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Abstract: This paper describes an original approach which jointly addresses two fundamental
issues of video partitioning which represent the early important stage of any content-based video
indexing system. These two issues are the detection of shot changes, and the labeling of the
shot configuration related to the camera movement in terms of static shot, panning, traveling,
zooming,... They are both derived from the computation, at each time instant, of the dominant
motion in the image represented by a 2D affine model, and from the variation of the size of
its associated support. The successive steps of the method rely on statistical techniques ensuring
robustness and efficiency. In particular, it can cope with scenes containing moving objects. Results
on a real documentary video are reported and validate the proposed approach.
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Une approche unifiée pour la détection de changement de
plan et la caractérisation du mouvement de caméra

Résumé : Nous décrivons une approche traitant conjointement deux problémes fondamentaux
du partitionnement de vidéo en plan, la détection des changements de plan et I’ étiquetage d’une
configuration de plan relié & un mouvement de caméra en termes de plan fixe, traveling, zoom... 1l
s’agit d’ une premiere étape importante pour tout systeme d’indexation de vidéo par le contenu.
La méthode proposée exploite, pour les deux aspects du probleme, I'estimation du mouvement
dominant dans 'image, représenté par un modele affine 2D, et de I’ évolution temporelle du support
associé. Les étapes successives de cette méthode reposent sur des techniques statistiques, qui en
assurent la robustesse et D’efficacité.

Mots-clé : Découpage en plan, Mouvement de caméra, Indexation vidéo



A unified approach to shot change detection and camera motion characterization 3

1 Introduction and related work

Archiving image and video information represents an important, either established, more recent, or
emerging task in several important application fields. Areas that will benefit from advances on this
subject include audio-visual archives (news, films, documentaries, etc...), road traffic surveillance,
remote sensing and meteorology (satellite images), or medical imaging (hospital medical records),...
However, it remains hard to easily identify information pertinent with respect to a given query, or
to efficiently browse large video files, making the exploitation of such databases highly cumbersome.
The most commonly used approach consists in assigning key words to each stored video, and doing
retrieval only on these words.

The need to index and retrieve image sequences by their content and not just by information
external to them is becoming quite obvious. It is thus crucial to be able to define content-based
indexing techniques. A survey on objectives of image indexing has been proposed in [9], reviewing
the major cues for still image indexing, such as color, shape and spatial organization. Another
review, more concerned with indexing of video, has been presented in [2]. Several research groups
have investigated such issues for a few years, leading to the construction of prototypes accounting
for first advances in that direction, [10, 19, 24]. Nevertheless, numerous problems are still open due
to the fact that image interpretation and dynamic scene analysis are complex topics in computer
vision, that the range of scene contents and of possible queries is vast, etc...

As far as video indexing and video editing are concerned, the primary requirements are the
structuration of the video into elementary shots, and the recognition of typical forms of video
shooting like static shot, traveling, zooming, panning, [8, 21, 22]. Then, further analysis of the
video content relies on such a temporal partition, according to a hierarchical approach or not,
[2, 16, 22, 23]. This video partitioning step enables to provide content-based, fast, adaptive and
efficient browsing of a video. The use of key-frames to summarize the content of video shots and
to facilitate access to the content is also of major interest. Tools for efficient video visualization
are useful if, for instance, the user cannot express in a well-defined manner his query. As long
as effective solutions to the complex problem of elaborated video content analysis (in terms of
semantic content) are not available, visualization will remain one of the main means of accessing
information. Nevertheless, work towards compact representation of shot content has been proposed
in [3, 12, 14]. Indexing of events in a video, such as appearance, deposit or removal of an object
has been explored in [7].

Substantial efforts have been devoted to the detection of cuts and of transitions related to
special effects (fade-in, fade-out, dissolve,...) in order to achieve video partitioning. The later kind
of changes is obviously more difficult to handle. A survey on this topic was proposed in [5]. Different
solutions have been designed to detect cuts, based on, merely pixel- or block-based temporal image
difference, variation of correlation measurements, or more efficiently, on difference of histograms,
[1, 2, 16, 21, 25]. To detect transition effects, the use of a two-level thresholding technique applied
to histogram differences has been proposed [25], or more elaborately, the modeling of the temporal
intensity change law during the transition interval [1]. In most approaches, several tests must be
operated to detect the various possible types of transitions, leading to sensible tuning of multiple
and related parameters. In [25], these thresholds are determined from a preliminary pass through
the video content itself. Since video databases are often available in compressed format, direct
processing of the MPEG bit-stream is also a field of interest. In [18], the image intensity histograms
are computed using the DC component of the DCT related to I-frames.

