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Estimation de champs de déplacements multi-valués
pour les mouvements transparents
avec une approche variationnelle

Résumé : La majorité des algorithmes pour le flot optique permettent d’obtenir une estima-
tion d’un mouvement unique en chaque position. Peu d’approches permettent en revanche
d’estimer plusieurs vitesses en une méme position, ce qui se produit quand des couches
transparentes se déplacent de maniére indépendantes. Nous introduisons dans ce rapport
un nouveau cadre pour modéliser des champs de vecteurs multivalués, et nous proposons
une formulation énergétique comportant des termes de régularité et de compétition entre les
différentes vitesses. Les performances de cette approche sont évaluées sur un ensemble de
séquences synthétiques et réelles.

Mots-clés : variational approaches, transparent motion, multi-valued motion fields, model
competition



Multi- Valued Motion Estimation 3

1 Introduction

There exists a very wide literature on apparent motion estimation, also called optical flow.
Such a craze for optical flow is notably due by the number of applications that require some
motion estimation to perform their tasks. We refer the reader to [24, 12, [T, B] for some
reviews on this topic. Although less models are proposed concerning multiple motions, it
is our conviction that considering more complex stimuli will also bring some new solutions
and ideas for simple optical flow estimation.

In this paper we propose a framework based on a finite sampling of the space of velocities.
Having chosen a finite set of admissible velocities, our goal is to recover a coherent spatio-
temporal field that encodes at each location the presence of one or more velocities from our
sample set. To recover such a field, we start with local velocity measurements, and then
we minimize an energy function that encodes our prior knowledge about the optical flow
smoothness and the expected number of motions (relatively small, says one or two) at a
particular site of the image.

The paper is organized as follows. Section B reviews and comments on some related
works on multiple motion estimations. Then Section Bl describes the proposed framework
and related notations are introduced. Section H states a discrete variational model to han-
dle multiple motions, and the role of each term in the resulting energy is discussed. The
performance of the approach is illustrated in Section Bl on synthetic, synthesized realistic
and real sequences. We conclude and present furture work in Section Bl

2 Related Work On Multiple Motion Estimation for Trans-
parent Sequences

Motion estimation methods rely on a form for data conservation along motion trajectories
and some spatial or spatiotemporal regularity. Regularity in that context corresponds to
some local smoothness assumption of the motion field. The most elementary form of data
conservation and probably the most used is the Lambertian assumption, or brightness con-
stancy, which states that intensities remain constant. Given a sequence f(x,t) = f(x1, 22, t),
then the conservation can be stated as the Displayed Frame Difference Equation (DFD)

fx—u,t+1)= f(x,t). (1)

or the linearization of it, the Optical Flow Constraint Equation (OFC)

U
(v 1+ 57 ) Fur) = (VS0 ) =0 ®

where Vf = (fu,, fon, ft)T and (u!,u?) are the spatial components of the velocity vector
u. The gradient V f provides an affine constraint on the velocity space and is sometimes
refereed to as a “motion constraint vector.”
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4 Ramirez-Manzanares, Rivera, Kornprobst & Lauze

Although widely used, this model has a well known limited validity, intensities do not
always remain constant due to, among others, changing lightning conditions, specularities
and clearly it cannot cope with multiple motions, especially in the case of transparency.

Transparency can be modeled as a superposition of moving layers, a linear superposition
meaning addition of layer intensities, or a generalized one [23] where intensity addition is
replaced by an operation with similar formal algebraic properties such as multiplication in
reflection. A simple superposition model was introduced by Burt et al. in [4] for the case
of two motions. The observed image sequence f is assumed to come from the combination
f = P1® P» of two moving patterns P; and P, with respective motions u; and us, such that
brightness constancy hold for each (P;, u;):

Pi(x — u;, t + 1) = Pi(x,t)
or

1
U
(VPi(x,t)" [u2 | =0.

[

In the mere case of linear superposition, i.e. when the combination operation & is just a
pixelwise addition f = P, + P», then one gets

fx—ut—1)— f(x,t) = Pj(x —ui, t — 1) — Pj(x,t) =: Dj(x,1) (3)

where (i,7) = (1,2) or (2,1) and the displaced frame difference is non zeros, but one of the
patterns has been eliminated. In the case that the motion of each pattern P; is constant on
at least three frames at times ¢t —2,¢ — 2 and ¢ then the “difference pattern” D; satisfies the
DFD e Dj(x —u;,t —1) — Dj(x,¢) = 0 and assuming that w; is known, u; can be computed
by a single motion estimation technique. Burt et al. then derive from this fact a three
frames algorithm for estimating w; and us. They start, in a multiresolution setting, with
a coarse estimate of u; (for instance), and use a single motion algorithm on the resulting
difference pattern D5 in order to compute an estimate of uy. This estimate is then used to
form the difference pattern D, and get a new estimate of u; from it. This process is iterated
until convergence.

