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Abstract: Arigatoni is a lightweight communication model for dynamic Resource Discovery.
Inspired by the Publish/Subscribe paradigm, the Arigatoni model implements a Resource-
Discovery Oriented Overlay Network. Entities in Arigatoni are organized in Colonies. A
Colony is a simple virtual organization composed by exactly one leader, offering some broker-
like services, and some set of Individuals. Individuals are SubColonies of Individuals, or basic
units called Global Computers. Global Computers communicate by first registering to the
Colony and then by mutually asking and offering services. The leader, called Global Broker,
has the job to analyze service requests/responses coming from its own Colony or arriving
from a surrounding Colony, and to route requests/responses to other Individuals. After this
discovery phase, Individuals get in touch with each others without any further intervention
from the system, typically in a P2P fashion. Communications over the behavioral units of
the model are performed by a simple Global Internet Protocol on top of the TCP or UDP

protocol. Arigatoni provides fully decentralized, asynchronous and scalable Resource Discov-
ery, that can be used for various purposes from P2P applications to more sophisticated Grid

applications. The main focus of this paper is to present the Resource Discovery mechanism
used in the Arigatoni model, along with some simulations that show that Resource Discovery
in Arigatoni is efficient and scalable.

Key-words: Resource discovery, Overlay Networks, Global computing



Découverte de ressources dans le modèle Arigatoni

Résumé : Arigatoni est un modèle de communication léger pour la découverte de ressource
dynamique. Inspiré du paradigme Publier/Souscrire, le modèle Arigatoni implémente un
réseau recouvrant pour la découverte de ressource. Les entités dans Arigatoni sont organisées
dans des Colonies. Une colonie est une organisation virtuelle simple composée d’exactement
un leader, qui offre des services de type courtier, et un ensemble d’Individus. Les Individus
sont des sous-colonies d’Individus, ou des unités basiques appelées des Ordinateurs Glo-
baux. Les ordinateurs globaux communiquent en s’enregistrant tout d’abord à la Colonie,
ils peuvent ensuite demander et offrir des services de manière interchangeable. Le leader,
appelé Routeur Global, doit analyser les requêtes ou les réponses arrivant de sa propre Co-
lonie ou d’une Colonie voisine, et router les requêtes ou réponses vers d’autres Individus.
Une fois cette phase de découverte achevée, les Individus entrent en contact les uns avec les
autres sans d’avantage d’intervention de la part du système, suivant le modèle pair-à-pair.
Les communications entre les unités actives du modèle s’effectuent au moyen d’un proto-
cole simple appelé GIP, qui utilise le protocole TCP ou UDP. Arigatoni offre une découverte
de ressources entièrement décentralisée, aynchrone et extensible, et peut être utilisé à des
fins divers, depuis les applications pair-à-pair jusqu’aux applications plus sophistiquées uti-
lisées dans les grilles. Le principal objectif de cet article est de présenter le mécanisme de
découverte de ressources utilisé dans le modèle Arigatoni, accompagné de simulations qui
montrent que la découverte de ressources dans Arigatoni est efficace et extensible.

Mots-clés : Decouverte de ressources, Reseau recouvrant, Informatique globale
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1 Introduction

Motivations. The Global Computing Communication Paradigm, i.e. computation via a
seamless, geographically distributed, open-ended network of bounded resources by agents
(called Global Computers) acting with partial knowledge and no central coordination is
probably one of the most interesting challenges for the next decade. The paradigm provides
uniform services with variable guarantees. Aggregating many Global Computers sharing
similar or different resources leads to a Virtual Organization, also called Overlay Computer1.
Finally, organizing many Overlay Computers, using, e.g. tree- or graph-based topology leads
to an Overlay Network, i.e. the possibility of programming a collaborative Global Internet
over the plain Internet.

The main challenge in this new field of research is how single resources, offered by the
Global/Overlay Computers are discovered. The process is called Resource Discovery : it
requires an up-to-date information about widely-distributed resources. This is a challenging
problem for very large distributed systems particularly when taking into account the contin-
uously changing state of resources offered by Global/Overlay Computers and the possibility
of tolerating intermittent participation and dynamically changing status/availability of the
latter.

The first presentation of the Arigatoni model was given in [2]. In this paper, we show
the insights of the model concerning the dynamic Resource Discovery. Reciprocity and
hierarchical organization of the Virtual Organization in Colonies, governed by a clear leader
(called Global Broker) are the main achievements of the Arigatoni model. Global Computers
belong to only one Colony, and requests for services and resources located in the same or
in another Colony traverse a broker-2-broker negotiation whose security is guaranteed via
standard PKI mechanisms. Once the resource offered by a Global Computer has been found
by the Overlay Network, the real resource exchange will be performed out of the Arigatoni

model itself, e.g. in a P2P fashion.
As such, the main concern of the Overlay Network induced by the Arigatoni model is Re-

source Discovery. In this paper, we explain how Arigatoni offers decentralized, asynchronous,
and generic Resource Discovery. Once a Global Computer has issued a request for some
services, the system finds some Global Computers (or, recursively, some SubColonies) that
can offer the resources needed, and communicates their identities to the (client) Global
Computer as soon as they are found.

The fact that the Arigatoni model only deals with Resource Discovery has one impor-
tant advantage: the complete generality and independence of any given requested resource.
Arigatoni can fit with various scenarios in the Global Computing arena, from classical P2P

applications, like file sharing, or band-sharing, to more sophisticated GRID applications, like
remote and distributed big (and small) computations, until possible, futuristic migration
computations, i.e. transfer of a non completed local run in another GCU, the latter scenario

1Overlay Computer: abstraction that can be implemented on top of a Global Computer to yield another
Global Computer [18].
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4 Chand & Liquori & Cosnard

being useful in case of catastrophic scenarios, like fire, terrorist attack, earthquake etc., in
the vein of global programming languages à la Obliq [3] or Telescript [19].