Some of these solutions deliver quite satisfactory results, but false alarms may still occur in
case of important camera motion or in the presence of mobile objects leading to a undesirable over-
segmentation of the video stream. It is often crucial that all shot changes are correctly detected
and located. For instance, if the spatio-temporal content of the shot is to be analyzed, motion-
based segmentation and tracking phases could severely be perturbed by missing or misplaced shot
changes.

RR n3304



4 Patrick Bouthemy, Marc Gelgon and Fabrice Ganansi

The recognition of parts of the video in which camera is static, or traveling, or panning, has
been achieved using rather dedicated methods. Usually, they rely on the exploitation of motion
vectors issued from block-matching techniques, or on the search for specific distributions of motion
vectors or of a few global representative motion parameters, [25]. An original alternative constructs
so-called “X-ray" images (related to the xt- or yt-plane in the image sequence after projection of the
intensities along given lines), and looks for particular patterns in them using a Hough transform,
[15, 21]. The MPEG-1 bit stream may also be directly exploited for camera motion characterization
[18], using motion vectors related to P- and B-frames. One of the main shortcomings of these
approaches is that they cannot cope with scenes including moving objects. Indeed, most methods
are not resilient to the presence of mobile objects of significant size. In [20], this issue is overcome
by computing so-called optical flow streams, built from the dominant optical flow over some extent
in time. The algorithm depends however on many thresholds, and assumes a constant camera
motion type during the extent in time over which optical flow streams are built.

We present in this paper an original approach for video partitioning and camera motion cha-
racterization. A preliminary version was presented in [6]. The principle of the proposed method
is shown in Figure 1. It is based on the estimation of a 2D affine motion model between each
pair of successive frames accounting for the global dominant image motion. Studying the temporal
evolution of the associated estimation support enables the detection of both cuts and progressive
transitions, with the same scheme and the same parameter values. Then, testing the significance
of each of the components of the estimated global affine motion model provides a qualitative des-
cription of the dominant motion at each instant (assumed due to camera motion). The main
features of the method are the following: 1) it addresses these two issues in an unified way; 2)
it is able to handle scenes containing moving objects; 3) it only exploits 2D parametric motion
models (affine models); 4) it is based on several statistical techniques ensuring robustness and
efficiency. Section 2 outlines the motion estimation method based on a robust multiresolution
scheme which allows us to compute the dominant motion between two successive images (step
1). In Section 3, we describe how we can determine the partitioning of the video into elementary
shots (step 2) from the temporal variation of the size of the estimation support derived in step
1. Section 4 deals with the qualitative interpretation of the camera motion in each delimited shot
(step 3); it exploits the motion information recovered at step 1 and relies on likelihood ratio tests.
Section 5 contains results obtained on a real documentary video, using both the original and the
MPEG-1 compressed /decompressed sequences, and an experimental comparison with a histogram
comparison technique. Section 6 provides concluding remarks.

2 Dominant motion estimation

In order to retrieve the required motion information, we do not compute any dense velocity field.
We only make use of the spatio-temporal derivatives of the intensity function. Since several mo-
tions may be present, we only seek for the estimation of the dominant one. We represent the
corresponding motion field between two successive images by a global 2D parametric model. This
will be sufficient to achieve the video partitioning as shown in the next section whatever this domi-
nant motion may represent in the scene. If we aim at characterizing the type of shots in terms of
camera traveling, zooming, panning, etc..., we need to further assume that this dominant motion
corresponds to the apparent motion induced by the 3D camera movement. To estimate the domi-
nant motion without prior motion segmentation, we have developed a technique based on robust
statistics. We will only outline it hereafter; we refer the reader to [17] for more details.

This method (called RMR for Robust MultiResolution) takes advantage of a multiresolution
framework and an incremental scheme. It minimizes a M-estimator criterion to ensure the goal of
robustness to outliers formed by the points corresponding to secondary motions or to areas where
the classical image motion equation [13] used is not valid. Any 2D polynomial motion model can
be considered. We have chosen the affine motion model Wg defined at point p = (z,y), considering
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Figure 1: Flow chart of the method. © denotes the robustly estimated motion parameter, Sy the
estimation support of this motion, and ng the size of Sg. no designates the predicted size of the
overlap between images I(t) and I(t + 1), and (; is defined as the ratio ng/ne.
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6 Patrick Bouthemy, Marc Gelgon and Fabrice Ganansi

a reference point (z4,yy) by:

- a1 + az(z — z4) + asz(y — y,)
W = 1
o(p) ( as + as(z —z4) +as(y — yy) S
This model is a good trade-off between complexity and representativity. In practice, the image
center is taken as reference point.
The parameter vector ©® = (a1, as, a3, a4,as,a6) is estimated between images I(t) and I(t + 1)
as follows :

