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La list-machine: un exemple de méta-théorie mécanisée

Résumé : Nous proposons un exemple qui permet de comparer des assistants de preuve
sur leur capacité & exprimer des preuves de correction de compilateurs. Contrairement au
premier défi POPLmark, nous mettons davantage l’accent sur le lien entre les preuves et les
implémentations de compilateurs, et moins sur les problémes soulevés par les lieurs et ’alpha-
conversion. Nous proposons des critéres précis pour évaluer 1'utilité des assistants de preuves
dans ce domaine. Nous avons développé des solutions en Coq et en Twelf (métathéorie), et
tirons des conclusions & propos de ces deux systémes en particulier.

Mots-clés : Démonstrateurs de théorémes, assistants de preuve, preuves de programme,
vérification de compilateurs, typage de code machine, métathéorie, Coq, Twelf



A list-machine benchmark for mechanized metatheory 3

1 How to evaluate mechanized metatheories

The POPLmark challenge [3] aims to compare the usability of several automated proof
assistants for mechanizing the kind of programming-language proofs that might be done by
the author of a POPL paper. The entire statement of rationale by the POPLmark team (as
of 23 August 2005) is,

How close are we to a world where every paper on programming languages
is accompanied by an electronic appendix with machine-checked proofs? To
gauge progress in this area, we issue here a set of challenge problems, dubbed
the POPLmark Challenge, chosen to exercise many aspects of programming lan-
guages that are known to be difficult to formalize.

The first POPLmark examples are all in the theory of F¢. and emphasize the theory of
binders (e.g., alpha-conversion).

As practitioners of machine-checked proof about real compilers, we have interests that
are similar but not identical. We want to formally relate machine-checked proofs to actual
implementations, not particularly to IATEX documents. Amongst the three substantial soft-
ware artifacts of conference paper, machine-checked proof, and executable implementation
(in BTEX, in a theorem-proving language, in a programming language, respectively), it’s
desirable that the connection between paper and proof be understandable by humans; but
it’s necessary that the connection between proof and program be generated or checked by
machine, because of the size and complexity of those two components.

Furthermore, perhaps it is the wrong approach to “exercise aspects ...that are known
to be difficult to formalize,” (i.e., binders with with alpha- and beta-conversion). Binders
are certainly useful, but they are not essential for proving real things about real compilers,
as demonstrated in several substantial compiler-verification projects [0, @, [Z]. If machine-
checked proof is to be useful in providing guarantees about real systems, let us play to its
strengths, not to its weaknesses.

Therefore we have designed a down-to-earth example of machine-checked metatheory,
closer to the semantics of typed assembly languages. It is entirely first-order, without binders
or the need for alpha conversion. We specify the Structured Operational Semantics (SOS) of
a simple pointer machine (cons, car, c¢dr, branch-if-nil) and we present a simple type system
with constructors for list-of-7 and nonempty-list-of-7. The challenge is to represent these
systems and prove soundness of the type system.

Since this benchmark is meant to illustrate what is useful to the Compiler Implementation
Verification community, we call it a CIVmark. Here we contrast some criteria of importance
to the POPL and CIV communities:

RR n° 5914



4 Andrew W. Appel, Xavier Leroy

Criterion importance to: POPL CIV
Representl] the operational semantics in the mech- +++  +++
anized metatheory (MM)

Represent the type system in the MM +++ +
Represent the type-checker algorithm in the MM + +++
Use the MM to simulate the execution of the type  +++ +
checker and the operational semantics on tiny ex-

amples, to debug them and gain understanding

Derive formally, mechanically, and automatically + +++
an efficient implementation of the type-checker

from the algorithm represented in the MM

Prove termination properties of the type-checker ++ ++
Prove the relation of the type-checker algorithm — ++ +++
to the type system

Prove soundness, i.e. that if a program type- +++ +++
checks then the operational semantics doesn’t “get

stuck” or perform illegal operations

Automatically translate inference rules and state-  +++ +
ments of lemmas from MM formalism to ATEX.

We have two implementations of the benchmark, one in Coq and one in Twelf metatheory,
and we draw conclusions about the usability of these two systems.

More ambitious members of the Compiler Implementation Verification community are
proving the not just the soundness of type-checkers, but the correctness of compilers. In
reading the table above, these people should substitute the word “compiler” for “type-checker”
and “correctness” for “soundness.”

2 The list-machine benchmark

Our example is meant to compare mechanized metatheories on simple and useful tasks
of importance to both communities, with a focus on compiler back-ends, that is, Typed
Assembly Language (TAL).

We will first present the problem specification, then the outline of a proof, and then the
representations of two solutions, one in the Twelf metatheory and one in Coq. Wherever it
was natural to do so, we chose the names and statements of lemmas to be the same in the
two proofs. In cases where this would have distorted either the Twelf or Coq proof, we left
the two proofs different.

As well as a benchmark, the list machine is a useful exercise for students learning Coq
or Twelf; we present the outlines of our solutions (with proofs deleted) on the Web [2].

1n this table, every use of the word “represent” is assumed to mean “represent as naturally as possible,”
and every use of the word “prove” is meant to mean “prove in a machine-checked way.”

INRIA



A list-machine benchmark for mechanized metatheory 5

3 Machine syntax

The machine manipulates only cons cells and nil—not numbers—but natural numbers are
useful for discussing labels and variable names.

ni,ng,... : N natural numbers ap,at, . - - : A values
0 : N zero nil : A the empty list
n+1 : N successor cons(ay, asz) A list cell

Remark. Calling nil “the empty list” instead of “the null value” is already a prejudgement:
this machine is a pointer machine, not a list machine, and it is only the type system that
will impose a list discipline. A different type system for the same machine might not use a
notion of lists at all.

The symbols a; are metavariables that range over values; every value is either nil or the
cons of two values. In this case, and in all other cases, we implicitly assume there is “no
junk,” i.e. that one can perform inductive reasoning over the syntax of values, naturals, etc.

. ro,T1,... : R store
v9,V1,... : V  variables r[z’) Hi a] : R bindatow
Vo, V1 : V' variable names 0 ' R empty

The symbols v; are metavariables that range over variables; the variables themselves v; are
enumerated by the natural numbers.

In this section of the document when we write r[v — a] we suggest that v is not in the
domain of r; when doing proofs it may be necesary to formalize this notion. When we want
to indicate the update operator we will write v := a] =1’.

lo,li,... + L labels
Lo, L, . L label names

The symbols /; are metavariables that range over program labels; the labels themselves L;
are enumerated by the natural numbers.

Loy L1y - I instructions

jump [ 1 jump to label [
branch-if-nil v [ 1 if v=mnil gotol
fetch-field v 0 v’ I fetch the head of v into v’
fetch-field v 1 v’ I fetch the tail of v into v’
cons vy v v’ I make a cons cell in v’
halt I stop executing

Lo ;5 L1 1 sequential composition

The semantics of instructions will be given by SOS rules, below.

RR n° 5914



6 Andrew W. Appel, Xavier Leroy

Po,sP1,... = P programs
L,:v;p : P labeled block
end . P

A program is a sequence of instruction blocks, each preceded by a label.

4 Operational semantics

Machine states are pairs (r, ¢) of the current instruction ¢ and a store r associating values to
variables. We write 7(v) = a (pronouncedd var-lookup(r, v, a)) to mean that a is the value
of variable v in r.

The syntax hints that r is actually a mapping, but we will not take this for granted.
Some MM formalizations will use relations everywhere, other will sometimes use functions.
If functions are used, then the notation r(v) makes sense; in this specification we will avoid
assuming that functions are used and we will carefully use relational notation such as r(v) =
a.

Similarly, the relation r[v := a] = 7’ (perhaps pronounced var-set(r, v, a,r’)), is written
to hint that updating r with the binding [v := a] yields a unique store r’.

The relation p(l) = ¢ (pronounced prog-lookup(p,,¢)) looks up the mapping of label I
in program p.

These three relations can either be specified as operators on mathematical mappings that
therefore happen to satisfy the following rules, or on the other hand specified inductively as
the least relations satisfying the following rules.

v£V r@) !

=a
:al

var-lookup2

var-lookupl

(rfo = a))(v) = a (rfv = a])(v')

v#V rpi=d] =7
(r[v — a))[v := a'] = (r[v — da']) var-set1 o= a0 =] = oo d] var-set2
(Mo=a ={}v— d var-set3

n#n" pn)="
(L 5 p)(Ln) = (L 243 p)(Lnr) =1

2By “pronounced” we mean that if an MM formalization requires an ascit name, this is the name that
should be used.

program-lookupl > program-lookup?2
L

INRIA



A list-machine benchmark for mechanized metatheory 7

Small-step and big-step relations. There is a small-step relation (r,:) ¥ (r/,¢') (pro-

nounced “step”), parameterized by a program p, and the Kleene closure of this relation,
(rye) o (r',1'). We also derive a big-step relation (p,r,:) | (pronounced “run”); and a
big-step relation p |} on programs p (pronounced “runprog”) that specifies a particular initial

state.