Related work. Many technologies, algorithms, and protocols have been proposed recently
on Resource Discovery. Some of them focus on GRID or P2P oriented applications, but none of
those targets the full generality of the Arigatoni model that deals only with Generic Resource
Discovery for buiding an Overlay Network of Global Computers, structured via a Virtual
Organization and clear distint roles between leader and Individuals (GCUs or SubColonies).

This section briefly discusses some of the closest technologies and architectures found
recently in the literature.

The Globus Toolkit [11], is an open source set of technology, protocols and middleware,
used for building GRID systems and applications. Possible applications range from sharing
computing power to distributed databases in a heterogeneous Overlay Network, where se-
curity is seriously taken into account. The toolkit includes stand alone software for security,
information infrastructure, resource management, data management, communication, fault
detection, and portability. The analogies with the Arigatoni model lie in the Community
Scheduler Framework component and the Web Service Grid Resource Allocation and Man-
agement of the toolkit concerning the Resource Discovery, and the Globus Teleoperations
Control Protocol to allow units to cooperate (analogy with our ad hoc protocol).

Promoted by Sun, the JXTA [16] technology is a set of open peer-to-peer protocols that
enable any device to communicate, collaborate and share resources. After a peer discovery
process, any peer can interact directly with other peers. Hence the overlay network of peers
induced by the JXTA technology is flat. Moreover, the main concern of the Arigatoni model is
Resource Discovery, while the main concern of the JXTA technology is to offer some tools to
implement a P2P model. In addition, the Arigatoni model focuses on the evolution/devolution
of colonies and the mechanism of Resource Discovery, while JXTA technology allows peers to
communicate using an already existing overlay network of peers. Arigatoni aims are dynam-
icity of the overlay network while JXTA aims are freedom of connectivity between peers.

NaradaBrokering [8] is an open-source, distributed messaging infrastructure based on the
Publish/Subscribe paradigm. A broker distributes and routes messages, while working with
multiple underlying communication protocols. The broker network in NaradaBrokering is
based on a hierarchical, cluster-based structure which can support large heterogeneous client
configurations. Furthermore, every broker computes the shortest path to reach target des-
tinations while eschewing links and brokers that have failed or are suspected to failure.
Arigatoni is very complementary to NaradaBrokering since it mainly concentrates on Resource
Discovery and peer selection based on service requests.

The OurGrid architecture [17] aims at sharing computational power and does not match
with the complete genericity of the Arigatoni model. Arigatoni is based on the formal model
of colonies, the dynamic tree of brokers and a trade off between P2P and Grid models thanks
to an extended version of the Publish/Subscribe paradigm.

In [14], a P2P approach for Resource Discovery in Grid environments is proposed. More
precisely, the authors present a framework that drives a design of any resource discovery
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architecture. In [15], non-uniform information dissemination protocols are used to efficiently
propagate information to distributed repositories, without requiring flooding or centralized
approaches. Results indicate a significant reduction in the overhead compared to uniform
dissemination to all repositories. In [13], a semantic Resource Discovery in the GRID is
proposed using a P2P network to distribute and query to the resource catalog. Each peer
can provide resource descriptions and background knowledge, and each peer can query the
network for existing resources.

Several publish/subscribe (pub/sub) have been developed recently, such as XNet [7, 6],
Siena [4] or IBM Gryphon [1]. In [12], the authors propose to adapt the Siena publish/subscribe
system to achieve Gnutella-like Resource Discovery. Their work resembles ours in the sense
that Arigatoni also extends the pub/sub paradigm. However, in [12], Resource Discovery is
achieved by publishing queries to the notification service. In contrast, Arigatoni implements
its own Resource Discovery algorithm, especially designed for generic and scalable resource
lookup.

2 System model

2.1 Units, topology

Two different kinds of units compose the Arigatoni system: Global Computer Units (GCU),
and Global Broker Units (GBU).

A GCU is the basic peer of the Global Computing paradigm. It is typically a small device,
like a PDA, or a PC, connected with any IP network, unrelated to the media used, wired or
wireless, etc.

A GBU is the basic unit devoted to register and unregister GCUs, to receive service
queries from client GCUs, to contact potential servant GCUs, to negotiate with the latter
the given services, to trust clients and servers and to send all the information necessary
to allow the client GCU, and the servants GCUs to communicate. Every GCU can register
to only one GBU, so that every GBU controls a Colony of collaborating Global Computers.
Hence, communication intra-Colony is initiated via only one GBU, while communication
inter-colonies is initiated through a chain of GBU-2-GBU message exchanges. In both cases,
when a client GCU receives an acknowledgment for a requested service (with related trust
certificate) from the proper GBU, then the client will enjoy the service directly from the
servant(s) GCU, i.e. without a further mediation of the GBU itself.

A Colony is a simple virtual organization composed by exactly one leader and some set
(possibly empty) of Individuals. Colonies are organized in a tree structure (at least for the
duration of a request) where the parent of a Colony is its leader in the Arigatoni model.
Individuals are Global Computers (think it as an Amoeba), or SubColonies (think it as a
Protozoa). An Individual can be a GCU or a GBU (representing the leader of a a SubColony).
GCUs cannot have children in the hierarchy. As such, GBUs can have both GBUs and GCUs
as their children. The two main characteristics of a Colony are that it has exactly one leader
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6 Chand & Liquori & Cosnard

GBU and at least one Individual (the GBU itself), and that it contains Individuals (some
GCU’s, or other colonies).

A Community is a raw set of colonies and Global Computers (think it as a soup of
colonies and GCU without a leader). Starting from a community, the Arigatoni protocol
allows Individuals to dynamically aggregate in colonies. This topic has been addressed
in [9].

