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Interpolation par splines locales

pour une implémentation parallèle de l’équation de

Vlasov-Poisson

Résumé : Ce travail concerne la résolution numérique de l’équation de Vlasov en utilisant
une grille de l’espace des phases. Contrairement aux méthodes Particle In Cell (PIC)
qui sont connues pour être bruitée, nous proposons une méthode basée sur la méthode
semi-Lagrangienne pour discrétiser l’équation de Vlasov en deux dimensions de l’espace des
phases. Ce type de méthode étant très coûteuse numériquement, on propose d’effectuer les
simulations sur des machines parallèles. Pour cela, on présente une méthode de décomposition
de domaine, chaque sous-domaine étant dédié à un processeur. Des conditions de type
Hermite aux bords permettent alors d’obtenir une bonne approximation de la solution
globale. Plusieurs résultats numériques montrent la précision et la bonne scalabilité de
la méthode jusqu’à 64 processeurs.

Mots-clés : Vlasov equation, semi-Lagrangian method, numerical methods, parallelism
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1 Introduction

The Vlasov-Poisson equation describes the evolution of a system of charged particles under
the effects of a self-consistent electric field. The unknown f is a distribution function of
particles in the phase space which depends on the time t ≥ 0, the physical space x ∈ IRd

and the velocity v ∈ IRd, where d is the dimension d = 1, 2, 3. This kind of model can be
used for the study of beam propagation, collisionless or gyrokinetic plasmas.

The numerical resolution of Vlasov type equations, the solution of which depends at least
on 6 variables plus time, is performed most of the time using particle methods (Particle
In Cell methods) where the plasma is approached by a finite number of macro-particles.
The trajectories of these particles are computed using the characteristic curves given by
the Vlasov equation, whereas the self-consistent electric field is computed on a fixed grid
[3]. Even if these methods give satisfying results with relatively few particles, for some
applications however (in particular when particles in the tail of the distribution function play
an important physical role, or when one wants to study the influence of density fluctuations
which are at the origin of instabilities), it is well known that the numerical noise inherent to
the particle methods becomes too significant. Consequently, methods which discretize the
Vlasov equation on a phase space grid have been proposed (see [9, 10, 11, 14, 15, 22, 24] for
plasma physics and [1, 25] for others applications). Among these Eulerian methods, the semi-
Lagrangian method consists in computing directly the distribution function on a Cartesian
grid of the phase space. The computation is done by integrating the characteristic curves
backward at each time step and interpolating the value at the feet of the characteristics
by some interpolation techniques (Lagrange, Hermite or cubic splines for example). We
refer the reader to [24] for more details on the semi-Lagrangian method and to [11] for a
comparison of Eulerian solvers dedicated to the Vlasov equation.

Eulerian methods have proven their efficiency on uniform meshes in two dimensional
phase space, but when the dimensionality increases, the number of points on a uniform
grid becomes very important which makes numerical simulations challenging. Two kinds
of strategy have been recently developed to simulate four dimensional problems. Some
adaptive methods decrease computational cost by keeping only a subset of all grid points.
Such methods use moving distribution function grids well suited to manage data locality.
For more details, we refer the reader to [6, 17, 23]. On the other side, some parallelized
version of codes have been implemented to simulate high dimensional problems (see [8, 12]).
Generally, the numerical scheme is based on a time splitting scheme which can be parallelized
very efficiently on a moderate number of processors using a global transposition between
each split step. Apart from this transposition that can be overlapped with computations,
there is no communication between the processors. However, when heterogeneous grids
and several hundreds or more processors are targeted (see [16, 19]), a global transposition
involves a huge amount of data beeing transfered and this can become very inefficient. For
these reasons, we develop in this paper a local spline interpolation technique that avoids any
global transposition.