A more thorough study and extension of this idea is proposed in a subsequent paper
[9], where a frequency domain interpretation, including multiresolution pyramid effects, is
provided. In particular a “dominant velocity extraction” mechanism is explained, and the
latter is used by Irani and Peleg in [14] (see also [15]).

Starting from the linear superposition principle, Shizawa and Mase explore in a series
of papers [29, B0, BI] a frequency domain, total least squares formulation of the multiple
motion problems. They start from the single motion case, the OFC constraint equation (2
is replaced by the spatiotemporal linear homogeneous one

ul

(Vi) w2 ] =0, @=@"u®u’)#£0 (4)

u3

INRIA



Multi- Valued Motion Estimation 5

or his frequency domain counterpart
@Twf(w)=0

where w = (w1, we,w3) are the spatial and temporal frequencies and f is the Fourier trans-
form of f ( the 27\/—1 multiplicative constant has been dropped). In that case, assuming
constant motion, the best @ can be retrieved as the minimizer of the energy

ot (fwwt|f(w)2|dw) 0l
7 [ f(w)2dw

Esingle U) =

This is a total least squares problem whose solution is given as the (an) eigenvector corre-
sponding to the smallest eigenvalue of the 3 x 3 symmetric, positive (semi-)definite matrix

A= /wwt|f(w)2|dw

which is a Structure Tensor (see [I1}, Bl B6] for instance). For the recovery of n motions
at a given location, the linear, first order, constraint (@) is replaced by a n-th order, n-th
multilinear one obtained by “cascading” the linear first order ones. For example, in the two
motions case, the pair (u,u32) would be a zero of the bilinear symmetric map

(01,03) — 03" H(f)vi =0 (5)

where H is the spatiotemporal Hessian operator. Multilinear maps can be factored through
linear ones using the Tensor Product construction, and this leads them to a two stages
formulation of the multiple motion recovery as: first a total least squares computation on
the n-th tensor power of the velocity space, which singles out one element (in fact a line)
of that space, and secondly a decomposition of this element into a tensor product of n
velocities. A closed-form formula for that decomposition is provided in the case n = 2,
but becomes rapidly more complicated for higher orders. Very recently, Mota et al. have
extended these ideas in [2T] and Miihlich and Aach have proposed an algebraic framework
based on homogeneous parts of symmetric algebras in [22].

The very algebraic nature of the motion constraint in frequency domain has lead Vernon
to propose in [B5)] an algorithm for the decoupling of moving patterns, for both transparency
and occlusion models. An algorithm for the specific problem of reflections is proposed by
Zou and Kambhamettu in [38].

The non homogeneous form (with uf = 1) of equation ) provides the 2-folds optical
flow constraint equation as introduced by Shizawa and Mase in [30]:
0 0 0 0 0 0
1 2 1 2
(“1 orr M omy T 8t> (“2 oy " 20w, T 815) fxt) (©)

This form is used by Liu et al. in [T9] with Hermite polynomial based differentiation filters
and specific checks for the presence of single or multiple motions. Darell and Simoncelly
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6 Ramirez-Manzanares, Rivera, Kornprobst & Lauze

“dualize” this constraint in [I0] in order to construct some Fourier “donuts” used to respond
to one or more velocities. The 2-folds optical flow constraint is used in the present work, in
order to build local multiple motions “probes”.

The nonlinear form of this constraint then provides what one may call the 2-folds dis-
placed frame difference equation, and also used in this present work,

FOCH 1+, t+2) — f(x+ai,t+1) = f(x+h,t+1) + f(x,t+2) =0 (7)

It can be extended to more than two motions and has been used as starting point by several
authors. For instance, Stuke et al. use it in [32] to derive a block-matching approach
to the multiple motion problem. In their subsequent work [33], the authors regularized
spatially the block matching solution by promoting smooth solutions with a Markov Random
Field (MRF) framework, improving the noise robustness of the method. However, finding
a solution results in a computationally heavy minimization (because of the use of a field of
binary indicator variables) and complex (due to a statistical confidence test used to discern
the number of motions at each pixel).

Starting with equation (@), Pingault et al. in [25] perform a N-th order Taylor expansion
around velocity values. A multi-resolution non linear least squares estimation is performed,
using a Levenberg-Marquardt algorithm. Recently, Auvray et al. proposed in [2] an algo-
rithm based on equation (). The method is also multi-resolution, uses a simplex algorithm
for its initialization and adds a postprocessing step, especially efficient when the two veloc-
ities are “close”.