The possibility for Individuals to log in/delog from a Colony or the possibility for a
Colony’s leader to delog some “lazy” Individuals makes de facto the network topology dy-
namic. This dynamicity implies that if GBUs hold routing tables about the services provided
by their Colony, particular care must be taken to maintain consistency when Individuals
log/delog. Moreover, due to the fact that Individuals are not slaves but Global Computers
with their own proper activity, a service request may lead to run-time failures. This happens
when an Individual gets busy by a local request, or when it suddenly delogs from the Colony
during the routing of the service request, or worst, when it gets hardware failures.

2.2 Arigatoni extends the Pub/Sub Paradigm for Resource Discovery

In the Arigatoni model, Resource Discovery works by asynchronously disseminating request
messages in the system until some Individuals have been found. More precisely, when Global
Computers log in the system (a Colony), they declare the list of services that they can offer.
When a Global Computer asks for some services, it issues a service request message to
its leader, without addressing it to any particular receiver. The system disseminates the
message according to the services included in it and according to the services that the other
Global Computers have declared. As a consequence, the communication model underlying
the Arigatoni model extends conservatively the Publish/Subscribe (pub/sub) paradigm [10].
Indeed, in the pub/sub paradigm, consumers subscribe to the system (typically called the
Notification Service) to specify the type of information that they are interested in receiving.
Producers publish data to the system. The notification service disseminates the data to
all (if possible) the consumers that are interested in receiving it, according to the content
of the data and the interests declared by the consumers. In Arigatoni, Global Computers
“subscribe” to the system by declaring the services that they offer to serve. The same Global
Computers also “publish” data in the system when they issue service requests. Arigatoni

disseminates the data according to the services included in the requests and the services
that the other Global Computers have declared.

The pub/sub like communication form used in Arigatoni for Resource Discovery has sev-
eral advantages. First, it allows Arigatoni to realize a full decoupling, in time, space, and
synchronization, between the Global Computers. Second, due to its asynchronous nature,
the Arigatoni model is, potentially, more scalable and can work in “disconnected” mode (e.g.,
for mobile users and wireless devices). Third, indirect addressing makes it possible for the
infrastructure to implement reliability, load balancing, fault-tolerance, persistence, or trans-
actional semantics. More practically, since Arigatoni has a tree-like topology, we can use the
pub/sub subscription mechanisms described in existing tree-based pub/sub systems such as
XNet [6, 7, 5] or Siena [4], for subscription management, i.e., for the construction and the
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Resource Discovery in the Arigatoni Model 7

update of consistent routing tables in the system. In addition, we can use the reliability
mechanisms described in [7] to allow Arigatoni to be fault-tolerant or to adapt to dynamic
topology changes.

However, one major difference between Arigatoni and classic pub/sub systems lies in their
functionality. Indeed, the classic pub/sub paradigm deals with the publication of messages
whereas Arigatoni focuses on pure Resource Discovery. More precisely, classic pub/sub sys-
tems aim at disseminating published messages to all interested consumers. In contrast, in
Arigatoni, when a service request is issued, the goal is to find one (or maybe “some”) Individu-
als able to provide the services included in the request, but not all the potential Individuals.
As a consequence, a much smaller fraction of the system is traversed. Besides, the routing
strategy used by a GBU consists in always trying to find potential GCU in its own Colony
first. If it fails, it then delegates the request to its leader. This strategy is reminiscent of the
dynamic method lookup employed in all Object-Oriented languages, and increases resource
encapsulation inside colonies, another concept strongly related to Object-Orientation.

Another major difference lies in the nature of the published events in classic pub/sub
systems and the nature of service requests in Arigatoni. Indeed, in classic pub/sub systems,
subscriptions are constraints on the set of all possible events. In contrast, in Arigatoni, service
requests are also expressed as constraints. This latter point will be explained in more details
in the next section.

3 Resource Discovery

Let R be the set of all possible resources (maybe infinite). GCUs provide resources by
registering services to the system. A service S is a constraint on the set of resources.
match(S) ∈ R is the set of resources that satisfy S. A GCU X that register S announces
that it can provide the set of resources match(S). A GCU Y that issues a service request for
service S′ is looking for a resource that satisfies constraint S′, i.e., a resource in match(S′).
If match(S) ∩match(S′) 6= ∅, then there exists a resource that satisfies both S and S′, and
X can provide a resource to Y . We say that S and S′ overlap iff match(S)∩match(S′) 6= ∅.
For example, S = “[type = CPU ][Time < 10s]′′ and S′ = “[type = CPU ][Time > 5s]′′

overlap, since any resource with attribute “Time′′ between 5s and 10s matches.
The principle of Resource Discovery in Arigatoni is as follows. When a GCU sends a

request for a set of services S1 · · ·Sn, it builds a “ServiceRequest” message containing the
set of services and sends it to its leader GBU. The message is then recursively processed by
the GBUs in the system so as to find “some” Individuals able to serve the services included
in the request. The main basic principle of the protocol is that every GBU that receives a
request always searches its own Colony first to find the potential Individuals able to serve the
services included in the request. If no Individuals are found, then the request is delegated
to its leader GBU, and the process proceeds recursively. In addition, if the GBUs maintain
some information about the services provided by their children, then they can transform a
received request into sub-requests, so as to only ask a given child for the services that it (or
its colony) provides.

RR n 5924



8 Chand & Liquori & Cosnard

Eventually, the process leads to some GCUs2 receiving a request. When one such GCU

receives a request for some services, it chooses the services that it accepts to serve and the
ones that it refuses to serve. It then sends a “ServiceResponse” message containing the list
of accepted services and the list of rejected services, and sends it to its leader GBU. The
response messages are then propagated recursively in the system, following the reverse path.
The Resource Discovery protocol is formally described in pseudo-code and explained in more
details in the following section.

3.1 Resource Discovery in the Arigatoni GIP Protocol

Resource Discovery in the Arigatoni model is the core of the GIP protocol; it is described in
pseudo-code in Algorithm 1 and explained as follows. We only focused on the case of GBUs.
The Resource Discovery algorithm in the case of GCUs is similar and has been voluntarily
omitted (see [2] for details). Indeed, the involvement of GCUs in the process of Resource
Discovery is limited to directly replying to request messages. As stated before, Arigatoni

only concerns with the discovery of resources. The real resource exchange is done out of the
Arigatoni model itself, e.g. in a P2P fashion. Let GBUN receive a message from a neighbor.