- step-seq
(r, (t1502);5t3) V= (ry 015 (12;¢3))

r(v) = cons(ag,a1) r[v' :=ag] =

,r,/
> step-fetch-field-0
r, (fetch-field v 0 v';0)) &2 (1, 1)

(
(
TEU) = cons(ag, a1) v’ i= step-fetch-field-1

r
r, (fetch-field v 1 v';0)) ¥ (/1)

/ /

r(vo) =ao r(vi)=a1 r[v' :=cons(ag,a1)] =r

step-cons
(r, (cons vy vy ;1)) ¥ (1)

r(v) = cons(agp, a1)

- step-branch-not-taken
(r, (branch-if-nil v [;1)) — (r,¢)

r(v) =nil p() ="

(r, (branch-if-nil v ;1)) & (r, /)

step-branch-taken

p=r
step-jump
(r,jump 1) & (r, )
(r,0) ¥ () (o) 4
-ste —_ -
(p,r0) I TURSIeD  haly) § Tuhalt

We say that a program p runs, that is, p |}, if it runs in the big-step relation from an
initial state in which variable vg = nil and the current instruction is the one at L.

{}vo:=nil] =r pLo)=1¢ (p,r,¢)
pi

run-prog

RR n° 5914



8 Andrew W. Appel, Xavier Leroy

5 A type system

What we specify in this section is a type system, not a type-checking algorithm. That is,
in some places we give an abstract mathematical characterization of some operator (e.g.,
71M72), and it will be necessary to derive an algorithm and prove that it’s consistent with our
characterization. We do it this way because different MMs have different ways of specifying
algorithms (e.g., logic programs in Twelf, functional programs in Coq).

We will assign to each live variable at each program point a list type. To guarantee
safety of certain operations, we provide refinements of the list type for nonempty lists and
for empty lists.

TOs T1y- - - T type

nil T singleton type containing nil
list 7 T list whose elements have type 7
listcons 7 T non-nil list of 7

An environment I' is an type assignment of types to a set of variables:

To, I4,... : FE env
{} . FE empty var typing
vet, T : FE type attribution

Is I' a mapping or is the the binding operator v:7,I" just a syntactic constructor? That
is, how are we to make sense of forms such as v:r, v:7’, { } where the same variable v appears
repeatedly? The answer depends on the style of specification used, and (presumably) will be
made more clear in each MM formalization. In the specification below, we write I'(v) = 7 to
denote that I" associates type 7 to variable v, and I'[v := 7] = I" to mean that I associates
type 7 to variable v and is otherwise identical to I'.

We define subtyping among the various refinements of the list types:

T subtype-refl

T Clsir subtype-nil
TCT
list 7 C list 7/
TCT
listcons 7 C list 7/
Tct
listcons T C listcons 7/

subtype-list

subtype-listcons

subtype-listmixed
We extend subtyping widthwise and depthwise to environments in the obvious way.

(How the “obvious” way is specified actually depends on the choice of formalism; and see the
discussion in section [[Z2 that explains how the correct definition is not necessarily obvious.)

INRIA



A list-machine benchmark for mechanized metatheory 9

The least common supertype 7 N 72 = 73 of two types 7 and 7o is the smallest 73 such
that m C 3 and 74 C 7.

In the operational semantics, a program is a sequence of labeled basic blocks. In our
type system, a program-typing is a sequence of labeled environments, representing the types
of the variables on entry to each basic block.

II;,II5,... : PT program typing
{} . PT empty program typing
1:T, II : PT Dblock typing

The block-typing [ : T, II gives I" as the types of the variables upon entry to label [,
where II is the rest of the program typing. We write II(l) =T to indicate that II associates
I' with label [, and we write IIy for the empty program typing.

Because program typings may be given syntactically by the end user, it is important
to ensure that they are well-formed—that II maps each label to at most one I', and that
each I' maps each variable to at most one type. How this is guaranteed depends on the
implementation. We suggest the notation ., I' to signify that I' maps variables uniquely.

Instruction typings. Individual instructions are typed by a judgement II Fi,e T'{e}T7,
pronounced “check-instr(IL,T',¢,I”).” The intuition is that, under program-typing II, the
Hoare triple T'{:}I" relates precondition I' to postcondition I".
II Finstr F{LI}F/ II Finstr F/{LQ}FN
I l_instr F{[/l; 52}FH

check-instr-seq

D) =listr I{)=T; Tp:=nil=0I" I"cCIy
IT Fipsty I'{branch-if-nil v [} (v : listcons 7, I")

check-instr-branch-list

['(v) =listconst () =T; Tw:=nil]=1" TcCI}y
IT Fipsty T'{branch-if-nil v I}’

check-instr-branch-listcons

Pw)=nil OI)=T; T'cly
IT Fipsty T'{branch-if-nil v I}’

check-instr-branch-nil

F(U) = listcons 7 F[v’ — T] 1

IT Fipgtr T'{fetch-field v 0 o'}

check-instr-fetch-0

I'(v) =listconst To':=list7] =1
IT Fipgtr T'{fetch-field v 1 o'}

check-instr-fetch-1

F(’Uo) =170 F(’Ul) =T
(list o) M7 =list7 T'fv:=listcons7] =T

IT Finstr F{CODS Vo U1 ’U}FI

!

check-instr-cons

RR n° 5914



10 Andrew W. Appel, Xavier Leroy

Block typings. A block is an instruction that does not (statically) continue with another
instruction, because it ends with a halt or a jump.
m check-block-halt

II Finstr F{LI}F/ Ha F/ Fblock L2
ILT Fpiock t15t2

check-block-seq

()=, Tcrly
ILT Fpiock jump {

check-block-jump

Program typings. The judgement IT Fpjocks p (pronounced “check-blocks II p”) means
that the blocks p are well-typed in the program-typing II.

H(l) =1 ILT Fploek ¢ I Fplocks P
II Fplocks £ 2 45 p

check-blocks-label

m check-blo cks—empty

In a complete program typing, the domain of II must be a subset of the domain of p.
A benchmark solution may simply say, dom(II) C dom(p) (as our Coq solution does, using
an efficient library for manipulating finite functions on natural numbers). Or (as our Twelf
solution does) one may use a stricter relation IT i< p that means that the labels of IT match
those of p exactly, in strict numerical ascending order:

typing-dom-matchl
(I:T, Hp) < (l:e; end) ypig-dom-matc

(Lpgr 17, 1) o< Ly 2 05 p)
(Lp : T, Ly ) ) > (L, i 45 Lipgq 2 05 p)

typing-dom-match2

Execution will start at the initial label Lo, which will be bound to the initial environment

Lo = (vo:nil, {}).
Type-checking an entire program is therefore,

O hplocks p Oxip H(Lg) =T
Fprog p : 11

(perhaps with the premise dom(IT) C dom(p) instead of IT & p).

0 check-programl

INRIA



A list-machine benchmark for mechanized metatheory 11

Type system vs. type checker. We have presented some relations defined by derivation
rules and some defined informally. This is a bit sloppy, especially where a derivation rule
refers to an informally defined relation; any solution to the benchmark must formalize this.
We will use the notation =pos p : II to mean that program p has type II in the (not
necessarily algorithmic) type system, and the notation Fp.0s p : II to mean that p : I is
derived in some algorithmic type-checker.

6 Sample program

The following program has three basic blocks. Variable vy is initialized to nil by the premises
of the run-prog rule. Block 0 initializes v; to the list cons(nil, cons(nil, nil)) and jumps to
block 1. Block 1 is a loop that, while v; is not nil, fetches the tail of v; and continues. The
last instruction of block 1 is actually dead code (never reached). Block 2 is the loop exit,
and halts.

Psample =

Lo : cons vg vy vy;cons vy vy vi;cons vy vy vi;jump Ly;

L; : branch-if-nil v; Ls; fetch-field 1 v; vy; branch-if-nil vy Li; jump Lo;
Ls : halt;

end

We claim the following typing for this program

Mample = Lo : (vo :nil, {}), Ly : (vo:mil, vy :listnil, {}), La:{}, {}

7 Mechanization tasks

Implementing the “list-machine” benchmark in a mechanized metatheory comprises the fol-
lowing tasks:

1. Represent the operational semantics in the MM.

2. Derive the fact that psample . Why is this useful? If the MM can conveniently simulate
execution of small examples, then it’s easy for the user to debug the SOS and get an
intuitive feel for its expressiveness.

Soundness of a type system.

3. Represent the type system in the MM. (One needs to define enough notation so that
the formula |=p,0¢ p : IT can be represented and type-soundness can be proved.)

4. Represent in the MM an algorithm for (or constructive proof of the existence of) least-
common-supertype, that is, the computation 7 M7 = 73 producing 73 from inputs 71
and 7o.