This work is devoted to the parallel implementation of the semi-Lagrangian method
by using the cubic spline interpolation operator. In order to check the method, we have
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4 Crouseilles, Latu & Sonnendrucker

designed the parallel software LOSS (LOcal Splines Simulator). Even if cubic spline inter-
polation seems to be a good compromise between accuracy (small diffusivity) and simplicity,
it does not provide the locality of the reconstruction since all the values of the distribution
function are used for the reconstruction in each cell. To overcome this problem of global de-
pendency, we decompose the phase space domain into patches, each patch being devoted to
one processor. One patch computes its own local cubic spline coefficients by solving reduced
linear systems; Hermite boundary conditions are imposed at the boundary of the patches to
reconstruct a global C1 numerical solution.

In fact, our strategy consists in getting a parallel version of the code, the results of which
are as close as possible to the results of the sequential version. Even if the methodology
remains slightly different from the sequential case (essentially due to the local resolution
of the cubic spline coefficients versus the global resolution), our main efforts consist in
recovering in the best possible way the global resolution. Thanks to an adapted treatment of
the Hermite boundary conditions, the obtained numerical results are then in good agreement
with those obtained with the sequential version of the code. Moreover, some communications
between processors have to be managed in a suitable way; indeed, as particles can leave the
subdomain, their information must be forwarded to the appropriate processor that controls
the subdomain in which the particles now reside. Such interprocessor communications would
involve a relatively large amount of data exchange, but a condition on the time step allows us
to control the shifts so that the communications are only done between adjacent processors.
Hence, this communication scheme enables us to obtain competitive results from a scalability
point of view. Let us mention that even if a uniform grid is used here, the methodology could
be extended to sets of lines which are not equally spaced (adaptive meshes for example).

This work contributes to the improvment of a five dimensional semi-Lagrangian gyroki-
netic code which simulates the turbulent transport in magnetized fusion plasma. This high
dimensional problem is very demanding in terms of numerics hence, the code is devoted
to be massively parallelized; a time-splitting algorithm allows to reduce the problem into
a sequence of one dimensional and two dimensional advections. Our method enables to
accurately solve this advection part using parallel computations (see [16] for more details).

The paper is organized as follows. First, we draw up some basic properties of the Vlasov-
Poisson model. Then, we recall the main steps of the semi-Lagrangian method. Next, we
propose the Hermite spline interpolation on patches before illustrating the efficiency of the
method by presenting several numerical results.

2 The Vlasov-Poisson model

The evolution of the distribution function of particles f(t, x, v) in phase space (x, v) ∈
IRd × IRd with d = 1, 2, 3 and t the time, is given by the dimensionless Vlasov equation

∂f

∂t
+ v · ∇xf + F (t, x, v) · ∇vf = 0, (1)

INRIA
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where the force field F (t, x, v) can be coupled to the distribution function f , t is the scaled
time. For the Vlasov-Poisson system, this coupling is done through the macroscopic density
ρ

ρ(t, x) =

∫

IRd

f(t, x, v)dv.

The force field which only depends on t and x makes the system nonlinear and is given by

F (t, x, v) = E(t, x), E(t, x) = −∇xφ(t, x), −∆xφ(t, x) = ρ(t, x) − 1, (2)

where E is the electric field and φ the electric potential. These two quantities depend on
the total charge in the plasma where the ions form a fix and uniform background. In the
sequel, we briefly recall some classical estimates on the Vlasov-Poisson system (1)-(2). First
of all, mass and momentum are preserved with time,

d

dt

∫

IRd×IRd

f(t, x, v)

(

1
v

)

dxdv = 0, t ∈ IR+.

Next, multiplying the Vlasov equation (1) by |v|2 and performing an integration by parts,
we find the conservation of energy for the (1)-(2) system

d

dt

(∫

IRd×IRd

f(t, x, v)
|v|2
2

dxdv +
1

2

∫

IRd

|E(t, x)|2dx

)

= 0, t ∈ IR+.