= argmln Z (DFDe (p:)) (2)
pi€l

with DFDg(p;) = I(p; + We (p;),t + 1) — I(p;,t), and p(x) is a hard-redescending M-estimator.
Here, we consider Tukey’s biweight function. This function p(z) and its derivative 1(z) depend
on parameter C and are respectively defined as :

2z C%z* C42? .
+ 52 iflz] < C
C 2 2 ’ 3
plz,0) = {C: otherwise. (3)
z(z? — C?)? iflz| < C,
,C) = 4
¥(,0) {0 otherwise. )

At each instant, a Gaussian pyramid of the image is built. VI will denote the spatial intensity
gradient at the lowest resolution. We first search for the following estimate :

00 = a‘rg%ion Z p(rs) (5)
pi €l
where r; = I(p;,t + 1) — I(p;, t) + VI(ps, t) Beo (p;) (6)

r; is a first-order differential version of the DF Dg(p;). Let us recall that r; = 0 is the usual image
motion equation, introduced in [13], and adapted to the consideration of a parameterized motion
field. Then, increments for the estimation of ©® are computed within a given resolution level, and
from a coarse resolution level to a finer one, until the finest resolution level is reached. At step
k where we aim at estimating the 1ncrement A®F given the current estlmate G)k of the motion

parameter vector, we can write © = @’“ + AGO*. The estimated increment A@k is calculated as:
AOk = argmln Z p (r3) (7
pi€l

where the residual r; is now computed as :
ri = I1(pi + Wgn (i), t + 1) — I(ps, t) + VI(pi + Wgi (pi), t + 1)-Waex (pi) (8)
The estimated increment is then used to update the estimate 67“ :
Ok = OF + AOK (9)

Increments are computed and cumulated until a convergence criterion is met or a given number of
iterations is reached. The estimated motion parameter vector is projected onto the level of higher
resolution, and serves as an initial value to compute some more increments and thereby to refine
O. This is performed down to the finest resolution level in the pyramid.

This multiresolution incremental robust estimator allows us to get an accurate computation of
the dominant motion between two images, even if other motions are present.

INRIA



A unified approach to shot change detection and camera motion characterization 7

3 Detection of shot changes

As explained in [17], the minimization problems defined in relations (5) and (7) is solved using a
IRLS (Iteratively Re-weighted Least Squares) technique. The initial minimization problem (5) or
(7) is in fact substituted for by the equivalent problem :

ri

= : 1 . P(r)
AO = argmin Z 5 Wi r?  with w; = = (10)
pi

1) is the derivative of the p function, and r; is given by relation (6) or (8).
Once the dominant motion estimation step is completed, the final value of the weight w;

indicates if a point p; is likely or not to belong to the part of the image undergoing this dominant
motion. In the former case, w; is close or equal to 1, in the later case, w; is equal or close to
0 (outliers). We define the support of the dominant motion Sy as the set of points p; satisfying
w; > v, where v is a predefined threshold, (typically 0.2). The pertinent information here is in
fact the size of this support.

Indeed, within a given shot, the size n4 of the support Sy is supposed to remain nearly constant.
On the other hand, if a cut occurs between image I(t) and I(¢t + 1), these images are completely
uncorrelated. If we try to estimate a 2D affine motion model between I(t) and I(t + 1), then it
turns out that no coherent estimation can be derived. Thus, the corresponding support Sy “tends
to vanish", and ng is suddenly close to 0. In case of a progressive transition (a dissolve for instance),
we have observed a less pronounced decrease of the size of the derived support, but the value ng4
is still usable to detect such gradual changes.

Assuming the global dominant motion between ¢ and ¢+1 close to the estimated global dominant
motion between ¢ — 1 and ¢, a simple geometric projection from ¢ to ¢ + 1 exploiting the estimated
motion model parameters @;_; enables us to determine the size n, of the part of I(t) that is likely
to overlap I(t + 1) (i.e. the areas in I(t) that disappear from are deduced). This size no forms
an upper bound for the size ng of the dominant motion support estimated between ¢ and ¢ + 1.
We consider now the normalized ratio ng/ng. Let us denote (; this ratio at time ¢. Since we have
considered ng instead of the full image size, (; is correctly normalized in [0, 1].

The point now is to define an appropriate criterion to validate significant jumps of the variable (;
among meaningless small variations. We resort to a cumulative sum test, Hinkley’s test, [4], known
to be robust (by taking into account “all the past" of the observed quantity), efficient, and inducing
a very low computational load. The other attractive features of this test are two-fold. First, it
can straightforwardly and accurately provide the jump instant. Secondly, due to its formulation
(cumulative sum test), it can simultaneously handle both very abrupt and important changes like
cuts, and gradual smaller ones like progressive transition without adapting the involved thresholds.
Originally, it was designed to detect jump in mean of an observed signal, [4].