The approaches described above are based on a single higher order constraint designed to
“react” to multiple motions. In the other hand, a series of methods have been developed by
incorporating several single, low order, motion constraints. When dealing with transparency,
they all use an essentially unmentioned idea of a local dominance of one of the layers in some
spatiotemporal neighborhood of the image sequence. These local dominances are scattered
in the image plane/volume and are associated with different layers at different positions.
We will now describe a few of these approaches.

In the robust statistics approach of Black and Anandan [6], the transparency is treated
through a segmentation approach. The image plane is assumed to be partitioned into regions,
each but one corresponding to a parametric motion model u = u(a), a being the parameter
vector for the region. This is done by iteratively estimating on a region O; a dominant motion
u(a;), the inlier pixel region R; for that motion and the outlier region O,y; = O; — R;,
providing, after n iterations the decomposition

RiURU... R, UQO,

where R; moves with velocity u(a;), i = 1...n and O,, is the final outlier region. In their
paper, they apply the strategy to a image pair (I1, I3) with n = 2. The motion parameters
a1 and as are then assumed to represent the motion of two layers that cover the entire image

INRIA



Multi- Valued Motion Estimation 7

plane. These layers are recovered by a nulling process

L2 = IQ(X — u(al)) — Il
L1 = IQ(X — u(ag)) — Il.

The authors describe the process as a “no-model” one (with respect to transparency) and
as a limited one. It is however clear that authors assume that transparency is due to
superposition of moving patterns, through the ways these patterns are recovered, via a
nulling process similar to the one of [4].

Mixture models for multiple motion computation have been introduced by Jepson and
Black in |16, [T7]. A parametric layered flow model is considered. One assumes that the
motion can be explained by up to N parametric motion fields with parameter vectors @,,.
As input, one uses motion vector constraints as mention above, and the probability of
observing constraint ¢, at location r, assuming velocity layer n is given by p,(¢.|r,d,). In
order to take outlier measurements into account, a model for it is added in a “zero-th layer”
po(C.). Assume then that each layer is given the probability «; of being selected (including
i = 0 and thus requesting that Zij\io a; = 1), then one can write the mixture model for a
constraint ¢y

N
P @lr, (@)im1..n, (i)izo ) = D ipi(@elr, @)
i=0

The problem is then to compute the best mixture and motion parameters («;,a;);. This is
usually done using EM-like algorithms.

Ju, Black et al [18] proposed the “Skin and Bones” model, in which multi-layered affine
models are defined on small rectangular patches of the image (bones), then an ownership
field defines the likelihood that each pixel comes from a particular layer. The goal is to
solve for the affine model parameters and the ownership field. This is done within a robust
estimation framework using an EM-algorithm. An inter-patch regularization (skin) term
introduces a regularization effect in the model parameters estimation. Another layered rep-
resentation is proposed by Black et al. in [7]. In that approach, they consider that multiple
motions may appear due to occlusions and limited forms of transparency. The method intro-
duces models for illumination changes and specular reflections, and allows one to eliminate
them, improving the computation of the optical flow of the scene. In this formulation, a
set of membership weights are computed in order to indicate which layer is more likely to
belong to a region. Although the method captures the changes in illumination, it does not
allow to compute the optical flow of moving transparencies. Weiss and Adelson [37] and
recently Rivera et al. [27] proposed EM-based approaches for computing different layered
motion models in an image sequence and its segmentation based on these models. They use
as prior knowledge the smooth feature of the velocities. The solution in such cases is given
by a field of probabilities measures that indicates layers ownership. Last methods produce
pixel-wise unimodal solutions (single motions) because of the use of a distance measure for
single motions as well as their entropy controls.

RR n° 5920



8 Ramirez-Manzanares, Rivera, Kornprobst & Lauze

This section has focused on optical flow recovery and does not include some of the related
questions, and the especially important one of layer recovery, at the exception of [35, 38]. We
mention here the work of Toro et al. [34] where the knowlegde of motion is fundamental, as
opposed to to work of Sarel and Irani [28], where such a separation is performed by optimizing
some correlation measures. Also non mentioned here are the perceptual /neurophysiological
aspects of transparency.

3 Problem Statement: From Local to Global

Let us assume that we have an estimation of the likelihood of a set of velocities at each spatio-
temporal position. Our goal is to propose an approach which integrate this local velocity
information in order to get a more global and robust velocity information. This integration
is necessary for dealing with complex motions (such as transparent motion sequences) and
with the noise, as we will see in the sequel.

First, let is define a finite sampling of the velocity space, i.e. we consider N vectors

{ul,. ..711,]\/'}7

describing the set of possible velocities (such a predefined finite sampling of the velocity
space is inspired in the human visual cortex where the different cells are tuned to a specific
velocity).