Finally, the Vlasov-Poisson equation (1)-(2) conserves the kinetic entropy

H(t) =

∫

IRd×IRd

f(t) log(f(t))dxdv = H(0).

On the other hand, we can define the characteristic curves of the Vlasov-Poisson equation
(1)-(2) as the solutions of the following first order differential system



























dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = E(t, X(t; s, x, v)),

(3)

with the initial conditions

X(s; s, x, v) = x, V (s; s, x, v) = v.

We denote by (X(t; s, x, v), V (t; s, x, v)) the position in phase space at the time t, of a particle
which was in (x, v) at time s. Let say that t → (X(t; s, x, v), V (t; s, x, v)) is the characteristic
curves solution of (3). Then, the solution of the Vlasov-Poisson equation (1)-(2) is given by

f(t, x, v) = f(s, X(s; t, x, v), V (s; t, x, v)) (4)

= f0(X(0; t, x, v), V (0; t, x, v)), (x, v) ∈ IRd × IRd, t ≥ 0, (5)

RR n° 5926



6 Crouseilles, Latu & Sonnendrucker

where f0 is a given initial condition of the Vlasov-Poisson equation. This equality means
that the distribution function f is constant along the characteristic curves which is the basis
of the numerical method we present in the next section. For more details, we refer the reader
to [4, 13].

3 The semi-Lagrangian method

In this section, we will recall the principles of the semi-Lagrangian method for the Vlasov-
Poisson equation (see [24] for details) in two dimensions of the phase space.

First of all, we introduce a finite set of mesh points (xi, vj), i = 0, ..., Nx and j = 0, ..., Nv

to discretize the computational domain. Then, given the value of the distribution function
f at the mesh points at any given time step tn, we obtain the new value at mesh points
(xi, vj) at tn+1 using

f(tn + ∆t, xi, vj) = f(tn, Xn, V n),

where the notations (Xn, V n) = (X(tn; tn + ∆t, xi, vj), V (tn; tn + ∆t, xi, vj) are used for
the solutions of (3), and ∆t stands for the time step. For each mesh point (xi, vj), the
distribution function f is then computed at tn+1 in two steps

1. Find the starting point of the characteristic ending at (xi, vj), i.e. Xn and V n.

2. Compute f(tn, Xn, V n) by interpolation, f being known only at mesh points at time
tn.

In order to deal with the first step, we have to introduce a time discretization of (3). To
remain second order accurate in time, we use the Ampère equation to get an approximation
of the electric field at time tn + ∆t

∂E(t, x)

∂t
= −J(t, x), (1)

where J = J(t, x) is the current given by

J(t, x) =

∫

IR

f(t, x, v)vdv.

The equation (1) is discretized as follows

E
n+1/2

i = En
i − ∆t

2
Jn

i ,

where ∆t is the time step, En
i is the electric field evaluated at t = tn in x = xi and Jn

i is
the current evaluated at time tn in xi, and is given by

Jn
i =

Nv
∑

j=0

f(tn, xi, vj)vj∆v, (2)

INRIA
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with ∆v the velocity step. Then, we solve (3) at the second order accurate in time thanks
to a predictor-corrector scheme. The semi-Lagrangian method then reduces to the following
algorithm:

Let us suppose that f(tn, xi, vj), E
n
i are known on the mesh points

Step 1. Computation of a prediction of E
n+1/2

i , called Ẽ
n+1/2

i , by solving the Ampère

equation

Ẽ
n+1/2

i = En
i − ∆t

2
Jn

i ,

where Jn
i is computed via (2).

Step 2. Resolution of (3)

• Backward advection of ∆t/2 in the spatial direction:

Xn+1/2 = Xn+1 − ∆t

2
V n+1.

• Backward advection of ∆t in the velocity direction:

V n = V n+1 − ∆t Ẽn+1/2(Xn+1/2).