RR n° 5914



12 Andrew W. Appel, Xavier Leroy

5. Using the type system, derive the fact that =prog Psample : Hsample- Why is this useful?
If the MM can conveniently simulate type-checking of small examples, then it’s easy
for the user to debug the type system and get an intuitive feel for its expressiveness.

6. Represent the statement of these properties of the chosen least-common-supertype
algorithm:

T1|_|T2:

T3 T T =
T C lub-subtype-left _—

T3 .
HC T lub-subtype-right

T =73 71 CT4 T2 CT4
T3 C T4

lub-least

7. Prove the lemmas lub-subtype-left, lub-subtype-right, and lub-least. The first two lem-
mas are directly useful in the soundness proof; the last one is not, but is a reassuring
completeness property.

8. Represent the statement of a soundness theorem for the type system. The informal
statement of soundness is, “a well-typed program will not get stuck.” A program state
is not stuck if it steps or halts:

step-or-halt(p,7,0) = (3,0 (r,0) ¥ (',/)) V o = halt.

Foog P: 11 {Jvor=nill =7 pLo)=¢ (r,0) & (r',0)
step-or-halt(p, 7/, ")

soundness

9. Prove the soundness theorem.

Efficient type-checking algorithm.

10. Represent an asymptotically efficient type-checking algorithm Fp,oe p : IT in the MM.
By efficient we mean that a program of N instructions, with maximum number number
of live variables M, should type-check in O(N log M) time.

11. Using the type-checking algorithm, derive the fact that Fprog Psample @ Hsample. Why
1s this useful? If the MM can conveniently simulate type-checking of small examples,
then it’s easy for the user to debug the type system and get an intuitive feel for its
expressiveness.

12. Prove that the type-checking algorithm terminates on any program. This is a nice
property to have, especially if it’s not difficult to establish.

13. Demonstrate the type-checker on large-scale examples and show empirically that its
efficiency is competitive with implementations in Prolog or ML. Specifically, some
theorem-proving systems have the ability to translate their internal representation of
computable functions into a Prolog or ML program that can be compiled by a high-
performance compiler; this means that correspondence between the algorithm that is
verified and the program that executes is established mechanically.

INRIA



A list-machine benchmark for mechanized metatheory 13

14. Prove that Fpuoe p : IT implies FEprog p @ II. That is, the type-checker soundly imple-
ments the type system.

Writing the paper.

15. Use an automatic tool to generate readable IXTEX formulas for the SOS rules, the
typing rules, and the statements of (not the proofs of) the least-common-supertype
lemmas and soundness theorems. Klein and Nipkow [6] have written an entire paper
(formalization of a Java subset and of certain phases of a compiler for it) in which
every formula given in the paper is the automatic translation of a statement whose proof
has been mechanically checked in Isabelle/HOL. Therefore they avoid transcription
errors and ameliorate version-control problems.

8 Type checking algorithms

From the sketch of a type system given in section B, one could specify a type-checking
algorithm by giving a set of syntax-directed inference rules, by giving a functional program,
by giving an imperative program, or by some combination of these techniques. The choice
of style may be influenced by how the MM relates programs to proofs.

8.1 Type checking by syntax-directed rules

One of the ways to specify and implement a type-checker is by writing down a set of syntax-
directed judgement rules. If the inference-rule style is chosen for implementation in the MM,
we suggest that the following rules and notation should be used.

In the syntactic style, the notation v : 7, T" is just the application of a three-argument
constructor, and does not inherently guarantee that v is not in the domain of I'. Within an
algorithm one could arrange to preserve this property; but we want the end user to provide
a (claimed) program-typing mapping each label to a I, so we need an algorithmic way to
check that the user’s I' does not have multiple mappings for any variable. Therefore, we
define a predicate to judge that an environment T is a (single-valued) function; to make
the syntax-directed checker efficient, we insist that I" map its variables in order of variable-
number:

Fome 11 env-ok0 m env-okl

n<n' Fenv Vi : 7/, T

-0k2
Fenv Vi 0 7, (Ve 27/, T) env-o

Tt is helpful (though perhaps not necessary?) to make the rules properly inductive by
introducing the notation
r=(@:r I

which means that T" as the disjoint union of a relation IV and a binding v : 7. We will treat
this formally as a four-place relation on I'; v, 7, and I, pronounced env-lookup. We use the

RR n° 5914



14 Andrew W. Appel, Xavier Leroy

symbol = instead of = to remind the reader that this is not syntactic equality, but really a
computation with inputs I', v and outputs 7,I”. The rules for this relation are,

-lookup1l
(w:r, T)=w:7, T) env-ooktp

v#V =07, T
(wir, )= :7, (v:7, T))

env-lookup2

In order to make use of this relation, we adjustﬁ most of the instruction-typing rules, as
follows:

= (v:listr, IV) O()=Ty (v:nil, IV)CTy
IT Fipstr I'{branch-if-nil v [}(v : listcons 7, I")

check-instr-branch-list’

I'= (v:listcons7, IV) T()=Ty (v:nil, IV)CTy
II Fipsty T'{branch-if-nil v I}’

check-instr-branch-listcons’

F=(v:nil, IV) U(l)=0Ty T'cly
II Fipsty T'{branch-if-nil v [}T

check-instr-branch-nil’

I'= (v:listconst, T) T :=7]=T"
IT Fipstr T'{fetch-field v 0 v }T”

check-instr-fetch-0'

I' = (v :listconst, ') T :=list7] =1"
IT Fipstr T'{fetch-field v 1 v'}TY

check-instr-fetch-1’

F(Uo) = TOF0 F = (Ul 71, Fl)
(list 7o) M7 =list7 T'[v := listcons7] =TI

IT Fipstr T'{cons vy v1 v}

check-instr-cons’

The four-place relation I'lv := 7] = I”, pronounced “env-set(L,v,,I”),” has syntax-
directed rules as follows,

3 Ts it legitimate to make minor alterations in the specification of the benchmark? Alterations in the
specification of the dynamic semantics are harmful, but alterations in the specification of the type system
are not. In the context of this benchmark, we are proving the correspondence of the type system to an imple-
mentation of a type-checker, but we are assuming, not proving the correspondence of the dynamic semantics
to some real machine. If the altered type system (1) is sound and (2) corresponds to an implementation,
then the implementation is sound, no matter what alterations have been made. No corresponding argument
holds for the dynamic semantics.
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-setl
(w:r, Dv:=7]=":1, T) env-set
vEV T=r] =T :
(’U LT, F)[U’ = 7-/] _ (FI, V- 7_) env-set
env-set3

{Ho=r=(v:7, {})

We give a syntax-directed view of environment subtyping as follows.

F=w:7, 1) 7cr I"cCI'

- 1 - 2
TC(:n ) env-sub Tc{} env-sub
See section for a discussion of the rule env-subl.
Syntax-directed rules for least-common-supertype:
TAOT=1T lub-0 list 7 Mnil = list 7 lub-1 nil Mlist 7 = list 7 lub-4
list 7 Mlist 5 = 73 list 7 Mlist 5 = 73
list 7, M listcons 7o = T4 Tub-2 listcons 7 M list 79 = 73 lub-2b
T1 1T =73
list 71 M list 75 = list 73 lub-3
lub-5 lub-6

listcons 7 Mnil = list 7 nil Mlistcons 7 = list 7

T1 1T =173

listcons 71 M listcons 75 = listcons 73 lub-7
Looking up a label in a program-typing, at the same time checking that the resulting '
is well-formed:
Fenv (') AU II)y=1’

(T, () =T block-typing-lookupl (T @) =T block-typing-lookup2

8.2 Type checking by an imperative program

We now give an alternate presentation of the type-checking algorithm as imperative pseu-
docode, in the style of algorithm textbooks. Just like the presentation using syntax-directed
rules is close to an implementation in a logic programming language, the pseudocode presen-
tation in this section is close to an implementation in an ML-like language. The pseudocode
raises an exception (denoted by fail) to report a type error and abort type-checking. The
algorithm can also be written in a purely functional style: just replace this exception by
explicit Error function results.

check_env_sub I'; I's:
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For each binding v : 7 in I'g,
Check that I'y contains a binding x : 71 and that 7 C 79; fail otherwise.

typecheck_branch II T' I:
If TI(1) is undefined, fail; otherwise, check_env_sub I" TI(]).

typecheck_instr II I' ¢
If « = t1;2: return typecheck_instr I (typecheck_instr II T ¢1) ¢o.
If . = jump [: fail.
If « = branch-if-nil v [:
If T'(v) is undefined, fail
If I'(v) = list 7:
typecheck_branch II I'[v := nil] I and return I'[v := listcons 7].
If T'(v) = listcons 7:
return I'.
If T'(v) = listcons:
typecheck_branch II I" [ and return I
If . = fetch-field v n v":
fail if I'(v) is undefined or not of the form listcons 7.
failif n # 0 and n # 1.
Return I'[v' := 7] if n =0, T’ :=list 7] if n = 1.
If « = cons vy vy V'
fail if I'(vg) or I'(v1) is undefined.
Compute 7 = (list I'(vo)) M I'(vy).
If 7 is of the form list 7/, return T'[v’ := 7']; otherwise, fail.

typecheck_block II I' ¢
If . = halt, success.