Algorithm 1 The Resource Discovery Routine in the Arigatoni GIP Protocol
1: case Message is

SREQ :

2: ReturnPath{Message.Id} ←Message.Sender
3: SendList← SelectPeers(Message.Services, search mode)
4: for each (P, Serv(P)) ∈ SendList do

5: Send ServiceRequest
`

Serv(P)
´

to P

6: end for

7: for each S∈Message.Services such that ∄(P, Serv(P))∈SendList, S∈Serv(P) do

8: Append S to RejectList
9: end for

10: Send ServiceResponse({},RejectList) to ReturnPath[Id]
11: SRESP :

12: for each S∈Message.AcceptedServices do

13: if
`

S was not already accepted
´

∨
`

EXHAUSTIVE REPLY is set
´

then

14: Append S to AcceptList
15: end if

16: end for

17: SendList← SelectPeers(Message.RejectedServices, intra Colony mode)
18: for each (P, Serv(P))∈SendList do

19: Send ServiceRequest(Serv(P)) to P

20: end for

21: for each S∈Message.RejectedServices such that ∄(P, S(P))∈SendList, S∈Serv(P) do

22: Append S to RejectList
23: end for

24: Send ServiceResponse(AcceptList,RejectList) to ReturnPath[Id]
25: end case

2The model can be easily extended so that GBUs are also able to directly reply to requests, i.e., to act
as Global Computer. Indeed, we can simply consider that each GBU has, de facto, a virtual GCU directly
attached to it.
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Resource Discovery in the Arigatoni Model 9

Case of Service Request (SREQ). We first consider the case of request messages. A
request message received by GBUN means that N is asked to find some Individuals to provide
the services included in the request. For that purpose, N first maps the “Id” of the request
included in the message to the sender of the message (line 2), so as to allow reply messages
to follow the reverse path of the request.

Line 3: Various intra Colony search modes. The leader N then calls func-
tion “SelectPeers”, taking as input the list of services included in the request message,
Message.Services (line 3). Then SelectPeers returns a list of pairs {(P, Serv(P))}, called
SendList, where the first element P of a pair is the Id of a neighbor, and the second element
Serv(P) is a list of services, subset of Message.Services, that contains the list of services to
ask to neighbor P. The search mode determines the way function SelectPeers determines the
SendList. The search mode depends itself on whether P maintains some information about
the services provided by its Colony, i.e. a routing table. Currently, the following search
mode are allowed: broadcast and selective, where the latter is itself sub-divided into tree
sub-modes: exhaustive, greedy random, and greedy ordered. If P does not maintain a routing
table, then it has no other choice than to ask all its children for all the services included
in the message, i.e., to broadcast the request message. We will refer to this search mode as
the broadcast mode. Now if P maintains a routing table that indicates which child leads to
a potential Individual able to serve a given service, then P can selectively send customized
requests to its children. More formally, P only asks a child for a service that overlaps a
service that it advertised, i.e. there exists a resource that satisfies both the service requested
and the service advertised.We will refer to this mode as the selective mode. Consequently,
P can choose “some” children and send them a request for the services that overlap the ones
that they advertised. The selective search mode can then be refined as follows. Consider a
particular service S included in the request message.

In the exhaustive mode, P sends a request for service S to all the children that can
serve it (i.e., that contain potential Individuals in their Colony).

In the greedy random mode, P sends a request for S to only one child that can serve
the request, chosen uniformly at random.

In the greedy ordered mode, P sends the request to only one child, chosen according
to some predefined or ad hoc criteria (e.g., depending on network factors, or according
to the quantity of services that were accepted by each child, à la tit-for-tat).

In addition, we can refine even more the greedy modes, by introducing a parameter n, that
defines the number of children to whom the request is sent. We could then define the n-
greedy random or the n-greedy ordered modes. It is important to mention that the SendList
variable can contain N’s leader, lets call it L. That is, it may contain a pair (L, Serv(L)).
As explained in the previous section, when considering a particular service S ∈ Serv(L),
this only happens when no child advertised some services that overlap S, i.e., there are no
potential Individuals able to serve service S in N’s Colony. GBU N then delegates service S

to its leader GBU. In addition, obviously enough, note that to prevent routing loops, the
sender of the request message is never considered as a potential service provider.
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10 Chand & Liquori & Cosnard

Lines 4 − 6: Forwarding service request messages. Consequently, for each pair
(P, Serv(P)) in the SendList, N sends to neighbor P a service request message for services
Serv(P) (lines 4 − 6).

Lines 7 − 9: Services rejection. Finally, each service S included in the request
message, and such that no potential Individual was found amongst N’s neighbors, is reported
as rejected by N, to the original issuer of the request message (lines 7− 10). Note that since
N may only maintain information about its own Colony (no information is maintained about
its leader, other than its id), this may only happen if N is the root of the topology or if the
request message originated from N’s leader.

Case of Service Response (SRESP). We now consider the case of reply messages. As
previously explained, the process of propagating SREQ messages eventually leads to a certain
number of GCUs receiving a request. Each such GCU sends a reply message to its leader,
with the list of accepted and the list of rejected services, along with its Id. Consequently,
a given GBUN that participated in the propagation of the SREQ message eventually receives
a certain number of SRESP messages from each of its children that was sent an instance of
the (maybe transformed) SREQ message. Consider now an SRESP message sent to GBUN by
a neighbor Q.