• Backward advection of ∆t/2 in the spatial direction:

Xn = Xn+1/2 − ∆t

2
V n.

Step 3. Interpolation of f(tn, Xn, V n) and updating of the distribution function thanks

to the following equality

f(tn+1, Xn+1, V n+1) = f(tn, Xn, V n),

and computation of the density ρn+1(Xn+1)

ρn+1(Xn+1) =

∫

IR

f(tn+1, Xn+1, v)dv.

Step 4. Correction step: computation of the electric field by solving the Poisson equation

at time tn+1

∂En+1

∂x
= ρn+1 − 1.

Hence, the step 2 allows to compute the starting point of the characteristic (Xn, V n)
thanks to the knowledge of (Xn+1, V n+1). Once we have followed the characteristics curves
backward, we have to evaluate the distribution function at the end points of the characteristic

RR n° 5926



8 Crouseilles, Latu & Sonnendrucker

curves which do not generally coincide with the mesh where f is known (step 3). The last
step is a correction step since the predicted electric field Ẽn+1 is replaced by the true electric
field En+1 at time tn+1, solution to the Poisson equation at time tn+1. Let us remark that
the evaluation of the electric field at time tn+1/2 in Xn+1/2 that does not belong necessarily
to the mesh is performed thanks to a linear approximation.

This algorithm may be iterated so that the predicted electric field Ẽn+1 becomes suffi-
ciently close to the true electric field En+1 at time tn+1. In practice, one iteration of this
algorithm already gives enough accuracy.

4 The local spline interpolation

In this section, we present our interpolation technique based on a cubic spline method (see
[5, 18, 24]). Even if the cubic spline approach is quite standard for solving Vlasov equations,
it remains a global method since it requires the values of the distribution function on all the
domain, which is an inconvenient from a parallelization point of view. Our approach avoids
this globality. Indeed, we decompose the phase space into several patches, each patch being
devoted to one processor. The strategy is based on adapted boundary conditions which
allow a C1 reconstructed solution on the global phase space domain even on the patches
boundaries.

We first present the interpolation on one patch in an unidimensional context before
focusing on the two dimensional case.

4.1 The local spline interpolation in one dimension

Let us consider a function f which is defined on a global domain [xmin, xmax] ⊂ IR. This
domain is decomposed into several subdomain called generically [x0, xN ]; each subdomain
will be devoted to a processor. In the following, we will use the notation xi = x0 + ih, where
h is the mesh size: h = (xN − x0)/(N + 1).

Let us now restrict the study of f : x → f(x) on an interval [x0, xN ], N ∈ IN, where x0

and xN are to be chosen, according to the decomposition domain. The projection s of f
onto the cubic spline basis reads

f(x) ' s(x) =
N+1
∑

ν=−1

ηνBν(x),

INRIA
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where Bν is the cubic B-spline

Bν(x) =
1

6h3







































(x − xν−2)
3 if xν−2 ≤ x ≤ xν−1,

h3 + 3h2(x − xν−1) + 3h(x − xν−1)
2

−3(x − xν−1)
3 if xν−1 ≤ x ≤ xν ,

h3 + 3h2(xν+1 − x) + 3h(xν+1 − x)2

−3(xν+1 − x)3 if xν ≤ x ≤ xν+1,
(xν+2 − x)3 if xν+1 ≤ x ≤ xν+2,
0 otherwise.

(1)

The interpolating spline s is uniquely determined by (N + 1) interpolating conditions

f(xi) = s(xi), ∀i = 0, ..., N, (2)

and the Hermite boundary conditions at both ends of the interval in order to obtain a C1

global approximation
f ′(x0) ' s′(x0), f ′(xN ) ' s′(xN ). (3)

The only cubic B-spline not vanishing at point xi are Bi±1(xi) = 1/6 and Bi(xi) = 2/3.
Hence (2) yields

f(xi) =
1

6
ηi−1 +

2

3
ηi +

1

6
ηi+1, i = 0, ..., N. (4)

On the other hand, we have B′
i±1(xi) = ±1/(2h), and B′(xi) = 0. Thus the Hermite

boundary conditions (3) become

f ′(x0) ' s′(x0) = −1/(2h) η−1 + 1/(2h) η1, (5)

and
f ′(xN ) ' s′(xN ) = −1/(2h) ηN−1 + 1/(2h) ηN+1.