If o = 11;509:
typecheck_block II (typecheck_instr II T 1) ¢s.
If t = jump I:

typecheck_branch I T" [.
Otherwise: fail.

typecheck_blocks II p:
If p = end, success.
Ifp=L,:¢ p-
Let I' =II(Ly,) (or fail if undefined).
typecheck_block II I' ¢
typecheck_blocks II p'.

typecheck_program II p:
typecheck_blocks II p
Check that II(Lg) = T’y and that dom(IT) C dom(p).
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9 Proof outline

We outline here the principal lemmas of a soundness proof. Machine-checked derivations
are not required to follow this outline; but to the extent that they do, it will be convenient
if they use the same names for the principal lemmas.

The proof will rely on natural numbers with equality and inequalities; on equalities and
inequalities of type and term structures; and the properties of (and operations on) stores and
environments as mappings (partial functions). Appropriate lemmas must either be proved
or imported from libraries.

Well-formed environments. The type-checker has some way of testing o,y I, i.e. that
the environment syntax provided by the end user for some label in IT is well formed. One
must prove that Feny I' implies that I' is indeed a partial function.

Value-has-ty. The type-checker attributes types to variables, but surprisingly it never
needs to attribute types to values. The soundness proof therefore needs to define this
concept, typically by cases:

nil : nil nil : list 7

a : listcons T
cons(ag, ay) : listcons 7 a:listT

Var-set-type.

Fenv r:T a:7 rvi=al=7 Th:=1=I

var-set-type

Various progress lemmas.

Mxp II(1) =
A pl) ="
Fprog p: 11 II(1) =T
3 pl)y =2
Fvy=7 r:T

da. r(v)=a AN a:T

progress-typing-dom-match

progress-check-program

progress-env

':prog p: IT 1I Finstr F{L}Fl r: I
step-or-halt(p, 7, ¢)

progress
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Lemmas about least-common-supertype.

71T ="T3

T =1 lub-comm

M7 =7 M7 =T
il =173 lub-subtype-left o n=hn lub-subtype-right

71 C T3 T2 C T3
Subsumption.
T1CT2 a:m . F1CF2 T’IFl subs tion-e
o subsumption SV ubsumption-env

Relation of static to dynamic semantics of the store.

Fw)=r rfF r(v) =a

preservation-env-lookup

Looking up a well-typed block.

IT Fhlocks p p(l) =1 H(D =T
H; r Fblock L Fenv r

preservation-block-typing

):prog p:1I p(l) =1 H(l) =T
ILT Fplock ¢ Fenv I’

preservation-program-typing

Preservation.

Epog P II Feny I' 7T ILT Fpoek ¢ (750) LN (r', )
. ke IV A 7T A ILTY Fpioek ¢

preservation

FEprog p 1 I initial(p, ro,t0) (70, 0) Ly (ry)
. Fenw I' A 7:T A ILT Fpock ¢

run-well-typed

That which was to have been shown.

):prog p:10I ll’lltlal(p7 r, L) (T, L) Lo (7“/, LI)
step-or-halt(p, 7/, ")

soundness
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10 Learning to use the MMs

An experienced practitioner of (nonmechanized) operational semantics may reasonably won-
der, “How long does it take to learn how to use a mechanized metatheory?” (both the en-
coding of machines and type systems and the manipulation of the proof assistant) and “If I
take the trouble to learn metatheory A, how long will it take to learn metatheory B?”

We did not perform a controlled experiment. The first author (Appel) has 6 years
experience with nontactical proofs in higher-order logic represented in the Twelf system [I];
this style of proof is entirely unlike the Twelf metatheory discussed here, and the nontactical
style is quite unlike the style of proof used in Coq. The second author (Leroy) has 6 years
experience proving theorems in Coq. Consequently, neither author was able to definitively
answer the first question, but Appel could attempt an answer to the second.

Twelf metatheory. In writing Twelf metatheory, one first must learn logic program-
ming; any experience using Prolog would be helpful, but in any case an programming-
language theoretician should be able to solve tasks 1 and 3 (represent the operational se-
mantics, represent the type system) and tasks 2 and 5 (“execute” the operational semantics
and the type system) in about a week. Appel started from this point. The next step is
to learn how to use termination and totality in the metatheory, how to use logical tricks
like contradiction, and so on. This took about 3 weeks to learn; the on-line documentation
is barely adequate and at times frustrating, but at no time was it necessary to consult a
metatheory expert. Therefore we estimate about 1 month to learn enough Twelf to complete
all the tasks of this benchmark.

Cogq. Appel started from zero on Coq; Leroy provided the Coq solution to this bench-
mark. Rather than repeating Leroy’s work (for which the solution was too temptingly
available), Appel defined (in Coq) the structured operational semantics of a von Neumann
“list machine” with a memory and a heap-allocation pointer, wrote a program (in the ex-
ecutable part of Coq) to assemble the list-machine “assembly” language of this benchmark
to the “machine” language, and proved the correctness of the translation. The techniques
required are very similar to those needed for the type-soundness proof. It took about 3 weeks
to learn enough Coq to do the assembler-correctness proof (meaning that, after 3 weeks, the
proof wasn’t finished but the issues changed from those of learning Coq to those of finding
the right induction hypotheses). The on-line documentation (and the Coq’Art book [4]) are
barely adequate and at times frustrating, but only three short (10-minute) consultations
with the experts were necessary over the 3-week period.

Both Twelf and Coq have more sophisticated features which Appel did not attempt
to learn in the trial period: Twelf has sophisticated techniques for handling binders in
higher-order abstract syntax, and Coq supports programming with dependent types. This
benchmark was deliberately chosen to exercise only the features most of interest to compiler-
writers.

Conclusion. Once you learn one system, you can move on to the next (even if it’s quite
different) with an investment of one month’s time.
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11 Comparison of mechanized proofs

We have implemented those tasks that are implementable in both the Twelf (metatheory)
and Coq systems. The number of lines of code required is summarized in the following table.

Task Twelf Coq

1. Operational Semantics 126 98 lines
2. Derive p |} 1 8
3. Type system Fprog p : 11 167 130
4. 1 algorithm * *
5. Derive ):prog Psample - Hsample 1 no
6. State properties of M 12 13
7. Prove properties of 1 114 21
8. State soundness theorem 29 15
9. Prove soundness of |=p0g p: Pi | 2060 315
10. Efficient algorithm 22 130
11. Derive l_prog Psample * Hsample 1 1
12.  Prove termination of Fp.0e p : 11 18 0
13. Scalable type-checker yes  yes
14.  Prove soundness of -p,roq p : Pi 347 141
15. Generate IATEX no no

Total parsing and proof-checking timdf] was 0.558 seconds real time for Twelf, 2.622
seconds for Coq.

In this section we’ll make a few remarks about each task, and in the later sections we’ll
explain the principles of each MM proof in more detail.

1. Operational semantics. Both Twelf and Coq make it easy and natural to represent
inductive definitions of the kind found in SOS. In Coq one also has the choice of representing
operations over mappings (e.g., lookup and update in stores) either as relations (defined by
inductive predicates) or as functions (defined by recursion and pattern-matching).

2. Derive p ||. Twelf makes it very easy to interpret inductive definitions as logic pro-
grams. Therefore this task was trivial in Twelf. Coq does not provide a general mechanism
to execute inductive definitions. The rules for the operational semantics were simple enough
that (after some experimentation) we could use the proof search facilities of Coq (the eauto
tactic) as a poor man’s logic program interpreter. (See section[[Z2Afor details.) A more gen-
eral method to execute inductive definitions in Coq, which we implemented also, is to define
an execution function (61 lines), prove its correctness with respect to the inductive defini-
tion (35 lines), then execute the function. (Evaluation of functional programs is supported
natively by Coq.)

4Dell Precision 360, Linux, 2.8 GHz Pentium 4, 1GB RAM, 512kB cache.
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3. Represent the type system. Easy and natural in both Twelf and Coq (with, as
before, the choice in Coq of using the functional presentation of operations over mappings).

4. Least-upper-bound algorithm. Because the “type system” represented in Twelf is
most straightforwardly done as a constructive algorithm, this was already done as part of
task 3 in our Twelf representation. In Coq, while the type system itself is not algorithmic,
we chose to specify the least-upper bound operation as a function from pairs of types to
types. Therefore, the algorithm to compute least-upper bounds was already done as part of
task 3 in the Coq development as well.

5. Derive an example of type-checking. Trivial to do in Twelf, by running the type
system as a logic program. Not directly possible in Coq because the specification of the
type system is not algorithmic: it uses universal quantification over all variables to specify
environment subtyping.