Two tests are performed in parallel to look for downwards or upwards jumps, respectively
defined by: &

Sy = Z (Ct —mg + 6min> (k > 0)
=0 2 -

M, = max S;; detection if My — S, > a (11)
0<i<k

k
Tk = Z (Ct — mg — 677;m> (k Z 0)
t=0

N, = min Tj; detection if Ty, — N > « (12)
0<i<k

in which the mean mg before the jump is estimated on-line. &,,;, denotes the jump minimal
magnitude that we want to detect, and « is a predefined threshold. The starting idea and the

principle of Hinkley’s test are illustrated in Figure 2. my is re-initialized after each jump detection.
If a jump is validated, with a short delay by construction, the jump location, i.e. shot change
instant, is given by the last instant k" when My — Sy = 0, or, Ty — Npr = 0.

RR n3304



8 Patrick Bouthemy, Marc Gelgon and Fabrice Ganansi

4 Camera motion characterization

After steps 1 and 2, we have determined the successive shots of the sequence, and we have estimated
the parameters ©; of the dominant motion at each instant ¢. We can now exploit this information
to characterize the type of the camera movement at each time ¢ (step 3). To this end, we have used
and adapted the qualitative interpretation method we presented in [11]. We express the parameter
vector © = (a4, ..,a6) in another basis of elementary motion sub-fields :

® = (a1, a4, div, rot, hyp:, hyps) with :

div = %(az + ag) rot = %((15 —as)
hypy = 3(az — ag)  hyps = 5(as + as).

These last four terms, divergence, curl, hyperbolic terms, are more convenient for an easy
physically meaningful interpretation of the dominant motion.

If the dominant motion is a pure panning (resp., camera tilt), then only parameter a1, (resp.,
a4) is supposed to be non zero. If it is a zooming or forward traveling, div is supposed to be the
only non zero linear parameter. If it is a lateral traveling, and if the scene cannot be assimilated to
a fronto-parallel plane, all the parameters are supposed to be non zero. Of course, if the camera is
static, all the parameters are equal to 0. In practice, due to noise, estimation errors, and the use
of an approximate motion model, these quantities cannot be strictly equal to 0 if it should be the
case. The aim is then to be able to decide whether these estimated values are significant or not.

We resort to a statistical approach based on likelihood ratio tests. As shown in [11], this is
the most efficient way to tackle this problem, compared to direct thresholding of the parameters
values, or the use of statistical information criteria such as Akaike (AIC), or Rissanen (MDL) ones.
The delicate and unstable threshold selection is turned into a better-controlled issue of setting a
threshold on a likelihood ratio. Also, the model error related to the inadequacy of the model to
explain the data, can be taken into account, along with measurement noise. We will test in turn
each component of the motion parameter vector .

Two competing hypotheses will be considered. The first one, denoted Hy, assumes that the
considered component of @ is significant. The second one, denoted H;, considers that on the
contrary it is equal to 0, the five other parameters being let free. Let us note ®,,, and ®,,, the
motion model parameter vectors associated to respectively hypothesis Hy and hypothesis H;. A
remarkable property of such a test is that it is independent from the value of the descriptors that
remain free. For each hypothesis, we can define the associated likelihood function f, where the
considered random variables are the quantities 7; defined in relation (8). They are assumed to be
independent, and to all follow a zero-mean Gaussian law. The variance afm of r; is a posteriori
estimated as follows :

5 1 ~
Tl = - > ri(@m,)?, 1=0,1 (13)
pi€Sa

__ The expressions of the two likelihood functions f for the optimized values of motion parameters
®,,, (1 =0,1) are given by :

— 2
F(@m,) = H 1 exp (7223‘1 Tl)

picSa \\/ 2152 20m,
nd
. o (14)
= —— exp (_7), 1=0,1

[o —2
270 m,

INRIA



A unified approach to shot change detection and camera motion characterization 9

To test the significance of a given motion parameter vector component, the two motion para-
meter vectors corresponding to the two hypotheses are to be first estimated.

D, = (a1,a4,div,rot, hyp:, hyps) is the full affine model, and ®,,, is the affine model, for
which the component to be tested is constrained to 0. If we take the example of the analysis of the
divergence term, we have for hypothesis Hy, ®,,, = (a1, as, div, rot, hyp:, hypa), and for hypothesis
Hy, ®,,, = (a1,a4,0,ro0t, hyp;, hype). Both parameter vectors are estimated on the dominant
motion support Sy determined at step 1. They are estimated in a multiresolution and incremental
way similar to the one described in Section 2 and using the same image motion constraint. The
estimation of both parameter vectors benefits from the knowledge of the dominant estimation
support Sz, which has been computed by the shot detection change step. The computational load
is thus much reduced, since a usual least-square estimation technique can be used instead of an
IRLS technique.