Given a gray-scale image sequence [ : (z,t) € Q x [0,7] — R, the input is set of
functions d(f,r,u;) € RT|;=1.. N, where r = (x,t) stands for the spatio-temporal coordinates,
describing at each position if the velocity u; is likely, at a local scale, at the position . We
show in Figure [l an illustration of a the velocity space representation and we refer to Section
B for the estimation of d(f,r,u;).

|.U.

0.0

Figure 1: Example of a velocity space composed by 33 velocity vectors, speci-
fied through their magnitudes and orientations, respectively {0,1,2,3,4} pixels and

{0,2,Z, 37,7, 2, 2n, In} radians. The color indicates the likelihood of each velocity.

The goal is to compute the velocities (one or more) at each spatio-temporal position
r. For this, we will associate to each possible motion w; a variable «;(r) which indicates if

INRIA



Multi- Valued Motion Estimation 9

such a model is present or not in r. In order to obtain a robust solution, we perform an
integration process over the local information provided by d and introduce prior constrains
about the possible number of simultaneous motions in 7. This will be explained in next
subsections.

3.1 Computing Local Velocity Information

We first introduce here the general mechanism we have used in order to select the local
velocity descriptors from multiple motion operators. We assume that we are given a family
of such operators

M= {M® (u;,, ... u,), k=1,...N, i1 <---<ip}

where M) (u;,, ..., u;, ) f(r) ~ 0 if the velocity vectors u;,,...,u;, explain the motion of
the image sequence f at the r position. In the case we concern here £ = 1,2. For each
vector u; in the base of velocities , we consider the subset M,,, of all the operators involving
u; and define

1
d(f.roui) = min M), ®)

where ||M f(s)||3y, denotes the sum of the L2-norm of M f(s) for all s in the 3 x 3 spatial
window center at r.

When dealing with one motion (k = 1), two well known filters satisfy these requirements,
the non-linear correlation:

de
Mg (i) f ) < fat) = fla =iyt = 1), 9)
and its differential counterpart

1 def 0 0 0
Mé)(ui)f(xla xa,t) = (1141'18—561 + Uiza—m + g) f(z1,29,1).
Shizawa and Mase proposed in [31] to build multiple motion operators for velocities vy, . .., vy
as
M®) vy, .. o) = MY (01) ... MY (ug)

) ok
where products of the form I5 oy are expanded as 5207 -

)

On the other hand, cascading instead the nonlinear correlation filters MC(1 provides the

operator M, S(k), for instance for k£ = 2 we have

M§2)(vl,v2)f(z,t) = f(y’T)_f(y_vlvT_ 1)—f(y—v2,7'— 1)+f(y—U1 — U2, T — 2)a

that corresponds to distance reported in Stuke et al. [32].
The local measurements d(f, 7, u;) used in this work have been derived from Mg), Mc(l),

Ms(fyz and Ms(z), and we, therefore, place us in the additive framework model of [4].

RR n° 5920



10 Ramirez-Manzanares, Rivera, Kornprobst & Lauze

3.2 Objective: Motion Detection Variables

Based on the previous discussion, we define the problem unknowns as the vector valued field
« such that a vector in the r position is

a(r) = (a1(r),...,an(r)), ai(r)€[0,1] Vr e Q x[0,T],

therefore «; (1) can be interpreted as the probability of observe the velocity u; at the position
r. Note that although the entries of a(r) are probabilities, «(r) is not a probability measure
(as in [B7, 27]) in the sense that it is not constrained to sum one. This is, if two motions
u; and u; are present at a particular pixel position, r, then we expect that both associated
probabilities a;(r) and «;(r) will be close to one.

In Section H, we propose an approach for computing the « vector field by means of a
variational integration process of the local information d(f,r, u;) (eqn. @&)).

4 Global Motion Integration via a Variational Approach

Let d(f,r,u;) defined as in Section Bl we look for the velocity distribution minimizing the
energy

£la) =S { S dtf o) (10

As
+5 D7 wir s)[ea(r) — as(s)]? (11)
s:sEN, @
FAe[ea(r) = Y a2(r)] } (12)
subject to a;(r) € [0, 1], Vi;
with a(r) = % >, @i(r), where cis a positive scalar, A\, and A. are some positive constants,

the weights w;(r, s) will be defined in the sequel and N, = {s:r,s€Qx[0,T],|r—s| <2}
is the spatio-temporal neighborhood of the r position.

Before going more into details, let us give a general idea on the meaning of each term.
The first term ([I0) is called the attach term since it links the input (the functions d’s) to the
unknown « (see Section ). The second term ([l), see Section B2 is a smoothing term
and its role is to integrate local to global motion estimation. The last term ([I2), see Section
B3 gives a prior that controls the number of active motion layers. The compromise between
the last term and the attach term introduces a motion model competition mechanism.