6. State properties of least-upper-bound. Entirely straightforward in Coq. For
example, here are the Coq statements of these properties:

Lemma lub_comm:
forall t1 t2, lub t2 t1 = lub t1 t2.
Lemma lub_subtype_left:
forall t1 t2, subtype t1 (lub tl t2).
Lemma lub_subtype_right:
forall t1 t2, subtype t2 (lub t1 t2).
Lemma lub_least:
forall t1 t3, subtype t1 t3 ->
forall t2, subtype t2 t3 -> subtype (lub t1 t2) t3.

The correspondence with the mathematical statements of these properties is obvious.
In Twelf, stating the properties of least-upper-bound must be done in a way that seems
artificial at first, but once learned is reasonably natural. The lemma

T1 M To = T3
T CT lub-subtype-left

is represented as a logic-programming predicate,
lub-subtype-left: unify T1 T2 T3 -> subtype Tl T3 -> type.

which transforms a derivation of 1ub T1 T2 T3 into a derivation of subtype T1 T3. The
“proof” will consist of logic-programming clauses over this predicate. To be a “proof” of the
property we want, we will have to demonstrate (to the satisfaction of the metatheory, which
checks our claims) that our clauses have the following properties:
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Jmode lub-subtype-left +P1 -P2. The modes of a logic program specify which argu-
ments are to be considered inputs (+) and which are outputs (-). Formally, given any
ground term (i.e., containing no logic variables) P1 whose type is unify T1 T2 T3,
our clauses (if they terminate) must produce outputs P2 of type subtype T1 T3 that
are also ground terms.

%total P1 (lub-subtype-left P1 P2). We ask the metatheorem to check our claim that
no execution of lub-subtype-left can infinite-loop: it must either fail or produce a
derivation of subtype T1 T3; and we check the claim that the execution never fails
(that all cases are covered). The use of P1 in two places in our %total declaration is
(in some sense) mixing the thing to be proved with part of the proof: we indicate that
the induction should be done over argument 1 of lub-subtype-left, not argument 2.

7. Prove properties of least-upper-bound. In Twelf this is done by writing the logic-
programming clauses that satisfy all the requirements listed above. For example, the fol-
lowing 9 clauses will do it:

-: lub-subtype-left lub-refl subtype-refl.

-: lub-subtype-left lub-1 subtype-refl.

-: lub-subtype-left (lub-2 P1) (subtype-list P2) <-
lub-subtype-left P1 P2.

-: lub-subtype-left (lub-2b P1) (subtype-listcons P3) <-
lub-subtype-left P1 P3.

-: lub-subtype-left (lub-3 P1) (subtype-list P2) <-
lub-subtype-left P1 P2.

-: lub-subtype-left lub-4 subtype-nil.

-: lub-subtype-left lub-5 subtype-nil.

-: lub-subtype-left lub-6 (subtype-listcons subtype-refl).

-: lub-subtype-left (lub-7 P1) (subtype-listmixed P2) <-
lub-subtype-left P1 P2.

These are not clauses of a type-checker, they are clauses about a type-checker, and serve
only to “prove” the %mode and %total declarations.

In Coq, the proofs are done interactively by constructing proof scripts. For example, the
proof of lub_subtype_left is:

induction t1; destruct t2; simpl; auto; rewrite IHtl; auto.

which corresponds to doing an induction on the structure of the first type t1, then a case
analysis on the second type t2, then some equational reasoning.

There are 6 separate steps to the Coq proof, each takes just two or three tokens to write,
and each takes some thought from the user. On the other hand, each of the 9 clauses of the
Twelf proof, ranging in size from 6 to 16 tokens, also takes some thought. The time or effort
required to build a proof is not necessarily proportional to the token count, but we report
what measures we have.
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8. State soundness theorem for the type system. In Coq, the statement is just
ordinary mathematics:

Theorem safety:
forall p s i pt,
check_program pt p -> run_prog_finite p s i -> step_or_halt p s i.

In Twelf, this is done, as above, by writing a logical predicate that relates a derivation of
type-checking to a derivation of runs-or-halts, and then making the appropriate %mode and
%total claims for the Twelf system to check.

9. Prove soundness of the type system. Writing such a logic program in Twelf takes
more than 2000 lines; section explains this proof in more detail. The Coq proof of
soundness (see section [[J) is about 7 times shorter (300 lines). There are several reasons for
Coq’s superiority over Twelf here. The first is Coq’s proof automation facilities, which were
very effective for many of the intermediate proofs: once we indicated manually the structure
of the inductions, Coq’s proof search tactics were often able to derive automatically the
conclusion from the hypotheses. A second reason is the use of non-algorithmic specifications,
especially for environment subtyping, which are simpler to reason about. The last reason
is the ability to reuse basic properties over mappings, such as the so-called “good variables”
properties, instead of proving them over and over again.

10. Asymptotically efficient algorithm. In Twelf, the most straightforward represen-
tation of the type system, when run as an algorithm, takes quadratic time. This is because
the rules for looking up labels in global environments IT involve a search of the length of II
for each lookup. In any Prolog system that permits the efficient dynamic assertion of new
clauses, one can do lookup in constant time; we will explain this below. In Twelf one can
also represent dynamic clauses, so it’s a simple matter to replace some of the rules of the
type system with ones that use a more efficient method to look up the typings of labels.
The new logic program (most of the old type system, plus a few new rules) we call the “type
checker.”

In Coq, the type-checker is defined as a function from program typings and programs
to booleans. Our solution uses intermediate functions for checking environment subtyping
and for type-checking instructions and blocks. These functions return option types to signal
typing errors; these errors are propagated in a monadic style (the error monad). To avoid an
n? algorithm, we represent environments and program typings as finite maps implemented
by radix-2 search trees. Therefore, the typing algorithm has O(nlogn) complexity.

11. Simulate the new algorithm. This is a trivial matter both in Twelf and in Coq. In
Twelf, once again, we perform a one-line query in the logic-program interpreter. In Coq, we
simply request the evaluation of a function application (of the type-checker to the sample
program and program typing), which is also one line.
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12. Prove termination of the type-checker. Twelf has substantial automated support
for doing proofs of termination of logic programs (such as the type-checker) where the
induction is entirely structural. This task was very easy in Twelf.

In Coq, this task was even easier: all functions definable in Coq are guaranteed to termi-
nate (in particular, all recursions must be either structural or well-founded by Noetherian
induction), so there was nothing to prove for this task.

13. Industrial-strength type-checker. Coq has a facility to automatically generate
Caml programs from functions expressed in Coq. Automatic extraction of Caml code from
the Coq functional specification of the type-checker produces code that is close to what a
Caml programmer would write by hand if confined to the purely functional subset of the
language.

Similarly, Twelf programs that don’t use higher-order abstract syntax can be automat-
ically translated to Prolog, and those that use HOAS can be automatically translated to
lambda-Prolog. There are many efficient Prolog compilers in the world, and there is one
efficient lambda-Prolog compiler.

14. Prove soundness of type-checker. Straightforward (though a bit tedious) both in
Twelf and in Coq. Again, Coq’s proof automation facilities result in a significantly shorter
proof (about 3 times shorter than the Twelf proof).

15. Generate BTEX. Although both Coq and Twelf have facilities for generating ITEX,
neither has a facility that is sufficiently useful for the purposes of this benchmark.

12 A proof in Twelf metatheory

The Twelf system[TT] is an implementation of the Edinburgh Logical Framework (LF). One
can represent the operators of a logic as type constructors in LF, and proofs in that logic as
terms in LF, and one can do proof-checking by type-checking the terms (considering them
as derivations).

In Twelf one can prove theorems (proofs in a logic) or metatheorems (proofs about a
logic). Either approach could be used for our benchmark. In this section we will explain a
solution using the usual approach in Twelf, which is metatheoretic.

In this case the logics in question are our operational semantics and our type system, and
the metatheorem to be proved is type soundness: that is, if one can combine the inference
rules of the type system to produce a derivation of type-checking, then it must be possible to
combine the inference rules of the SOS to produce (only) nonstuck derivations of execution.

This approach is agressively syntactic. Instead of saying that p is a mapping from labels
to instructions, we give syntactic constructions that (we claim) represent such a mapping.
One consequence of this style is that our =proe p : II is not just a semantic relation, but a
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syntactically derivable one expressed as Horn clausedd. By carefully structuring the Horn
clauses that define our relations so that we can identify “input” and “output” arguments, we
can ensure that the logic-programming interpretation of our clauses is actually an algorithm.
This input-output organization can be specifed and mechanically checked in Twelf via %mode
declarations. Our type system is then directly executable in Twelf.

Our specification of =y, p : II, though executable, has quadratic running time, because
the lookup of a label in the label-mapping II takes time proportional to the number of
labels mapped by II. Therefore we also write a set of rules 1,05 p : II that executes more
efficiently; we will describe the differences below.

Since we avoid using HOAS (higher-order abstract syntax) in our Twelf program, both our
type system and our type-checker are trivially translatable to an executable Prolog progranﬂ,
and a good Prolog compiler can execute the type-checker with respectable performance.

