both abstraction and analysis for incremental
system construction. Our theoretical framework can be a basis for the various approaches
and practices using enforcement mechanisms in a more or less ad-hoc manner.

RR n° 5226

18 Gregor Gassler , Joseph Sifakis

References

[1] K. Altisen, G. Géssler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A framework for
scheduler synthesis. In Proc. RTSS’99, pages 154-163. IEEE Computer Society Press,
1999.

[2] K. Altisen, G. Gossler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm. Journal of Real-Time Systems, special issue on "control-theoretical
approaches to real-time computing”, 23(1/2):55-84, 2002.

[3] L. Bauer, J. Ligatti, and D. Walker. A calculus for composing security policies. Technical
Report TR-655-02, Princeton University, 2002.

[4] S. Bornot, G. Gossler, and J. Sifakis. On the construction of live timed systems. In
S. Graf and M. Schwartzbach, editors, Proc. TACAS’00, volume 1785 of LNCS, pages
109-126. Springer-Verlag, 2000.

[5] G. Gossler and J. Sifakis. Component-based construction of deadlock-free systems
(extended abstract). In proc. FSTTCS’03, volume 2914 of LNCS. Springer-Verlag,
2003.

[6] G. Gossler and J. Sifakis. Composition for component-based modeling. In proc.
FMCO’02, volume 2852 of LNCS. Springer-Verlag, 2003.

[7] S. Graf, I. Ober, and I. Ober. Model checking of uml models via a mapping to commu-
nicating extended timed automata. In S. Graf and L. Mounier, editors, Proc. SPIN’0/,
volume 2989 of LNCS. Springer-Verlag, 2004.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proc. ECOOP ’97, volume 1241 of
LNCS, page 220ff. Springer-Verlag, 1997.

[9] C. Kloukinas, C. Nakhli, and S. Yovine. A methodology and tool support for generating
scheduled native code for real-time java applications. In R. Alur and I. Lee, editors,
Proc. EMSOFT’03, volume 2855 of LNCS, pages 274-289, 2003.

[10] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for
run-time security policies. Technical Report TR-681-03, Princeton University, 2003.

[11] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In E-W. Mayr and C. Puech, editors, STACS’95, volume 900 of LNCS, pages
229-242. Springer-Verlag, 1995.

[12] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. STAM J. Control and Optimization, 25(1), 1987.

INRIA

Priority Systems 19

[13] E. Rutten and H. Marchand. Task-level programming for control systems using discrete
control synthesis. Technical Report 4389, INRIA, 2002.

[14] F. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30-50, 2000.

[15] P. Tarr, M. D’Hondt, L. Bergmans, and C. V. Lopes. Workshop on aspects and di-
mensions of concern: Requirements on, challenge problems for, advanced separation of
concerns. In ECOOP 2000 Workshop Proceedings, Springer Verlag, 2000.

RR n° 5226

/<

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