4.1 Attach Term

In order to compute the presence of the i-th model, we use an approach related with the
outlier rejection method [8] and with the EM formulation [, B7, 27, 18]. Remind that

INRIA



Multi- Valued Motion Estimation 11

function d(f,r,u;) is close to zero when the velocity u; explains correctly the motion at
position 7, and is a positive large value otherwise. Minimizing term (I with respect to
a;(r) produces «;(r) close to 0 for high d(f,r,u;) values, indicating in this way that such
a motion model is not likely at position r. Otherwise, the «;(r) is free and its value is
established by the next terms and the bound constraint.

4.2 Spatial Regularization

Term ([T allows us to integrate the local information by regularization, in order to obtain
a more global estimation. In the previous work of Stuke et al.[33] was noted the necessity
of a spatial regularization process. However, given that their approach is based on the com-
putation of categorical variables, hard (combinatorial) optimization methods are required,
for instance the computationally-expensive Gibbs Sampler algorithm.

Differently, in our approach, spatial-temporal smoothness means that we want to dimin-
ish the difference between the real valued vector «(r) and the ones «(s) in its neighborhood,
N... Given that our indicator variables are real valued, we can use differentiable potentials
with the well-known algorithmic advantages. We use the approach presented in [26] for
achieving such a regularization, i.e. a directional one. Therefore the smoothing process is
controlled by directional fixed weights,

(s — r)TL- (s—r)

4
ls =7l

w;(r, s) =

)

generated from the i tensor associated to the i*" velocity model: I; = yI; + U;U;”, where
I, is the identity matrix, v = 0.1 and U; = [u;1,us2, 1]T /||[wi1, w2, 1]|| is a homogeneous-
coordinate unitary vector. For a small v values these weights, w;(r,s), promote a strong
smoothness along the ' velocity direction, see [26]. This is illustrated in Figure Bl As
consequence piece-wise smooth optical flows are recovered and the boundaries are well-
defined along the velocity model (see results in Figure H).

Figure 2: The diffusion coefficients w;. The diffusion process is performed in the spatio-
temporal neighborhood of a given point r, according to the associated velocity u;. The
domain of influence is schematically represented by the circles. The strength of the influence
of the point r to the point s then depends on the spatio-temporal distance between r and
s, taking into account trajectories leaving r with speed u;.

RR n° 5920



12 Ramirez-Manzanares, Rivera, Kornprobst & Lauze

4.3 Intra-Model Competition

To introduce the intra-model competition prior, fundamental in our approach, we first re-
mind the expected behavior of the attach term (see Section EL)): if velocity u; explains
locally the motion at position r, then d(f,r, u;) is small and consequently the corresponding
«; value is not penalized. Since our aim is to detect multiple simultaneously motions (trans-
parent motions) and therefore we may have several o’s switched-on at a given position. Thus
we may have problems at sites where multiple spurious matches are locally detected, for ex-
ample in homogeneous regions, where d(f,r, u;) is small for many (maybe all) the velocities.
For this reason we need a mechanism for eliminating spurious models (to switch-off o’s) and
to promote the valid ones, i.e., to recover almost binary solutions. So that, our intra-model
competition term should behave similarly to entropy-control potentials (as the Shannon’s
or Gini’s used respectively in [37, 27]) in the sense of remove spurious models. Although, in
our case we need a suitable term for a no measure of probabilities and multi-modal solutions
(see subsection B2).

Thus, we use the contrast potential (IZ) that depends on the a(r) mean value and the
parameter c. The ¢ parameter is very useful for controlling the number of switched-on
models as will be explained bellow.

To understand the potential’s behavior, one can see that the first term penalizes the
number of switched-on models while the second term promotes to switch-on models and
avoids the trivial solution: zero. Therefore for a fixed mean value (controlled by the first
term) the second term prefers high contrasted solutions. It is important to note that our
potential (IZ) can be tuned such that for a given ¢ value a multimodal solution (with two or
more detected motions) has lower energy than a unimodal one or conversely. That makes an
important distinction with respect to entropy based measured that always have lower energy
for unimodal solutions [37, 27]. Additionally, our proposed potential, based on quadratic
terms, is easily differentiable and therefore simple minimization algorithms can be used, for
instance a Gauss-Seidel scheme.

5 Experiments

5.1 Algorithmic Details

Cost function £(«), defined by ([[)—(I2), is quadratic so that it can be minimized by solving

the linear system

o€ (o) .
m = 07 VZ7

with the constraint a;(r) € [0,1]. This is achieved with a Gauss—Seidel iterative scheme,

_ As ZSGNT wW; (T7 S)ai(s) — c)\cd(prev) (’I“)
aZ(T) - d(f7 T ui) + )\S ZSGN,_ ’LUi(’I", S) - )\c ’

(13)
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Multi- Valued Motion Estimation 13

that has the advantage of low memory requirements. The bound constraints on «;(r) are
enforced by projecting non-feasible values to bounds at each iteration. We noted that for
obtaining a smooth algorithm convergence, was important to keep fixed the mean of the
previous iteration, @(P"*")(r), for updating the current a(r) vector. This can be seen as an
over-relaxation strategy. We initially set «;(r) = 0.5, Vi, r.