Each clause in Twelf is named (we use the same names that are attached to the inference
rules shown in this paper—see also Appendix A). When Twelf traces out, via Prolog-style
backtracking, one or more derivations of a result by the successful application of clauses, it
builds as well a derivation tree for each derivation.

In LF, one can compute as well on the derivation trees themselves. Suppose we write
another Prolog program (set of clauses) that takes as input a derivation tree for type-
checking, and produces as output a derivation tree for safe (nonstuck) execution. If this
program is total (that is, terminates successfully on any input) then we have constructively
proved that any well typed program is safe.

To reason about this meta-program, we use (machine-checked) %mode declarations to
explain what are the inputs and outputs of the derivation-transformer. We also use (machine-
checked) %total declarations to ensure that our meta-program has covered all the cases that
may arise, and that our meta-program does not infinite-loop.

12.1 Preliminaries to the Twelf proof

Equalities and inequalities on natural numbers. The type-checker takes type anno-
tations from the user, attributing to each program label a formal-parameter list and within
each formal-parameter list, attributing types to variables. To ensure that the user does not
associate more than one parameter-list to a label, or more than one type to a variable, the
type-checker requires that the labels and variables each be annotated in numerically increas-
ing order. For this reason it will be necessary to reason about equality and inequalities (e.g.,
a less-than relation) of natural numbers, or their equivalent. Presumably a machine-checked
derivation may use library definitions and lemmas for this, so we will not attempt to specify
the names and forms of these lemmas here.

5 Actually, as dependently typed higher-order hereditary Harrop formulas, but for this simple benchmark
we don’t use the higher-order abstract syntax capabilities of Twelf.

6 Dinghao Wu has implemented such a translator for an experiment running a large typed-assembly-
language typechecker, specified in Twelf and executed either in SICStus Prolog or in Flit [T4].
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Equality and inequality of type and term structures. Similarly, it may be useful
in most derivations to be able to notions of equality, congruence, and inversion on the
structure of types, values, and so on. Methods for handling congruences may be idiomatic
to a mechanical proof assistant, and we will not name them here.

Store-has-type. A store r satisfies an environment I'; written as r : I, if for every variable
v in the domain of I', r(v) has type I'(v).

If stores and environments are defined as a priori mappings, and if the type-checker uses
the rules env-lookup1, var-set2, etc. defined in section Hl then it will be necessary to derive
those rules.

However, in the syntactic style, the rules are taken as axiomatic, and it’s will be necessary
to define “good” environments (i.e., those that are mappings). The relation v ¢ domT,
pronounced “env-no-binding(v,T")” is used as an auxiliary in defining v env, pronounced
“env-good(v).” Then we have lemmas,

rw)=a rw)=d ] rlv:=a)=r
S var-lookup-uniq ;
a=a r(v)=a

var-set-lookup

Fenv T'(v)=r7I"
IMenv v ¢domI’

env-lookup-no-binding

Fenv T'(v)=7" ¢ gdomT

env-lookup-no-binding?2

v’ & domT”
Fenv Tv:=7]=T'
y env-set-good
I' env

Environments are mappings. We define a syntactic identity relations 71 = 75 on types
and I'y = I's on environments. We do not necessarily assume that I'y C I's ATy C '} =
I'y =T,.
F(’U) = 7’1F1 F(’U) = TQFQ
T1=Tp I'1=T

env-lookup-uniq

12.2 What’s easy and what’s difficult in Twelf?

Stephanie Weirich recently described [I2] her experiences formalizing in Twelf metatheory
a soundness proof for Featherweight Java. Our conclusions here are largely consistent with
hers, except that we had no problems at all with induction over higher-order abstract syntax
because we avoided using itf

7 For various reasons, we have deliberately chosen a very crude assembly language to formalize, with
explicit variables and environments in place of any binding construct. In part this is designed to represent
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Easy. Since Twelf can directly execute operational specifications, we get a simulator for
the SOS for free. This simulator is not very efficient; it is probably a factor of 100 slower
than Prolog, and its asymptotic complexity may also be worse. Operational execution in
Twelf is adequate for small examples, but not for relating proofs to real systems. However,
it is very easy to translate first-order Twelf directly to Prolog, which is sufficiently efficient
for real systems. (Our benchmark is entirely first-order.)

Easy. Twelf encourages a syntactic, clausal specification of the type system, so that our
type system is identical to the type-checker and the type-checker can directly execute as
a logic program in Twelf. Therefore, expressing algorithms and showing the relation of
these algorithms to rule-based specification is straightforward and easy. This is useful for
debugging small examples (but does not scale well except via translation to Prolog).

Easy. Twelf has automatic termination checking for logic programs, so it’s extremely easy
to do a machine-checked termination proof for the type-checker (except when it’s impossible,
see discussion below).

Easy. A totality proof in Twelf involves both case analysis (proving each case, making
sure all cases are covered) and induction. One must prove each case by hand (which can be
quite tedious), but Twelf automatically does the case analysis (and explains explicitly which
cases are not covered, so that one can then prove these cases and try again). Twelf also does
the induction analysis (and explains where well-founded induction fails) with a great deal
of automation.

Easy except when impossible. One weakness of Twelf is that well-founded induction
must (almost) always be by syntactic subterms, and some other useful orderings cannot be
expressed at all. As we will discuss later, an alternate formulation of our type-checker had a
termination proof with a slightly more intricate well-foundedness argument, but this proof
could not be expressed in Twelf.

Difficult. Since 1994 [I3] we officially live in the era of syntactic, proof-theoretical sound-
ness proofs upon structured operational semantics. The reality is that authors often use
semantic reasoning (“I' is a mapping”) when it’s convenient. Twelf forces a completely
proof-theoretic style, so that semantic notations must be encoded as proof-theoretic argu-
ments.

In many cases, proofs about SOS and rule-based type systems are extremely natural by
structural induction over derivations. But not always: sometimes, proof-theoretic induction

a low-level assembly language after register allocation; but it part it was to avoid the need for “users” of
the list-machine benchmark to become experts on binders. Twelf has sophisticated features for inductive
reasoning about HOAS, which can be effective in the hands of expert MM users; in the hands of mere expert
programming-languages researchers, they can be troublesome. This was apparent in the discussion on the
POPLmark list following Weirich’s post of 17 August 2005.
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is not entirely natural and it takes some experience to learn how to do it. As an example,
consider the following three definitions of environment-subtyping:

I Cenv 2 = Yo.v€domTy = (ve€domly A Ti(v) CTa(v)).

Predicate logic. This definition is very natural, for one used to thinking in pred-
icate logic, that is, in “mathematics.” It quantifies over an infinite number of
variables v, and we don’t even have to think too hard about whether the infinity
is countable or not—we know how to reason about quantification.

a1 Fl(’U) =7 T cr Fl Cenv F2 as
I Cenv {} I'n cv:r, Iy

Pseudoinductive. This one looks like an inductive specification for which stan-
dard proof-theoretic techniques (structural induction) will be able to prove the
obvious properties (transitivity, reflexivity). The induction is (supposedly) over
the size of the term to the right of the C.,, symbol. However, this definition
is not sufficiently inductive for useful properties to be provable (the first author
gave up after two days). The problem appears to be that I'; does not decrease
in rule as.

b i=@w:7, T) 7C7 T Cenv 2
T Cenv {} ! F1 Cenv VT, F2 2

Inductive This definition is properly inductive, since we use I instead of I'; in
the premise of rule b;. The obvious properties are provable without too much
fuss. The difficulty is to avoid writing the pseudoinductive definition.

Difficult. Twelf does not have parametric polymorphism at the level of types. Effectively
this means that once one defines a proof-theoretic setup to reason about I' as a mapping,
one must copy the whole thing to reason about II as a mapping, then copy it again to reason
about r and p as mappings.

Difficult. The proofs in Twelf metalogic are surprisingly long. Each case of the proof must
be written out as a (Prolog-style) transformation on derivations; a typical case takes 5 to
20 lines to write down, and there are often a dozen cases in one lemma. Twelf is reasonably
informative about explaining what cases are missing, and it’s quite good at handling the
structural induction (termination) argument automatically, but it does not write the cases
for you. The soundness proof for |=p,o¢ p : II took more than 2000 lines of Twelf.
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Easy? Supplying the case analysis automatically will be the job of the Twelf metatheorem
prover. Unfortunately, it appears that the metatheorem prover does not work; the Twelf
manual says, “The theorem proving component of Twelf is in an even more experimental
stage and currently under active development.” [I0] and every version of the manual since
1998 contains this identical sentence. One doubts whether the last two words are accurate.