To decide which hypothesis is selected, the following likelihood log-ratio test is performed :

o f@my), H,
T s

Hy
If the ratio is lower than the threshold A, the component at hand is declared to be significant,

otherwise it is considered to be null. In other terms, the test comes down to comparing the adequacy
of the constrained and unconstrained motion models to the data, by means of an appropriate
comparison of the resulting residual variances.

If the component is judged significant, we can use the sign of the parameter to infer more
information. As far as the divergence term is concerned, this will allow us to differentiate between
zoom-in or zoom-out or equivalently, forward or backward traveling ( with a perspective image
projection model).

These tests are performed in turn on the different components of & while taking into account the
physically possible configurations of null parameters. Then, we can identify the type of the camera
movement. Since the translational parameters of the affine motion model depend on the choice of
the reference point, the information they carry may be meaningless depending on the situation at
hand. We denote respectively L;. and L;;, the binary label decision vectors respectively associated
to the significance of the translational and the linear dominant motion parameters. Considering
the only physically possible motions of the camera, L = (L, Ljin) can be mapped onto six camera
motion classes as follows :

Liin Ly Camera motion
(0,0,0,0) (0,0) Static camera
(0,0,0,0) Z£(0,0) | Pan, til,

or sideways camera traveling
if the scene background is parallel to the image plane

(div,0,0,0) Zoom (in/out) or forward/backward traveling

(0,r0t,0,0) Rotation around the optical axis

(div, rot,0,0) Zoom (in/out) or forward/backward traveling
and rotation around the optical axis

(div, rot, hyp1, hyp2) Sideways camera traveling,
(if the scene background is not approximately a plane parallel to the
image)

or complex camera motion.

The setting of A is carried out as follows [11]. It is non critical for the translational components,
because cancelling one of two these components causes a dramatic rise in the variance @,,, of the
residual r;, if this component is significant. Values within the interval A € [1,3.5] have been found
satisfactory. Cancelling a significant linear component of the model causes a less marked increase
in this same variance. Hence, a reasonable interval for setting A is [1, 2].

RR n3304




10 Patrick Bouthemy, Marc Gelgon and Fabrice Ganansi

Once this last processing step achieved, we can also determine another kind of shot change
which might not be detected in step 2. It corresponds to camera maneuver, like a panning followed
by a zooming. It can be achieved by simply detecting changes over time of the camera motion
type. This partitioning is only based on qualitative motion.

In fact, steps 2 and 3 can be performed in parallel. As a result, the video is partitioned into
shots, which are themselves divided into sub-shots of homogeneous camera motion.

5 Results

This approach has been validated by experiments with several kinds of video sequences. We report
here results obtained on a part of a real documentary video presenting our Institute, which we will
call the Irisa sequence. It contains usual features related to film shooting and editing. Besides,
this video comprises shots involving both moving elements in the scene and moving camera. From
time #; to t21 (shot 1), there is a special video effect: a general view of the site is continuously
magnified over a map of Brittany. From t2s to 110 (shot 2), we can observe a global aerial panning,
progressively stopped at the end of the shot, over the campus site. A dissolve transition appears
from t111 to t115. From t116 to t140 (shot 3), the camera is static. At time 141, a first cut occurs.
From t142 to t187 (shot 4), the camera motion is first a pan, and then becomes a pure forward
traveling. A second cut occurs at time t1gg. From t1g9 to tags (shot 5), the camera is panning an
indoor scene containing elements at different depth positions. There is a second transition effect
from tog9 t0 to7g. Shot 6 (t279-t300) in the video corresponds to a backward traveling of the camera,
but a moving person is occupying a significant area in the image. From #1539 onwards, important
depth variations in the scene can be noticed.