Additionally, a Deterministic Annealing strategy in the A, parameter introduces the
intra-model competition once an approximate solution with valid representative models have
predominant o (r) values. For each iteration k = 1,2,...,n, we used )\Ek) = Acag, where A,
is the chosen contrast level and a; = 1 — 0.95(1005/7) ig 4 factor that increases to 1 in the
approximately 90% of the total number of iterations, n. This deterministic annealing process
ensures that the intra-model regularization term ([Z) is fully active only when a preliminary
solution is available. We note that the computed results are sensible to the annealing speed
of A\.: a premature increment could lead us to an incorrect solution. Nevertheless, we used
the same annealing scheduling in all our experiments.

The tuning for the spatial regularization parameter is relatively easy: the large \s value
eliminates noise but a too large value over-smooth the solution, i.e. the motion boundaries
are blurred. We found that \; € [50, 100] produced an adequate noise reduction in all the
experiments.

According to our experiments the parameter ¢ = 1 performs well for most noise-free
synthetic sequences. When one is processing noise-contaminated or real sequences, several
spurious models may be present in the final solution because of false matches. So that,
the prominent models are obtained by increasing this parameter within the small interval
1 <e<A4.

One example of the used velocity basis is the one composed by 33 velocity vectors,
specified through their magnitudes and orientations, respectively {0,1,2,3,4} pixels and
{0,2,Z, 37,7, 2m, 2n, Ix} radians, see Figure B We choose it according to the present
displacements in our test sequences, but a different basis can be chosen depending on the
problem. This change does not affect significantly a previous parameter selection.

5.2 Global Coherent Motion Estimation for Non Transparent Mo-
tion Sequences
In this subsection, we experiment with non transparent motion sequences. The first example

deals with the aperture problem and motion integration, while the second illustrates the
performances of our algorithm on a real sequence.

5.2.1 Minimization Procedure Performs Motion Integration

The first experiment concerns single motion sequences and it shows how a correct global
estimation is obtained based on local velocity estimations. This integration is illustrated with
a synthetic sequence that consists of an oblique bar translating in the horizontal direction

(Figure B).
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1.0
-
A A
B
0.0

Figure 3: Translating bar example. We show the a’s evolution (small squares denote the
associated velocities) for the iteration number 1, 3, 5 and 10, for the 2 points marked in the
figure on the left. The pseudocolor scale for the range in the alpha values [0,1] is shown to
the right-hand side.

Interestingly, some psychophysics studies show how motion integration is performed in
tracking tasks. In [20] is shown that the eyes will first follow the normal direction of the
bar, according to 1D motion detectors. Then, after few milliseconds, there is a correction of
the pursuit toward the horizontal direction, once 2D cues from ending points are integrated
(That is illustrated by Figure Blregion B). These kind of experiments suggest that there is a
parallel processing between 1D and 2D motion signal with different temporal dynamics and
that some time is needed to extract from them a stable response.

FigureBlshows the evolution of the probabilities a at two given spatio-temporal location,
depending on the convergence of the energy minimization. The integration phenomenon can
be observed, so that the iterations of the optimization procedure can be interpreted as time
evolution in real experiments.

5.2.2 Non Transparent Multiple Motion Sequence.

Figure B shows an example of the computed result with our algorithm on a real sequence,
called coastguards. The background moves roughly horizontally to the left, while the
foreground object, a coastguard boat, moves roughly to the right. For comparison purposes
some results computed with standard variational approaches [I3, [I] are displayed. Figure
H (b) shows the flow corresponding to the most probable velocity at every position. The
orientation of the solution is color-coded: the color associated to a each orientation is shown
in the border of the image, for instance, a red pixel in the image indicates a motion to the
left. In this case, as expected, unimodal solutions are obtained.

INRIA
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Figure 4: Optical flow in real scene (single motion case). (a) One frame of the coastguard
sequence. Results computed with (b) our approach, (¢) Horn and Schunck method [I3] and
(d) Aubert et al. approach [I].

5.3 Global Coherent Motion Estimation for Transparent Motion
Sequences

In this subsection, we present several experiments for transparent motions. The first se-
quence used is a synthetic one, the three next ones were artificially created from real pho-
tographs while the last one is a natural sequence with transparency and occlusions..