Easy? Twelf has an amazing economy of features. One does not have to learn how to use
large libraries of lemmas and tactics, because there are no libraries of lemmas and tactics:
but such libraries would not be so useful, with the absence of polymorphism. One does not
have to learn a module system—because there is none—one just uses naming conventions
on all one’s identifiers. All proofs are done with the simple mechanism of proving the
totality of metaprograms. There’s a calculated gamble here: In return for the benefit of
proving everying in one simple style, and rarely having to translate between abtractions,
one trades away many things: there are some theorems that this notation cannot even
express (because the quantifiers are nested too deep, for example); there are some theorems
that the notation can express but the system is too weak to prove (nontrivial metrics for
wellfounded induction); and there are some things that are provable but in a contrived way
(expressing semantic properties only with inductive syntactic constructors).

13 A proof in Coq

The Coq system [B, ] is a proof assistant based on the Calculus of Inductive Constructions.
This logic is a variant of type theory, following the “propositions-as-types, proofs-as-terms”
paradigm, enriched with built-in support for inductive and coinductive definitions of predi-
cates and data types.

From a user’s perspective, Coq offers a rich specification language to define problems
and state theorems about them. This language includes (1) constructive logic with all the
usual connectives and quantifiers; (2) inductive definitions via inference rules and axioms (as
in Twelf’s meta-logic); (3) a pure functional programming language with pattern-matching
and structural recursion (in the style of ML or Haskell).

Proofs can be given directly as proof terms (expressions of the functional language that
inhabit the proposition, viewed as a type), but this is impractical except for the simplest
proofs. In practice, proofs are developed interactively using tactics that build incrementally
the proof term behind the scene. These tactics range from the trivial (intro, which adds a M-
abstraction to the proof term) to rather complex decision procedures (omega for Presburger
arithmetic; congruence for equational reasoning).

An original feature of Coq is that executable Caml code can be automatically extracted
from functional specifications. This provides an efficient execution path for programs written
and proved correct in Coq.
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13.1 The specification

We now outline how the informal specification for the list-machine benchmark was expressed
in Coq.

Mappings The first thing we noticed is that this specification, like many others related
to programs and programming languages, cries for finite mappings (functions with finite
support from one type to another). We used the following presentation of finite mappings,
taken from an earlier project:

Parameter map: Set -> Set.

Parameter empty: forall (A: Set), map A.

Parameter get: forall (A: Set), map A -> positive -> option A.
Parameter set: forall (A: Set), map A -> positive -> A -> map A.

Axiom get_empty:

forall (A: Set) (n: positive), get A (empty A) i = None.
Axiom get_set_same:

forall (A: Set) (n: positive) (m: map A) (x: A),

get A (set Amn x) n = Some x.
Axiom get_set_other:

forall (A: Set) (nl n2: positive) (m: map A) (x: A),

nl <> n2 -> get A (set A m nl x) n2 = get A m n2.

Notation "a # b" := (get _ a b) (at level 1).
Notation "a # b <- c" := (set _ a b c) (at level 1, b at next level).

The type positive used as index into mappings is the type of positive natural numbers in
base-2 representation defined in the Coq standard library. These axioms and parameters
were later realized (also by reusing an earlier development) by an implementation that
represents mappings as radix-2 search trees. An additional operation over mapping was
added to the signature: parallel traversal of two maps.

Parameter map_forall2:
forall (A B: Set), (A -> option A -> bool) -> map A -> map A -> bool.
Axiom map_forall2_correct:
forall (A B: Set) (pred: A -> option B -> bool) (ml: map A) (m2: map B)
(i: positive) (x: A),
map_forall2 A B pred ml m2 = true -> ml#i = Some x ->
pred x m2#i = true.
Axiom map_forall2_complete:
forall (A B: Set) (pred: A -> option A -> bool) (ml: map A) (m2: map B),
(forall (i: positive) (x: A), ml#i = Some x -> pred x m2#i = true) ->
map_forall2 A B pred ml m2 = true.
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Thanks to the polymorphic typing of mappings and their operations, we can use them to
represent stores (type map value), environments (type map type), and program typings
(type map environment). Registers and labels are represented by the type positive. The
predicates for lookup and update of stores (presented in section Hl) and environments (sec-
tion[Bl) are represented uniformly as equalities involving the get and set operations via their
# notations. For instance, I'(v) = 7 becomes Gamma#v = Some tau in the Coq specification,
and I'[v := 7] = T" becomes Gamma’ = Gamma#v <- tau.

Dynamic semantics The small-step and big-step semantics for the list machine are spec-
ified in relational style, as inductive predicates, closely following the informal specifications.
The following excerpt should give the flavor:

Inductive step: program -> store -> instr -> store -> instr -> Prop :=
| step_seq: forall p r il i2 i3,

step p r ((i1 :: i2) :: i3) r (i1 :: i2 :: 1i3)

| step_fetch_field 0: forall p r vl v2 i a0 al r?,
r#vl = Some (value_cons a0 al) ->
r’ = r#v2 <- a0 ->

The action of looking up a label in a program, presented as a relation p(l) = ¢ in the informal
specification, could have been expressed in Coq as an inductive predicate. However, we
preferred to express it as a lookup function:

Fixpoint program_lookup (p: program) (1l: label)
{struct p} : option instr :=
match p with
| prog_end => None
| prog_block 1’ i p’ =>
if label_eq 1’ 1 then Some i else program_lookup p’ 1
end.

The type system The typing rules are also specified as inductive predicates, following
very closely the informal specifications. For example:

Inductive check_instr: program_typing -> env -> instr -> env -> Prop :=
| check_instr_branch_list: forall pt e v 1 t el,
e#tv = Some (ty_list t) ->
pt#l = Some el ->
env_sub (e#v <- ty_nil) el ->
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check_instr pt e (instr_branch_if_nil v 1) (e#v <- (ty_listcons t))

The subtyping relation is also defined by an inductive predicate, but for the least upper
bound operation, it was more convenient to use a recursive function that proceeds by pattern-
matching on the two types. The env_sub predicate for environment subtyping is defined by
the following logic formula:

Definition env_sub (vtl vt2: env) : Prop :=
forall v t2,
vt2#v = Some t2 -> exists tl, vtil#v = Some t1 /\ subtype tl t2.

This illustrates that Coq specifications are not necessarily computable. In particular, they
can involve quantifications over infinite sets.

The type-checking algorithm Coq specifications (terms of sort Prop) are not algo-
rithms, in general. The proper way to describe an algorithm in Coq is as a function defini-
tion. If the algorithm is a decision procedure for a property (here, “is this program well-typed
with respect to this program typing?”), the function returns a boolean (true or false) —
not to be confused with the truth values True and False of the logic. The type-checking
algorithm is therefore described by the following functions:

Fixpoint check_subtype (t1 t2: ty) {struct t1} : bool := ...
Definition check_env_sub (el e2: env) : bool :=
map_forall2 ty ty ... e2 el.
Definition typecheck_branch
(pt: program_typing) (vt: env) (1l: label): bool := ...
Fixpoint typecheck_instr (pt: program_typing) (e: env) (i: instr)
{struct i}: option env := ...
Fixpoint typecheck_block (pt: program_typing) (e: env) (i: instr)
{struct i}: bool := ...
Fixpoint typecheck_blocks (pt: program_typing) (p: program)
{struct p}: bool := ...
Definition typecheck_program
(pt: program_typing) (p: program) : bool := ...

(The struct annotations on recursive function definitions indicate the argument over which
the structural recursion proceeds.) The function definitions follow closely the pseudo-code
given in section B2 but use booleans and option types to represent failures in a purely
functional style.

13.2 Simulating execution and typing

Tasks 2 and 5 of the challenge ask to simulate the execution and typing of a sample program
using only the specifications of the operational semantics and the type system. After several
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unsuccessful attempts, we were able to coerce the Coq proof search facility into simulating
executions, as follows. We first populate a so-called “hint database”, that we name exec,
with the following theorems and tactics:

Hint Resolve step_seq step_fetch_field_ 0 step_fetch_field_1
step_cons step_branch_not_taken step_branch_taken
step_jump run_halt run_step run_prog_intro: exec.

Hint Extern 1 (_ = _) => (simpl; reflexivity) : exec.

The Hint Resolve declaration tells Coq to try and apply the given theorems (which are the
inference rules for the step, run and run_prog inductive predicates) when the current goal
matches the conclusion of one of those theorems. The Hint Extern declaration tells Coq to
try a proof by simplification and syntactic equality when the goal is an equality. Armed with
this hint database, we can state that the sample program should execute, which becomes a
proof goal, and use the proof search facility eauto:

Lemma run_prog_psample: run_prog psample.
Proof.

unfold psample; eauto 50 with exec.
Qed.

(The 50 argument is the maximal depth for proof search. We can put a high value here
because search trees for the exec hint database have essentially no branching.) The eauto
tactic succeeds in proving the goal, taking about 0.2 s on a 3 GHz Pentium 4 machine. The
sample program therefore evaluates safely.