The performance of the method was first tested on the original image sequence. Computational
time for a pair of frames (of size 256x256 pixels) is about 1.5s on a workstation Sun-UltraSparc,
down to about 0.9s if camera motion characterization is not selected. The evolution of the norma-
lized motion support ratio {; along the sequence is shown on Figure 3(a)(b). The on-line measured
mean value mg of (; during the shot, and the detected jumps in (; are also indicated. Cuts and
progressive transitions are correctly identified, and the bounds of the two progressive transitions
(start and end time instants) and of the video effect are accurately determined. One can notice
the smaller, but longer decrease in (; during progressive transitions or the video effect, relatively
to cuts. For all experiments, the value of « is kept constant and equal to 0.1. Figure 4 illustrates
the use of the estimation support for shot change detection purposes. The maps of the weights
w; are shown in three different cases : Fig 4a,d shows an example of a pair of successive frames
within a shot. Since almost all the pixels conform to the estimated dominant motion, we have
(21 = 1. Fig 4b,e corresponds to the case of a pair of frame across a cut, in which case, almost all
points are outliers ({141 =~ 0). Fig 4c,f shows what happens within a progressive transition shot
(C144 =~ 0.5). Finally, Fig 4d,g illustrates the case of a pair of frames within a shot including a
large mobile person ({299 =~ 0.7).

The proposed method has been compared with a standard histogram comparison method.
Denoting H(n) the histogram value at time ¢ for grey level n, and DH; the measured histogram
difference between two successive images, the distance used for this test is :

N 2

where N is the number of grey values.

A comparison of the variable (; processed with our method with the one (D H}) delivered by the
histogram comparison technique is shown in Figure 3. Cuts can be easily detected and correctly
located with both methods. Progressive transitions are also correctly detected. It can be seen,
though, that the second dissolve (frames 269 to 278) causes the emergence of two neighbouring

INRIA



A unified approach to shot change detection and camera motion characterization 11

peaks in DH; values In such a case, a simple thresholding on D H; would erroneously detect two
transitions. Also, the beginning of the first fading effect is not as accurately determined with the
histogram difference procedure. Besides, the video effect (frames 0 to 21) causes a relative variation
in DH; which is far below what is obtained with (; for our method. In general, the relative
variations of DH; due to a progressive transition are rather weak. Thus, delicate thresholding is
involved. In the presence of mobile objects, a high threshold value is required, which in turn may
not guarantee a correct detection of all transitions.

The result of camera motion analysis is shown in Figure 5. The threshold A was set to 1.5.
Decisions are in accordance with the description of the video given in the text. Taking into account
that camera motion across cuts or during transitions are obviously not significant, it may be noticed
that hyperbolic terms are only stated as significant during the last shot, where camera motion is
complex and the background scene is far from parallel to the image plane, which is quite coherent
with the real camera motion described above.

In order to evaluate the ability of the method to process typical video data stored after com-
pression, the method was tested on the reconstructed Irisa sequence once processed by a MPEG
encoder, considering a 1.5 Mbit/s bit rate and a I/P frame distance of 3. The algorithm parameters
«a and A remained unchanged. Partitioning into shots lead to identical results as with the original
sequence, in terms of number of shots and transition time instants. The effect of the compression-
decompression process on (; is shown on Figure 6. Perturbations mainly occur at transitions,
because the location of I-frames in MPEG is independent from the structuration into shots, thus
causing particularly strong frame prediction errors in the coding scheme. Camera motion charac-
terization was different for 7 frames out of 298. In 6 of these cases, confusion actually consists in
mislocating from at most 2 frames the transition between two successive types of camera motions
within a shot. The other difference is a pan wrongly labeled as “complex motion” in a difficult
situation where the scene is partly seen through a window. A MPEG-2 encoder was also employed,
with a bit rate of 10 Mbit/s. The results are identical to those of the original sequence.

An interface module was designed to visualize a summary of the video structure inferred from
the video partitioning performed by the method (Figure 7). Each shot is represented by a key-
frame (we simply chose the median frame in the shot), the number of the shot, its bounds in terms
of frame number. The user can then select a particular shot of interest and view a mosaic-type
image constructed by combining frames within the selected shot again by exploiting the estimated
dominant motion at each instant. For most types of sequences, such mosaic images are appropriate
for a global representation of scene contents. Beside it, the list of camera motion types identified
during that shot are annotated. For examples shown on Figure 7a,b, one can relate the shape of
mosaic image to the sequence of camera motions displayed beside it.