Lines 12 − 16 and 24: Reporting accepted services. For each accepted service S,
there are two different possibilities: either Q is the first child to accept to serve the service,
or the service was already accepted by some child other than Q. In the first case, N sends the
reply back to the original sender or the request, reporting that service S has been accepted
(lines 14 and 29). Otherwise, some neighbor other than Q already accepted to serve service
S (i.e., an Individual in its Colony). Then, if the EXHAUSTIVE REPLY parameter flag is set
(either in the GBU or included in the original request message), N also reports the reply
back. Consequently, in the EXHAUSTIVE REPLY mode, every GCU that accepted to serve a
given service will be reported back to the GCU that issued the request. Otherwise, for each
service asked in the request, only one single servant GCU will be reported. Furthermore, it
is easy to add more flexibility by including a threshold Tr > 1 on the number of replies. For
example each GBU would report back Tr replies for the same service(s).

Lines 17: Finding other Individuals for rejected services. We now consider the
case of rejected services. Call it S. This means that in Q’s Colony, no potential Individuals
serving service S could be found, or no Individuals accepted to serve it. Then, N has to find
other neighbors that might contain Individuals for service S. Consequently, N calls again
function SelectPeers, with the list of rejected services as input (line 17). The function works
as previously explained, except that it does not consider the peers (including Q) that were
already sent a particular service. Also, logically enough, the services that were previously
accepted are ignored. Finally, the original sender of the request is not considered (i.e.,
ReturnPathId). Note that in the case where the exhaustive search mode is used, then the
list SendList returned by function SelectPeers may only contain a single pair (L, Serv(L))
(L is N’s leader). Indeed, in the exhaustive search mode, all possible children in N’s Colony
have already been asked for all the services included in the request message, that they can
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serve. Hence, rejected services are directly delegated to the leader L, if possible (i.e. if the
latter was not the original sender of the request). As a result, the variable SendList contains
a list of pairs (P, Serv(P)), where neighbor P is an Individual that can potentially serve the
services in Serv(P), and has not been sent a request for any of them yet.

Lines 18−20: Forwarding request messages for rejected services. Consequently,
for each pair (P, Serv(P)) included in SendList, N sends to neighbor P a service request
message for services Serv(P) (lines 18 − 20).

Lines 21−23 and 24: Service rejection. Finally, each service S included in the list of
rejected services, and such that no additional potential Individual could be found amongst
N’s neighbors, is reported as rejected by N, to the original issuer of the request message
(lines 21 − 24).

3.2 Example

Rq: S4 S5

Rq: S4

Rq: S5
Rq: S5

P2

P1

P3

Rq S5

S1 S2 S3

C1 C2 C3 C4

C2: Acc S4

C3: Acc S5

C2: Acc S4

Order of events

ti
m

e

1:   C1 sends Rq S4S5 to P2
2.0: P2 sends Rq S4 to C2
2.1: C2 sends Acc S4 to P2
2.2: P2 sends Acc S4 to C1
   P2P negociation with C2
3.0: P2 sends Rq S5 to P1
3.1: P1 sends Rq S5 to P3
3.2: P3 sends Rq S5 to C3
3.3: C3 sends Acc S5 to P3
3.4: P3 sends Acc S5 to P1
3.5: P1 sends Acc S5 to P2
3.6: P2 sends Acc S5 to C1

 P2P negociation with C3

S1         P2

S1         C2
S2         C3

C3: Acc S5

C3: Acc S5

C3: Acc S5

Type = CPU
Time < 10

Type = MEM
Capa < 20

Type = CPU
Time < 200

S4=
Type = CPU
Time > 5

Type = MEM
Capa > 15S5=

S2         P3

S3         P3

S3          C4

Figure 1: A simple Resource Discovery scenario. GCUs are represented in diamond shaped
boxes, and GBUs in circles. The routing table of a GBU is represented next to it. The services
registered by a GCU are shown below them. GCU C1 has issued a service request for services
S4 and S5. The paths followed subsequently by the different request and reply messages are
highlighted by the arrows. The order in which the different messages are issued is shown in
the table at the left hand side. Actions 2.∗ and 3.∗ occur in parallel with each others.

Consider the example illustrated in Figure 1. Three GBUs are represented, namely
P1 · · ·P3, and 4 GCUs, namely C1 · · ·C4. GCUs C1 and C2 (resp. C3 and C4) have P2 (resp.
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12 Chand & Liquori & Cosnard

P3) as their leader, while P1 is the leader of GBUs P2 and P3. GCUs C2, C3 and C4 have
registered services S1, S2 and S3, respectively, and the routing tables of the upstream GBUs
have been updated accordingly. In the example, resources are expressed as conjunctions of
attribute/value pairs, and services are conjunctions of constraints on those attributes. We
suppose that the search mode is set to selective, and we consider the scenario where GCU

C1 issues a service request for services S4 and S5, to its leader P2. Since S4 and S1 overlap
(any resource with 5 < Time < 10 satisfies both S1 and S4), GBU P2 forwards a service
request for service S1 to GCU C2. Note that given that S5 and S1 do not overlap, S5 is
not included in the request. Since P2 does not find any GCU potentially able to serve S5

(i.e., no services in its routing table overlap with S5), it delegates it to its leader GBU P1.
When C2 accepts to serve S4, it sends a reply message with its Id and the accepted service
S4, back to GBU P2, which, in turn, forwards it back to C1. Then C1 can directly negotiate
the resource with C2. When P1 receives the service request for S5, it forwards it to P3

(since S2 and S5 overlap), which in turn forwards it to GCU C3. When C3 accepts to serve
S5, the same process then repeats as for GCU C2. Eventually, C1 receives a reply message
with the Id of GCU C3 and the accepted service, namely S5. We have an illustration of the
asynchronous communication (C1 received the reply messages independently of each others)
and the encapsulation of resources in Arigatoni (GBU P2 only searched for service S4 in its
own Colony, i.e. GCU C2).

3.3 Discussions

As said in the Introduction, in this paper, we mainly focused on the Resource Discovery
mechanism used in Arigatoni. Total decoupling between GCUs in space (GCUs do not know
each others), time (GCUs do not participate in the interaction at the same time), and synchro-
nization (GCUs can issue service requests and do something else, or may be doing something
else when being asked for services) is a major feature of Arigatoni. Another important prop-
erty is the encapsulation of resources in colonies. Those properties play a major role in the
scalability of Resource Discovery in Arigatoni.