This approach to simulating executions is not fully satisfactory for several reasons, how-
ever.

e The eauto tactic provides zero feedback when it fails to prove the goal. Significant
trial and error is needed to find the right hints to put in the database. Coq does not
provide a variant of eauto that would leave as subgoals the parts of the proof that it
did not find. (This would at least provide feedback on the missing hints.)

e Even when eauto succeeds, it is difficult to know what proof derivation it constructed.
The user can do info eauto to print a proof script indicating what theorems were
applied at each step, but such proof scripts are hard to read.

e The form of unification (between goals and conclusions of theorems) performed by
eauto is weak and does not expand definitions of names, in particular. This results in
mysterious failures if the theorems are not written exactly as the tactic expects them.
For instance, our initial definition of the step rules had updates over mappings in the
conclusions of the rules, as in

| step_fetch_field_0: forall p r vl v2 i a0 al,
r#vl = Some (value_cons a0 al) ->

step p r (instr_fetch_field vl1 0 v2 :: i) (r#v2 <- a0) i
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Written this way, the r#v2 <- a0 expression in the conclusion has type map value
instead of the equivalent store. Therefore, eauto refuses to unify r#v2 <- a0 with
a logical variable of type store. We had to reformulate the rule with an additional
equality hypothesis, as shown below, to enable eauto to work.

| step_fetch_field_0: forall p r vl v2 i a0 al r?,
r#vl = Some (value_cons a0 al) ->
r’ = r#v2 <- a0 ->

step p r (instr_fetch_field vl 0 v2 :: i) r’ i

On task 5 (typing the sample program), the eauto approach to simulation fails be-
cause there are subgoals of the form env_sub el e2 that cannot be proved automatically:
they involve infinite quantification over all variables. Appropriate lemmas and tactics over
env_sub could possibly be developed and added as hints for eauto, but we did not pursue
this approach.

13.3 The proofs

The proof of type soundness follows closely the outline given in section @l The use of map-
pings to represent environments frees us from the obligation of asserting and proving well-
formedness properties over environments and program typings: these are always well-formed
by construction. The “good variable” properties of mappings (theorems get_set_same and
get_set_other) are also very effective, enabling much more abstract reasoning and much
more proof reuse than in the Twelf proof.

The proofs of the intermediate lemmas are straightforward structural inductions, either
on the structure of a type or on a derivation of an inductively defined predicate given as
assumption. While the inductions must be given explicitly to Coq (and sometimes this
requires shuffling V quantifiers and hypothesis in the statement of the lemma to put it in the
form expected by the induction tactics), the remainder of the proofs (deriving the conclusion
from the induction hypotheses) can be automated to a large extent using the eauto tactic
described earlier. By simply adding all inference rules for execution and typing as hints for
eauto, we were able to automate many of the proofs. This stands in sharp contrast with
the Twelf proof, where inductions are discovered largely automatically by the termination
checker, but the “plumbing” part of the proofs (deriving the conclusions from the hypotheses)
must be given very explicitly as logic programs.

For extra credit, we used Coq’s support for coinduction to specify and prove type safety
in an alternate way. We define the following coinductive predicate:

CoInductive run_safely: program -> store -> instr -> Prop :=
| run_safely_halt: forall p s,
run_safely p s instr_halt
| run_safely_step: forall p s i s’ i’,
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step p s i s’ i’ -> run_safely p s’ i’ ->
run_safely p s i.

Intuitively, run_safely p s i means that the program p, started in state s and i, executes
for a finite or infinite number of steps without ever getting stuck. We then prove the following
type safety theorem using Coq’s coinduction:

Theorem safety_coinductive:
forall p pt, check_program pt p -> run_prog_safely p.

Leroy [8] provides background and more details on this class of uses of coinduction in oper-
ational semantics.

Turning to the type-checking algorithm, we proved the following theorem showing that
it is correct with respect to the specification of the type system:

Theorem typecheck_program_correct:
forall pt p, typecheck_program pt p = true -> check_program pt p.

The proof uses a number of supporting lemmas for the other typecheck functions, of the
general form “if the function does not fail (and returns a result), then the corresponding
predicate in the specification holds”. The proofs are straightforward but somewhat boring
arguments by case analysis on the execution of the typecheck functions.

For extra credit again, we also proved the completeness of the type-checking algorithm
with respect to the type system:

Lemma typecheck_program_complete:
forall pt p, check_program pt p -> typecheck_program pt p = true.

The proofs are slightly simpler than the proofs for correctness.

13.4 What’s easy and what’s difficult in Coq?

Difficult. The only difficult part of the challenge were tasks 2 and 5: simulating the
execution and the typing of the sample program using only the specifications. Generally
speaking, Coq does not offer an effective path for execution of inductive specifications. (We
are aware of ongoing work in this direction by Catherine Dubois, but it is not yet available
for general use.) The tricks described in section worked for task 2, but it is likely that
they do not scale up to more complex specifications.

Easy. Everything else in the challenge was very easy. It took Leroy about one day to
translate the specifications in Coq and to do the proofs. The specifications changed several
times afterwards, but adapting the Coq development never took more than one hour each
time.

RR n° 5914



36 Andrew W. Appel, Xavier Leroy

14 Conclusion

Proofs of semantic properties of operational specifications can be agressively “semantic,’
meaning that they avoid all proof-theoretic induction over syntax; denotational-semantic
approaches and logical-relations models have this flavor. We have not discussed these ap-
proaches in this paper, but they can be successfully mechanized in Coq, in Isabelle/HOL,
or in an object logic embedded in Twelf; however, it does not seem natural to mechanize
semantic proofs in Twelf metatheory.

Or the proofs can be agressively “syntactic,” meaning that only proof-theoretic induction
is used, and we avoid any attribution of “meaning” to the operators; the Wright-Felleisen
notation [I3] encourages this approach. Coq and Isabelle support this style, among others;
Twelf metatheory supports only this pure proof-theoretic style. The advantages to using a
pure style are that the metatheory itself can be much smaller and simpler—making it easier
to learn and easier to reason about. Indeed, Twelf is a much simpler and smaller system
than Coq.

Between these two extremes, it is possible to reason using a mix of semantic and syntactic
reasoning. Authors who believe they are writing in a purely Wright-Felleisen style are often
reasoning semantically about such things as environments and mappings. The Coq system
supports the mixed style (or either of the two extremes) reasonably well. Therefore, it
may be the case that specifications expressed in Coq are closer to what one would write
in a research paper. Coq proofs can be substantially shorter than Twelf proofs, especially
when experienced experts are manipulating the language of tactics. Therefore Coq may be
a language of choice for those who do not want to commit in advance to a purely proof-
theoretic style.

However, our benchmark does not exercise one of the main strengths of the Twelf system,
the higher-order abstract syntax and related proof mechanisms. For syntactic theories that
use binders and «fn-conversion, the comparison might come out differently.
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A Summary of notation

In order to better compare different solutions to the benchmark, solutions should use com-
mon notation where possible. This table shows the recommended ASCII representations.
The underscore _ or hyphen - may be used to separate words, depending on what the MM
permits.

In some cases we show two ASCII representations. In most cases this is because our Twelf
solution uses a syntactic relational style in a case where the Coq solution uses a semantic
functional style, and no identical common notation is possible.

Notation ASCII representation page
A value
nil value-nil
cons(ay, as) value-cons al a2
Vv var
Vi var#n or Vn
R store
rlv — al store-bind var or r#v<-a
{} empty-store
r(v) =a var-lookupr va or r#v = Some a
rlv:i=al =1 var-set r var  or r#v<-a=r1’
L label
L, label#n or Ln
I instr

jump [ instr-jump 1

branch-if-nil v [
fetch-field v i v’

instr-branch-if-nil v 1
instr-fetch-field v i v/

EEOEEEHE

cons vy U1 instr-cons v0 v1

halt instr-halt

Lo ; L1 i0 ,instr il

P block emphand/or program

end prog-end i

lig p def-label 1 i ,block p

or prog-blocklip

p(l) =1 program-lookup p 1 i
or program-lookup p 1 = Some i

(r,0) & (1, 0) stepprir i @

(p,r,0) runpri @

p run-prog p 1]

step-or-halt(p,r,¢) step-or-halt p ri
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PT
I

program-typing
program-typing-empty

Notation ASCII representation page
T ty
nil ty-nil
list 7 ty-list t
listcons 7 ty-listcons t
E env
{} env-empty R
viT, T var-has-type vt g or g#v<-t
Fv)=r g#v = Some t
F=(:7, I) env-lookupgvtg 3
[v:=7]=1" envsetgvtg or g#v<-t=g¢
Fenv I env-ok g
Trcr subtype t t’
T Ty =173 lub t1 t2t3  or lubtl t2 =13

[:T, 11

IL T Fplock ¢
II Fblocks r

IIxap

Ty

Fprog P : 11

Forog P : 11

p_sample
II_sample

block-has-type 1 g pi
check-block pi g i
check-blocks pi g
typing-dom-match pi p
env(

check-program p pi
fast-check-program p pi
or typecheck-program p pi = true

or pi#l-g

sample-prog
sample-ty

HE HEBBBB
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