Finally, η = (η−1, ...ηN+1)
T is the solution of the (N + 3)× (N + 3) system Aη = F , where

F is the following vector and

F = [f ′(x0), f(x0), ..., f(xN ), f ′(xN )]
T

. (6)

and A denotes the following matrix

A =
1

6

























−3/h 0 3/h 0 · · · 0

1 4 1 0
...

0 1 4 1
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 1 4 1
0 0 0 −3/h 0 3/h

























. (7)

RR n° 5926



10 Crouseilles, Latu & Sonnendrucker

Let us precise that f ′ is a notation, and from a numerical point of view, the derivative of
f has to be approximated in a good sense. We will focus on this in the sequel of the paper.

Resolution of the linear system Aη = F
The matrix A of the linear system has a special structure. It’s LU decomposition is of

the following form

L =

























1 0 0 · · · · · · 0

−h/3 1 0
. . .

...

0 l1 1
. . .

...

0 0
. . .

. . . 0
...

...
. . .

. . . lN 1 0
0 · · · 0 −(3lN)/h (3lN+1)/h 1

























,

and

U =
1

6

























−3/h 0 3/h 0 · · · 0

0 d1 2 0
...

0 0 d2 1
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . . dN+1 1

0 · · · 0 0 0 (3dN+2)/h

























,

where li and di can be computed from the following relations

d1 = 4, l1 = 1/4, d2 = 4 − 2l1 = 7/2,

from i = 2, N

li = 1/di,

di+1 = 4 − li,

and

lN+1 =
1

dNdN+1

,

dN+2 = 1 − lN+1.

The LU decomposition of A can then be computed once for all. At each time step, a
spline interpolant needs to be computed solving LUη = F into two steps: the resolution of
Lϕ = F , and then, the resolution of Lη = ϕ.

INRIA
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4.2 The local spline interpolation in two dimensions

In a two dimensional space, f is projected on a cubic spline basis ∀(x, y) ∈ [x0, xNx
]×[y0, yNy

]
as follows

f(x, y) ' s(x, y) =

Nx+1
∑

ν=−1

Ny+1
∑

β=−1

ην,βBη(x)Bβ(y). (8)

The same notations used in the previous section are performed and we have to compute the
coefficients ηνβ . To that purpose, we first solve the Ny + 1 following systems

s(x, yj) =

Nx+1
∑

ν=−1

γν(yj)Bν(x), ∀j = 0, ..., Ny, (9)

where
γν(yj) = [γ−1(yj), γ0(yj), ..., γν(yj), ..., γNx

(yj), γNx+1(yj)]
T

.

Each of the Ny + 1 systems (9) satisfies the Nx + 1 interpolation conditions (at fixed j)

f(xi, yj) = s(xi, yj), i = 0, ..., Nx,

and the Hermite boundary conditions in the x-direction

∂f

∂x
(x0, yj) '

∂s

∂x
(x0, yj),

∂f

∂x
(xNx

, yj) '
∂s

∂x
(xNx

, yj).

We have denoted by

γν(yj) =

Ny+1
∑

β=−1

ην,βBβ(yj). (10)

We have been brought to solve Ny +1 linear systems Aγν(yj) = F (yj), one for each value of
j, involving the (Nx +3)× (Nx +3) matrix (7) and a (Nx +3) vector similar to (6) evaluated
in yj . Following the same procedure used previously (via the LU decomposition), we then
obtain the (Nx + 3) vector of unknown γν(yj), for j = 0, ..., Ny

γν(yj) = [γ−1(yj), γ0(yj), ..., γν(yj), ..., γNx
(yj), γNx+1(yj)]

T .