As stated in Subsection 2.2, the subscription mechanisms of classical tree-based pub/sub
systems [6, 7, 5, 4] can be used for the maintenance and update of consistent routing tables.
Furthermore, as for the reliability of subscription advertisement, we can adapt the reliability
mechanisms described in [7] to allow Arigatoni to be fault-tolerant or to adapt to dynamic
topology changes.

The reliability of the Resource Discovery mechanism itself, although desirable, is of lesser
importance, given the fact that service provision is not guaranteed at all in the Arigatoni

model. In other words, when a GCU issues a service request, it is possible that no Individual
is found for some of the services included in the request. This happens, for example, if
those services were not declared by any GCUs in the system, or if all the GCUs that declared
themselves as potential Individual refuse to serve them. However, at the cost of memory
and bandwidth requirements, it is still possible to implement reliable Resource Discovery
by using a reliable transmission protocol (TCP), an acknowledgment scheme in combination
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Resource Discovery in the Arigatoni Model 13

with a retransmission buffer, and persistent data storage. This enhancement will be studied
in a future work.

3.4 Load Balancing and Scalability

As defined above, GBUs are organized as a dynamic tree structure. Each GBU is a node of
the tree, leader of its own SubColony and root of a subtree corresponding to the GBUs of its
Colony. It is then natural to address scalability issues that arise from that tree structure.
In the remaining of this section, we show that, under reasonable assumptions, the Arigatoni

model is scalable. However, a complete performance evaluation is out of the scope of this
paper and will rather be studied in a future work.

The most serious scalability issue in Arigatoni comes from the fact that high-level GBUs
may receive large numbers of request messages, and may have a large number of children
GBUs to forward request messages to. Although it is possible to limit the number of direct
children that a GBU manages (during the registration phase, a GBU may refuse to be the
leader of another, joining GBU), the main reason that Arigatoni is scalable comes from the
encapsulation of resources in a GBU’s Colony, i.e. a GBU always looks for Individuals in its
own Colony first before delegating the request to its leader.

We call T (t) the tree at time t, dT (t) its depth, i.e. the number of levels, and l(i) the
number of nodes in level i. We then call τ(i, j) the jth node of level i of T (0 ≤ i ≤ dT and
0 ≤ j ≤ l(i)). Remark that T (i, j) will represent the subtree of T whose root is τ(i, j). Each
τ(i, j) is the leader of a local Colony c(i, j) and of a Colony C(i, j) =

⋃
τ(u,v)∈T (i,j) c(u, v).

Finally, we call γ(i, j) the size of Colony c(i, j), and Γ(i, j) the size of C(i, j), i.e. Γ(i, j) =∑
τ(u,v)∈T (i,j) γ(u, v). In the following, let c(i, j, k) with k ∈ [0, · · · , γ(i, j) − 1] be the kth

GCU of c(i, j). Figure 1(b) illustrates some of the notations that we have just introduced;
the size of the Colony C(1, 0), which leader is τ1,0, is the sum of the sizes of all the local
colonies in T1,0, i.e. c1,0, and c2,0, and c2,1: Γ(1, 0) = γ(1, 0) + γ(2, 1) + γ(2, 0).

A typical scenario is the following: a service S is requested by c(i, j, k) to its GBU τ(i, j)
and processed thanks to the Arigatoni protocol. Let X(u, v, w) be random variable associated
to the fact that S can be served by c(u, v, w), with probability P (X(u, v, w)). We assume
that all X(u, v, w) are independent, and we call Q(X(u, v, w)) = 1 − P (X(u, v, w)) the
reverse probability. Hence, the probability that S cannot be served within Colony c(i, j) is
equal to:

Q̂(X̂(i, j)) =

γ(i,j)−1∏

k=0

Q(X(i, j, k))

It is very important to remark that the whole tree structure is dynamic and that all
the entities are variable. For example, γ(i, j) is not fixed. Hence, new members can join a
Colony or old ones can leave.

In the remaining, we shall assume that we are in a steady state in the sense that, during
the time a request is processed, the structure of the tree will not change. On one hand this
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14 Chand & Liquori & Cosnard

τ0,0

τ1,1 τ1,2τ1,0

c0,0

c1,3c1,1

τ1,3

c1,3

Γ(1,0) = γ(2,0)+γ(2,1)+γ(1,0)

l(0)=1
l(1)=4

T10

τ2,0 τ2,1

c1,0

c2,1c2,0

Figure 2: A simple topology with 7 GBUs and their local colonies. The size of the Colony
C(1, 0), which leader is τ1,0, is the sum of the sizes of all the local colonies in T1,0: c1,0, c2,0,
and c2,1: Γ(1, 0) = γ(1, 0) + γ(2, 1) + γ(2, 0).

is reasonable since the communication time on the Internet is very low with respect to the
protocol stack to log/delog GBU or GCU. This is not a completely satisfactory assumption
since Arigatoni is mainly designed to handle large sets of colonies which evolve very rapidly.
Nevertheless, we do believe that the gain of simplicity is much larger than the loss of accuracy.
From this, we deduce that the probability that S cannot be served by C(i, j) (the Colony
whose leader GBU is γ(i, j)) is:

Q(X(i, j)) =
∏

∀(u,v),τ(u,v)∈T (i,j)

Q̂(X̂(u, v)) =
∏

∀(u,v),τ(u,v)∈T (i,j)

γ(u,v)−1∏

w=0

Q(X(u, v, w))

Assume that γ(u, v) is fixed during the request processing time. Then:

Q(X(i, j)) =
∏

Γ(i,j)

Q(X(u, v, w))

Hence, Q(X(i, j)) is the probability that a request sent by c(i, j, k) cannot be served by
the Colony C(i, j) of the GBU associated to τ(i, j). Counterwise, the probability that the
request can be served is:

P (X(i, j)) = 1 −
∏

Γ(i,j)

(1 − P (X(u, v, w))) (1)
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If P (X(u, v, w)) is constant equal to ρ, we get: P (X(i, j)) = 1 − (1 − ρ)Γ(i,j), and if ρ is
small, then P (X(i, j)) can be approximated by Γ(i, j).ρ.