6 Conclusion

We have described in this paper an original, unified and efficient approach to video partitioning
in the context of content-based video indexing. It involves the detection of shot changes and
characterization of the camera motion. All the information required to achieve these two goals
results from the direct estimation of a 2D affine motion model accounting for the 2D dominant
motion within each successive image pair of the sequence. This method can handle situations
where moving objects are present in the scene observed with a mobile camera. The solution has
been defined in a well-formalized way involving general motion models, statistical techniques, and
no restriction on the kind of scene and camera movements. This last point, along with having
several shot detection tests to cope with the various possible shot transitions, stands among the
usual shortcomings of many other techniques proposed so far. In the method proposed here, a
single test and parameter value detects both cuts and progressive transitions. Computational
time is low. The technique was also validated on MPEG1 and MPEG2 sequences. We are now
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Figure 2: Principle of Hinkley’s test. All variables are plotted against the frame number in the
sequence. (a) The variable in which jumps are to be detected, denoted 3 in this example, is shown in
Fig 2a. When it suddenly quits the interval defined by the two bounds mg—dpmin/2 and mo+0min/2,
it causes a rise in either My, — Sy, (Fig 2b) or Ty, — Ny (Fig 2c¢), depending whether the jump is
directed upwards or downwards. When My — Sy (respectively Ty, — Ny ) exceeds the threshold a,
a downward (see Fig 2e¢) (resp. upward (see Fig 2f)) jump is detected. The jump is then located
at the frame number just after the last one for which either My, or Ny (depending on the case at
hand) exceeds 0.

INRIA



A unified approach to shot change detection and camera motion characterization 13

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 T
Ratio — R 08 - /f/\’N V
Estimed mean ---
Jump detection ----
R 06 -
4 04} raio —
Estimated mean ----
Jump detection ----
02 ; ; 1 02 F ; 1
0 0
-0.2 H 1 1 1 1 1 1 1 1 1 H 1 1 0.2 l§ 1 1 1 1 il 1 1 1 1 1 1 1 ! 1 1
0 10 20 30 40 5 60 70 8 90 100 110 120 130 140 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Inter-frame transition number Inter-frame transition number
200 T T T T T T T T T T T T T 250 T T T T T T T T T T T T T T T T
Histogram difference — Histogram difference —
200 - 1
150 9
100 4
50 1
L W
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 5 60 70 8 90 100 110 120 130 140 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
Inter-frame transition number Inter-frame transition number

Figure 3: IRISA sequence: results of video partitioning from ti to ti40 and from ti3g to tsgo-
Figures 3a and 3b correspond to the use of Hinkley’s test. The (; variable is plotted in continuous
line, the on-line estimated mean mg in dashed line. The walidated jump instants (beginning and
end of shot transitions) are indicated at the bottom of each figure. a = 0.1, §pin = 0.2. Figure 3¢
and d correspond to the use of histogram differences. The variable DH; is plotted in continuous
line. (c),(d) is to be compared with (a)(b).
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d

Figure 4: TRISA sequence: Examples of estimation supports for four types of situations within a
pair of successive frames (the estimation support is displayed in white): a,b,c,d show the first of the
two processed frames, respectively, frames 21 (within a shot) , 114 (within a “dissolve” transition),
141(shot cut), and 299 (within a shot, with a large mobile object), and d,e,f,g show the respective
corresponding estimation supports.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Inter-frame transition number

Figure 5: IRISA sequence: output of the likelihood ratio tests. From bottom to top, outputs of the

likelihood test deciding upon the significance or nor of respectively parameters ay, a4, div, rot, hyp,
and hyps along the image sequence. X = 1.5.
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Figure 6: Comparison of (; for the original and MPEGI1-reconstructed sequences. The difference
between the values of (; for the two sequences is drawn, as well as the detected jumps in the signal.

investigating other issues related to content-based video indexing which is of increasing interest in
numerous application domains, particularly concerning the analysis of each shot according to its
spatio-temporal content [12].

References

[1]

2]

3]

[4]

[5]

[6]

[7]

P. Aigrain and P. Joly. — The automatic real-time analysis of film editing and transition effects
and its applications. — Computer & Graphics, 18(1):93-103, 1994.

P. Aigrain, H.J. Zhang, and D. Petkovic. — Content-based representation and retrieval of
visual media : a state-of-the-art review. — Multimedia Tools and Applications, 3(3):179-202,
November 1996.

S. Ayer and H.S Sawhney. — Compact representations of videos through dominant and multiple
motion estimation. — IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(8):814—
830, August 1996.

M. Basseville. — Detecting changes in signals and systems - a survey. — Automatica, 24(3):309—
326, 1988.

J.S. Boreczky and L.A. Rowe. — Comparison of video shot boundary detection techniques. —
In In LK. Sethi and R.C. Jain, editors, Proceedings of IS-T/SPIE Conference on Storage and
Retrieval for Image and Video Databases IV, Vol. SPIE 2670, pages 170-179, 1996.

P. Bouthemy and F. Ganansia. — Video partitioning and camera motion characterization
for content-based video indexing. — In Proc. of 3rd IEEE Int. Conf. on Image Processing,
volume I, pages 905-909, Lausanne, Sept 1996.

J.D. Courtney. — Automatic video indexing via object motion analysis. — Pattern Recognition,
30(4):607-625, April 1997.