The second step consists in the resolution for each ν = −1, .., Nx+1 of a one dimensional
problem given by (10). However, the left hand side of this system is only known for values
of yj , j = 0, ..., Ny (i.e. it is a vector of Ny + 1 components) whereas the right hand side
is a (Ny + 3) vector. Some boundary conditions are necessary to close the system. Hermite
boundary conditions are imposed for the first and last component of the vector (which
corresponds to j = −1 and j = Ny), that is to say, we have to compute γ ′

ν(y0) and γ′
ν(yNy

),
∀ν = −1, ..., Nx + 1. To achieve this task, we solve two systems: we first derive (10) with
respect to the y variable, and then evaluate it in yj = y0 and yj = yNy

. The Hermite
boundary conditions have to be adapted to this particular case. Consequently, we have to

RR n° 5926



12 Crouseilles, Latu & Sonnendrucker

solve the two following systems (associated to j = 0 and j = Ny): Aγ′
ν(yj) = ∂yf(x, yj),

where A is the matrix (7),

γ′

ν(yj) =
[

γ′

−1(yj), ..., γ
′

ν(yj), ..., γ
′

Nx+1(yj)
]T

,

and the right hand side writes

∂yf(x, yj) = [∂xyf(x0, yj), ∂yf(x0, yj), ..., ∂yf(xi, yj), ..., ∂yf(xNx
, yj), ∂xyf(xNx

, yj)]
T

.

Once we computed γ′
ν(y0) and γ′

ν(yNy
), for all ν = −1, ..., Nx + 1, we solve the system

(10) which writes here Aην,β = Γνβ . The matrix A is given by (7) and the right hand side
Γνβ reads

Γνβ =
[

γ′

ν(y0), γν(y0, ..., γν(yNy
), γ′

ν(yNy
)
]T

,

for each value of ν = −1, ..., Nx + 1.
Once the spline coefficients ην,β have been computed for all ν and β, the value of f at

the origin of the characteristics (Xn, V n) (determined following the algorithm of section 3)
is taken to be the value of the spline s(Xn, V n). If (Xn, V n) belongs to [xi, xi+1]× [yj , yj+1],
the approximation of the function f(Xn, V n) is given by

s(Xn, V n) =

i+2
∑

ν=i−1





j+2
∑

β=j−1

ην,βBν(Xn)Bβ(V n)



 ,

where Bν and Bβ are given by (1). To compute s(Xn, V n) for all mesh points requires
O(NxNy) floating points operations.

In summary, we have to solve

(Ny + 1) systems of size (Nx + 3) × (Nx + 3) (to get γν(yj), ∀j = 0, ..., Ny),

2 systems of size (Nx + 3) × (Nx + 3) (to get γ′
ν(y0) and γ′

ν(yNy
)),

(Nx + 3) systems of size (Ny + 3) × (Ny + 3) (to get ην,β).

From a computational cost point of view, the resolution of a linear system of size Nx

using the LU decomposition needs O(Nx) operations. Such a resolution has to be done Ny

times for the x-direction; the same is true for the y-direction. Finally, the two dimensional
interpolation leads to O(NxNy) operations.

4.3 Towards an accurate parallelization

In order to get accurate numerical simulations, one has to take care of boundary conditions
for each local LU solve. Indeed, our strategy consists in being as closer as possible to the
corresponding sequential version. Hence, from a decomposition of the global domain into
several patches, each processor being devoted to a patch, one wants that our local resolution
of cubic spline coefficients recovers in the best way an usual resolution on the global domain.
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To that purpose, some efforts have to be done to approximate the derivatives of f in a
particular way with respect to x and y. The points where derivatives must be computed are
shared between two processors since x0 and xN are both beginning and end of subdomains
(xN of the target processor corresponds to x0 of the adjacent processor). Hence, these
derivatives of f join adjacent subdomains and play an important role in the quality of the
numerical results (see figure 5 in section 6).