Let Ph(X(i, j)) be the probability that the request issued by c(i, j, k) can be served by
the predecessor (or ancestor) of τ(i, j) at level i − h, but cannot be served at a lower level.
Let τ(i − h, j′) be the corresponding node, and decompose T (i − h, j′) into TL ∪ Th where
TL is the maximal subtree of T (i − h, j′) containing T (i, j). Hence, we have:

Ph(X(i, j)) = Q(TL).(1−Q(Th)) =

(
∏

ΓL

(1 − P (X(u, v, w)))

)
.

(
1 −

∏

Γh

(1 − P (X(u, v, w)))

)

Remark that:

Ph(X(i, j)) ≤
∏

Γh

(1 − P (X(u, v, w))) (2)

From (1), we deduce that the probability that a request issued by a member of a Colony is
served by the Colony increases with the size of the Colony. From (2), we deduce that the
probability for a request to be served at a lower level decreases along the level. From these
2 properties, we finally deduce the scalability of the GIP protocol.

4 Protocol Evaluation

To assess the effectiveness and the scalability of our Resource Discovery mechanisms, we
have conducted simulations using large numbers of units and service requests.

Simulation Setup. We have generated a network topology using the transit-stub model
of the Georgia Tech Internetwork Topology Models package [20], on top of which we added
the Arigatoni Overlay Network. The resulting network topology, shown in Figure 3 contains
103 GBUs. GBU2 (highlighted with a square in Figure 3) was chosen as the root of the
topology.

GCUs were not directly simulated in the network topology. Instead, to simulate the
population of GCUs, we added a GCU agent to each GBU in the system. The GCU agent of a
GBU represents the local Colony of GCUs that are attached to that GBU as their leader.

We considered a finite set of resources R1 · · ·Rr of variable size r, and represented a
service by a direct mapping to a resource. In other words, a service expresses the conditional
presence of a single resource. We have a set of r services {S1 · · ·Sr}, where service Si

expresses the conditional presence of resource Ri. A GCU declaring service Si means that
it can provide resource Ri. This model, while quite simple, is still generic enough, and
is sufficient for the main purpose of our experiments, which is to study the scalability of
Resource Discovery in our system.

To simulate GCU load, we then randomly added each service with probability ρ at each
GCU agent, and had it registered via the registration service of Arigatoni. The routing tables
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Figure 3: Simulated network topology with 103 GBUs

of the GBUs were updated starting at the initial GBU and ending at the root of the topology,
GBU2. In other words, it is as if each GBU has a probability ρ of having a GCU which
registered service Si, for any Si. Thus, the parameter ρ can be seen as either the global
availability of services, or as the density of population of GCUs (since the more the number
of GCUs, the more likely it is that a given service is provided).

We then issued n service requests at GCU agents chosen uniformly at random. Each
request contained one service3, also chosen uniformly at random. Each service request was
then handled by the Resource Discovery mechanism of Arigatoni described in Section 3. We
used a service acceptation probability of α = 75%, which corresponds to the probability
that a GCU that receives a service request and that declared itself as a potential Individual
for that service (i.e. that registered it), accepts to serve it.

The Resource Discovery algorithm was implemented in C++ and compiled using GNU
C++ version 2.95.3. Experiments were conducted on a 3.0 Ghz Intel Pentium machine with
2 GB of main memory running Linux 2.4.28. The different experimental parameters are
summarized in Table 1. Upon completion of the n requests, we measured for each GBU its
load as the number of requests (messages) that it received. We then computed the average
load as the average value over the population of GBUs in the system. We also computed
the maximum load as the maximum value of the load over all the GBU s in the system.
Similarly, we computed the average and maximum load fractions as the average and max

3Service requests with k services can be seen as k service requests with one service.
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Parameter Description Value

K Number of GBUs 103
r Size of services pool 128
ρ Service availability 0.1% to 7%
α Service acceptation probability 75%
n Number of service requests issued 100 to 50000

Table 1: Parameters of the experiments

loads divided by the number of requests. The average load represents the average load of
a GBU due to the completion of the n requests. The average load fraction represents the
fraction of requests that a GBU served, in average. The maximum fraction represents the
maximum fraction of the requests that a GBU served. Note that since a GBU receives at most
one request message corresponding to a given service request, the average load fraction can
be seen as the fraction of GBUs in the system involved in a service request, in average.

Finally, we computed the average service acceptation ratio as follows. For each GCU

agent, we computed the local acceptation ratio as the number of service requests that yielded
a positive response (i.e. the system found at least one Individual), over the number of service
requests issued at that GCU agent. We then computed the average acceptation ratio as the
average value over the number of GCU agents (that issued at least one service request).

We repeated the experiments for different values of ρ and n. Results are illustrated in
Figure 4. Figure 4(a) and (c) were obtained with a fixed value of n of 50000 service requests.
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Figure 4: (a) Average and maximum load w.r.t. service availability ρ. (b) Average and
maximum load fraction w.r.t. the number of requests issued. (c) Average service acceptation
ratio w.r.t. service availability ρ.

Results and Interpretations. Figure 4(a) shows the evolution of the average and max-
imum load when varying the service availability ρ. The maximum load was obtained for
GBU2 or GBU0, that are both very low-depth GBUs in the tree topology. It appears that the
maximum load decreases with the service availability, while the average load increases. In
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other words, the load is more evenly distributed amongst the GBUs in the system. This is
due to the strategy of our Resource Discovery mechanism which consists in always searching
for Individuals in its own Colony first before delegating to its leader. Indeed, as the service
availability increases, GBUs have a higher chance to find Individuals in their own Colony.
Hence, GBUs of high-depth in the topology participate more in the process of Resource
Discovery, and GBUs of low-depth participate less. In other words, the Resource Discovery
mechanism used in Arigatoni does not overload low-depth GBUs in the tree topology.