5.3.1 Illustration of the Local Measurements.

The Figure B (a) shows a synthetic sequence with transparent motion similar to the one
used in [33]. The sequence dimensions are 54 x 54 x 16 and it is composed by a moving
background (with velocity @& = [0, —1]) and an overlapped moving transparent square (with
velocity © = [1,0]). Now we demonstrate how local measures could be highly disturbed by
noise in the acquisition process. By looking only in the distance measures, several incorrect
movements could be considered as valid candidates in each position. For instance, Figures
BE(b) and Bc) shows the present movements associated to the minimum distance value, for
the Stuke distance [32] and the Shizawa distances [31], see Section Bl The data were noise
corrupted with a Signal to Noise Ratio (SNR) equal to 30dB. As one can see, the quality of
this first approximation is poor i.e., several incorrect movements are detected and so that a
regularization process is required, which is discussed in the next paragraph.

5.3.2 Regularization of Local Measurements.

As mention above, consider the synthetic sequence shown in Figure B{a). Gaussian noise
has been added in order to evaluate the robustness of our proposal. Figures B(d)-(i) shows
the results for a frame. Note that the method can deal with a strong noise corruption,
as a SNR=10dB, and shows better performance than the approach reported in [33] (see
Figures Bj) and B(k)). Note that our method produces relatively good results even for a
extreme corrupted sequence, as the one shown in Figures Bf) and BEXi). For comparison
purposes, Figures BYj) and B{k) show the computed optical flow with the method reported
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in [33] for the fixed velocities basis defined in Section The noise-free case is shown in
Figure Bj), and the case SNR=30dB is in Figure Bl(k). In that case, a hard optimization
is performed by using the computationally expensive Gibbs Sampler algorithm. The shown
results correspond to the computed solution after 150,000 iterations (about 2.5 hours, in a
PC Pentium IV, 3.0 GHz) and represent 150 times than the computational time required by
our approach. Furthermore, we observe a bad performance of the method in [33] when the
sequences are noise corrupted [see result in Figure B(k) and compare with the one computed
with the proposed method in about 1 minute shown in Figure B1)].

We can verify that our spatial regularization, jointly with our intra-model competition,
develops well in order to separate the velocities that are present in a region. Figure
shows the evolution of the layer associated with velocity [1,0]. Note that the layer takes a
significantly large value [by growing from small values (red-yellow) to 1 (blue)] in the square
region and that the contribution of this layer is completely eliminated in the background

region.

[ =} P ]

1.0 —_ ;i.-l?"l 1"_'. - "_.
II m e
] :..l ’
- |-ﬁ

N i =
4 NG T
0.0 *u_"- ," A | t!

Iteration 1 Iteration 11 Iteration 31 Iteration 200

Figure 6: Evolution for the layer associated with velocity [1,0]. For this experiment the
sequence was strongly corrupted noise (SNR=15dB). We show the layer values in the pseudo—
color scale shown in the left. Note that the presence of the movement [1,0] in the background
is pushed to zero because the spatial regularization and the intra-model competition mech-
anism of the algorithm.

5.3.3 Realistic Texture Sequences

It is important to note that high textured sequences are relatively easy to solve using lo-
cal motion measures. The real performance of a method for transparent motion should be
evaluated in realistic textured scenes: recovering transparent motion in sequences with ho-
mogeneous regions presents difficulties because several models may locally explain the data.
We have tested our approach using a series of experiments, where we use both synthetic and
real image sequences.

For the aim of comparison, we tested the method in the sequence shown in figure [1
which is similar to the one presented in [I0]. In this sequence, the left image is moving with
velocity @ = [1, 0] and the right image is moving with velocity © = [—1,0]. The transparent
region corresponds to the area where the two images overlap. The sequence have dimensions
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64 x 64 x 20 The results for the frame 8 are shown in figure[[ll Figure [l shows the recovered
map for 1 or 2 movements, the white regions indicates the presence of 2 movements and
the black ones indicates the presence of 1 movement. Figure [lb shows the recovered multi-
velocity field. For the sake of clarity, we show separately the recovered field for the velocity
[1,0] in Figure [k and the recovered field for the velocity [-1,0] in Figure [d.

(c) (d) ()

Figure 7: Results for the transparent sequence (a)

The second one presented here is composed of two photographs: a face (limited textured
scene) and a Mars landscape, see Figure Figures Ba) and B(b) shown the computed
optical flow associated to the minimum distance value for the Stuke and Shizawa distances,
respectively. We corrupt the sequence with a strong noise (SNR=8dB) (Figure B (c)), and
the computed velocities field is shown in Figure @ (d). For this experiment the distance of
Shizawa’s work was used in the attach term. Note that the right optical flow is recovered
in all the pixels regardless the high amount of noise. Figure [I0 represents the evolution of
one of the two active layers, in this case the one associated with the velocity [-1,0]. One can
observe that gaps corresponding to non-textured regions are correctly filled.