RR n3304



16 Patrick Bouthemy, Marc Gelgon and Fabrice Ganansi

— Shot selection

Preuious Wewt
:[I Shoté
{189 — 289)
— Demonstrations:

189 —» 192 Stabic camera

193 -5 194 Panleftward

195 —» 261 Panleftward downward
262 —> 269 Panleftward

Height Hap Frames

Ratio Graph |
uit |

Shot 7

Sho Shat. B
frames 189->269 frames 278->300

t 2
frames 14->18

Shot. 4 Shot. &
Frames 116->141 frames 142->188

Shot3

(19 = 1113 Shot 5
(142 > 188)

19 -5 25 Forward travelling

26->95 Panleftward

96 —> 111 Stafic camera,

142 —> 156 Pan leftward downward
157 —> 188 Forwerd travelling

b c

Figure 7: IRISA sequence: visualization of the video summary (a). A key-frame per detected shot
is displayed (bottom row), and, for a user-selected shot, more information about its contents is
supplied (mosaic image and sequence of camera motion types). Examples shown correspond to (a)
shot 6, (b) shot 8 and (c) shot 5.

INRIA



A unified approach to shot change detection and camera motion characterization 17

[8] G. Davenport, T.A. Smith, and N. Pincever. — Cinematic primitives for multimedia. — IEEE
Computer Graphics and Applications, pages 67-73, July 1991.

[9] M. De Marsico, L. Cinque, and S Levialdi. - Indexing pictorial documents by their content :
a survey of current techniques. — Image and Vision Computing, (15):119-141, 1997.

[10] M. Flickner et al. — Query by image and video content : the QBIC system. — IEEE Computer,
pages 23-32, Sept. 1995.

[11] E. Francois and P. Bouthemy. — Derivation of qualitative information in motion analysis. —
Image and Vision Computing, 8(4):279-287, Nov. 1990.

[12] M. Gelgon and P. Bouthemy. — A hierarchical motion-based segmentation and tracking tech-
nique for video storyboard-like representation and content-based indexing. — In WIAMIS’97
Workshop on Image Analysis for Multimedia and Interactive Services, pages 93-98, Louvain-
la-Neuve, Belgium, June 1997.

[13] B. Horn and B. Schunck. — Determining optical flow. — Artificial Intelligence, 17:185-203,
1981.

[14] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. — Efficient representations of video
sequences and their applications. — Signal Processing : Image Communication, (8):327-351,
1996.

[15] P. Joly and H.K. Kim. — Efficient automatic analysis of camera work and microsegmentation of
video using spatiotemporal images. — Signal Processing : Image Communication, (8):295-307,
1996.

[16] A. Nagasaka and Y. Tanaka. — Automatic video indexing and full-video search for objects
appearances. — Visual Database Systems II, pages 113-127,1992. — E. Knuth and L.M. Wegner
(eds.), Elsevier Science Publ.

[17] J.M Odobez and P. Bouthemy. — Robust multiresolution estimation of parametric motion
models. — Jal of Visual Communication and Image Representation, 6(4):348-365, December
1995.

[18] N.V. Patel and LK. Sethi. — Video shot detection and characterization for video databases. —
Pattern Recognition, 30(4):607—625, April 1997.

[19] A. Pentland, R.W. Picard, and S. Sclaroff. — Photobook : Content-based manipulation of
image databases. — Technical Report 255, MIT Media Lab, Nov. 1993.

[20] G. Sudhir and J.C.M. Lee. — Video annotation by motion interpretation using optical flow
streams. — Jal of Visual Communication and Image Representation, (4):354-368, Dec. 1996.

[21] Y. Tonomura, A. Akutsu, K. Otsuji, and T. Sadakata. — Videomap and videospaceicon: Tools
for anatomizing video content. — Proc. Conf. INTERCHI’93, pages 131-136, April 1993.

[22] H. Ueda, T. Miyatake, and S. Yoshizawa. — Impact: An iteractive natural-motion-picture
dedicated multimedia authoring system. — Proc. Conf. ACM CHI’91, pages 343-350, 1991.

[23] M.M Yeung and B. Liu. — Efficient matching and clustering of video shots. — In Proc of Second
IEEE Int. Conf. of Image Processing, pages 338-341, Washington, October 1995.

[24] H.J. Zhang. — Swim : A prototype environment for visual media retrieval. — in Recent
Developments in Computer Vision, pages 531-540, 1996. — S.Z. Li, D.P. Mital, E.K. Teoh, H.
Wang (Eds.),LNCS 1035, Springer.

[25] H.J Zhang, A. Kankanhalli, and S.W. Smoliar. — Automatic partitioning of full-motion video.
— Multimedia Systems, 1:10-28, 1993.

RR n3304



/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhdne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399