We observe for values of 2%≤ρ≤4%, a plateau in the curve of the maximum load, followed
by a decreasing phase, but with a much lower slope than before (ρ<2%). This is due to
the fact that for ρ<2%, GBU2 has the maximum load in the system. For ρ>2%, however,
GBU0 takes over. This transition can be explained by the fact that for higher values of ρ,
less messages are delegated to GBU2. At some point (ρ∼2%), the load of GBU2 becomes less
important than that of GBU0, due to the high number of colonies that the latter manages.
The constantness observed in the curve around that value is probably due to the fact that a
transition phase is necessary for GBU0 to be sensitive again to the increase of ρ. The following
decreasing period with a lower slope corresponds to the fact that GBU0 is less sensitive to an
increase of ρ (indeed, GBU0 is mostly concerned with the availability of services in its own
colonies).

Finally, we observe that the average load stabilizes, which shows that the system scales
to large number of GCUs (since as previously mentioned, the service availability ρ can be
assimilated to the number of GCUs in the system).

Figure 4(b) shows the average and maximum load fractions w.r.t. the number of service
requests. It appears clearly that Arigatoni scales to large numbers of requests. In fact, the
average number of requests received by a GBU increases linearly with the total number of
requests, at a rate of ∼ 3.5%. In other words, in average, a GBU only receives ∼ 3.5% of the
total number of requests. Equivalently, only 3.5% of the overall population of GBUs in the
system participate in the process of discovering a particular resource, in average. Figure 4(b)
also shows that low level GBUs in the topology are not particularly overloaded (the most
overloaded GBU manages 60% of the overall load for ρ = 6%). Finally, it corroborates the
assertion that higher values of ρ favor the maximum load over the average load, i.e., load
balancing gets more effective.

Figure 4(c) shows that, unsurprisingly, the average service acceptation ratio increases ex-
ponentially with the availability of services. This shows that Arigatoni is efficient in searching
Individuals for requested services. Indeed, a service availability of 4% enables the system
to achieve an acceptation rate of 90%. In other words, the more the number of GCUs in the
system, the more chances to find an Individual for a service request.

5 Conclusion

In this paper, we presented the Arigatoni lightweight communication model. We exposed in
details the mechanisms that allow Arigatoni to offer dynamic and generic resource discov-
ery. The main achievements are the complete decoupling between the different units in the
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system, and the encapsulation of resources in local colonies, which enable Arigatoni to be
potentially scalable to very large and heterogeneous populations. We are currently improv-
ing our model with several new features , such as the possibility to ask a certain number of
instances of a service (i.e., the system should find the specified number of GCUs capable of
providing that service), or the possibility to embed services in conjunctions (i.e., the services
in a conjunction should be provided by the same GCU). We are also working on the imple-
mentation of a real prototype and the subsequent deployment on the PlanetLab experimental
platform, and/or on GRID5000, the experimental platform available at the INRIA. As part
of our ongoing research, we are also working on a more complete statistical study of our
system, based on more elaborate statistical models and realistic assumptions.
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A GRID Scenario for Seismic Monitoring, from [2]

John, chief engineer of the SeismicDataCorp Company, Taiwan, on board of the seismic data
collector ship, has to decide on the next data collect campaign. For this he would like to
process the 100 TeraBytes of seismic data that have been recorded on the data mass recorder
located in the offshore data repository of the company to be processed and then analyzed.

He has written the processing program for modeling and visualizing the seismic cube
using some parallel library like e.g. MPI/PVM: his program can be distributed over different
machines that will compute a chunk of the whole calculus;

However, the amount of computation is so big that a SuperComputer and a cluster of
’PC’ has to be rented by the SeismicDataCorp company. John will ask also for bandwidth
in order to get rid of any bottleneck related to the big amount of data to be transferred.

Aftermath, the processed data should be analyzed using a Virtual Reality Center, VRC

based in Houston, U.S.A. by a specialist team and the resulting recommendations for the
next data collect campaign have to be sent to John.

Seismic Data

GBU Taiwan

GBU/GRU

GBU/GRU

Super computer

VRC Houston

Network
Network

Network
Network

Network
Network

GCU/GRU

John Taiwan

GBU ISP

ISP

INTERNETINTERNET

Network
Network

PCluster

GIP REQUEST/RESPONSE

VERY HIGH SPEED ISP

Figure 5: A GRID Scenario for Seismic Monitoring

Hence he would like the following scenario to happen:

John logs on the Arigatoni overlay network in a given Colony in Taiwan, and sends a
quite complicated service request in order for the data to be processed using his own
code. Usually the GBU leader of the Colony will receive and process the request;

If the Resource Discovery performed by the GBU succeeds, i.e. a SuperComputer and
a cluster and an ISP are found, then the data are transferred at a very high speed and
processed;
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John will ask also to the GCU containing the seismic data to dispatch suitable chunks
of data to the SuperComputer and the cluster designated by the GBU to perform some
pieces of computation;

John will ask also to the Global SuperComputer unit the task of collecting all inter-
mediate results so calculating the final result of the computation (i.e. it will play the
role of Maestro di Orchestra);

The processed data are then sent from the SuperComputer, via the high speed ISP to
the Houston center for being visualized and analyzed;

Finally, the specialist team’s recommendations have to be sent to John’s laptop.

This scenario is pictorially presented in Figure 5 (we suppose a number of SubColonies
with related leaders GBU, all registered as Individuals to a superleader-GBU (for example the
John’s GBU could be elected as the superleader). All GBU’s are trusted4, making de facto
in common all resources of their colonies.

4As a simpler approximation à la Globus, all GBU s share the same PKI.
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