Figure [l shows the methods performance for the case when the transparent region is
composed by different combinations of velocities across the time and when the image layers
contains non-textured regions (realistic ones). Figure[[1(a) shows a frame of the transparent
sequence. The changing velocities are schemed in Figure [[I(b): the background is moving
with velocity [-1,0] and the airplane is moving with velocity [1,-1], [1,0] and [2,2] in equal
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(a)
Figure 8: Realistic synthetic sequence. (a) limited-texture image, I;, with motion u =
[1,0]. (b) Rocky Martian landscape, Iz, with motion v = [—1,0]. (c) transparent generated

sequence with f = %Il + %Ig.

(b) © (@

Figure 9: Transparent motion estimation on a realistic sequence corrupted with Gaussian
noise. (a) Central frame highly noise corrupted (SNR=8dB). Velocities associated with the
minimum distance for (b) Stuke and (c) Shizawa measures (SNR=30dB). In (d) the result
obtained with the proposed method for the high corrupted sequence in (a) (SNR =8dB),
note that we recovered the right velocities in all positions.

i
o
‘t__ﬁr' "'-'

Iteration 11 Iteration 21 Iteration 31 Iteration 100

Figure 10: Evolution in the values for the layer associated with the velocity [-1,0].
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time intervaldl]. The obtained multi-velocity vector fields are shown in Figures [[Tic), [ITKd)
and [[I(e). For this experiment we used the Stukes’s distance [32] in the attach term.

5.3.4 Transparency and Occlusion in a Real Sequence

In order to show the performance of the proposed method in a real situation, we shown the
results obtained for a real sequence in Figure The sequence is composed by two robots
moving slope down, see Figure [X(a), [Ab) and MXc). The upper-left robot is located
behind a glass, the lower-right one is located in front of the camera and the reflex of the
second one is located into the upper-central part. The associated resultant vector fields
are shown in Figures [(d), TX(e) and [CX(f) for the 3t", 12t" and 22'" frame respectively).
The recovered velocities were [1.5, 0.4] pixels for upper-left robot and [-1.5,0.5] for both the
lower-right robot and its reflex. Note that despite the fact that the lower right-robot is
moving a little faster than its reflex (easy to deduct form the projection geometry), both
were associated to the same velocity model, because the discrete nature of the velocity basis.

In this experiment, we perform a spatio-temporal Gaussian smoothing process (¢ = 0.5)
of the input sequence and we processed only the regions that contain displacements as
is explained below. The static background was removed automatically by thresholding
the difference between consecutive frames, and then applying opening-closing morphologic
operators. By using this pre-process, we obtain an activity-mask that indicates the pixels
where a change in time occurred, i.e. the regions where the optical needs to be computed.

In all previous experiments, we computed a dense optical flow in at most 200 minimiza-
tion iterations.

6 Conclusion

In this report we have presented an energy cost formulation in order to estimate multiple
motions. The unknown is a vector valued field that indicates the present motions in a par-
ticular spatio—temporal position. Our formulation extends previous works based on layered
optical flow computation, by using a distance measure suitable for transparent motions and
proposing an intra—model competition mechanism proper for multi—valued solutions. The
proposed intra—model competition mechanism behave for the multi-motion case, as those
used for entropy—control in probability measure approaches for single motion, this term is
by itself a novel contribution of this work.

Our formulation allows us to tackle sequences having single or multiple layers moving.
The optimization process makes the integration of local velocities information by using
suitable diffusion terms. The performance of the presented approach is demonstrated by
synthetic experiments in textured and non-textured sequences as well as real sequences.

1The data sequence and the results can be downloaded at the public web site
http://www.geocities.com/transparent_of_sequences/index.html.

2the AVI file and the computed flows can be downloaded at the public web site
http://www.geocities.com/transparent_of_sequences/index.html.
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(c) (d) (e)

Figure 11: Results for a synthetic transparent sequence in which both the velocity of the
background and the velocity of the object changes across the time. (a) A frame taken from
the sequence. (b) Scheme of velocities: the airplane experiment velocities [1,-1],[1,0] and
[2,2], and the background experiment the velocity [-1,0]. (¢), (d) and (e) Sampled recovered
multi-velocity fields for frames 5, 23 and 39 respectively.

Figure 12: Experiment with a real transparent sequence. (a)(b)(c) Frames 3", 12t* and
22" of the real sequence: the upper-left robot is moving slope down behind a glass, the
lower-right on is moving slope down in front of camera and its reflex is captured in the
upper—central part. (d), (e), (f) Sampled recovered multi-velocity fields for the respective
frames.
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In future work it is planned to focus on the diffusion terms and investigate how the
different velocity maps may interact together. We wish also to evaluate our approach on
test sequences used in psychophysics, which will certainly suggest some improvement of the
current model.
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