Different ways have been explored to obtain the derivatives: finite differences of different
orders, cubic spline approximation ... In order to reconstruct a smooth approximation (let
say C1 on the global domain), the cubic spline approximation has been chosen. Indeed, we
remark that even in regions where f is smooth enough, a finite differences approximation
remains quite different from a cubic spline approximation given by (5). Hence, as we want
to reconstruct the distribution function via a cubic spline approximation, the first line of the
linear system the matrix of which is given by (7) can introduce some numerical errors which
can be propagated in the rest of the system; in the numerical experimentations we have
drived, the final results are damaged, especially when one observes the mass conservation.
Indeed, the finite differences approximation leads to some variations of the mass conservation
which is an inconvenient for the long time behaviour of the numerical solution. On the
contrary, the approximation of the derivatives using cubic splines enables us to obtain a
robust code with a relatively small number of discrete points.

By constructing an approximation of the derivatives using the cubic spline coefficients
and the equalities (4) and (5), we manage to overcome this kind of error (see figure 6 in
section 6). Moreover, the final global reconstructed numerical solution is consistent with
a numerical solution which is computed through a sequential resolution. Let us explain it
in the following in the one dimensional case (the multi-dimensional case can be deduced
straightforwardly). First, relations (5) and (4) enable us to write

s′(xi) =
1

2h
(ηi+1 − ηi−1),

=
1

2h

(

3

2
fi+1 −

1

4
ηi −

1

4
ηi+2 −

3

2
fi−1 +

1

4
ηi−2 +

1

4
ηi

)

,

=
3

4h
(fi+1 − fi−1) +

1

8h
(ηi−2 − ηi + ηi − ηi+2), (11)

to obtain the following equality

s′(xi) =
3

4h
(fi+1 − fi−1) −

1

4
(s′(xi−1) + s′(xi+1)). (12)

If we inject (11) in (12) to compute s′(xi±1), we obtain

s′(xi) =
3

4h
(fi+1 − fi−1) −

1

4

(

3

4h
(fi+2 − fi−2) +

1

8h
(ηi−3 − ηi+1 + ηi−1 − ηi+3)

)

,

=
3

4h
(fi+1 − fi−1) −

1

4

(

3

4h
(fi+2 − fi−2)

)

− 1

16
(2s′(xi) + s′(xi−2) + s′(xi+2)),
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then we get another expression for the derivative of s

s′(xi) =
6

7h
(fi+1 − fi−1) −

3

14h
(fi+2 − fi−2) +

1

14
(s′(xi+2) − s′(xi−2)). (13)

Thanks to (13), the evaluation of s′(xi+2) and s′(xi−2) leads to the following new approxi-
mation of s′(xi)

αs′(xi) =
6

7h
(fi+1 − fi−1) −

3

14h
(fi+2 − fi−2) +

6

98h
(fi+3 − fi+1 + fi−1 − fi−3)

− 3

142h
(fi+4 − fi−4) +

1

142
(s′(xi+4) − s′(xi−4)).

(14)
with α = (1− 2/142). A last iteration allows us to obtain a high order approximation of the
derivative of s

αs′(xi) =

j=8
∑

j=−8

ωjfi+j +
1

α142
(s′(xi+8) + s′(xi−8)) +

2

α142
s′(xi),

to obtain

(

1 − 2

142
− 2

(1 − 2/142)142

)

s′(xi) =

j=8
∑

j=−8

ωjfi+j +
1

α142
(s′(xi+8) + s′(xi−8)), (15)

where the derivatives s′(xi+8) and s′(xi−8) are evaluated thanks to a finite differences ap-
proximation of order 4. For example, s′(xi+8) is approximated by

s′(xi+8) = (−f(xi+10) + 8f(xi+9) − 8f(xi+7) + f(xi+6)) /(12h)

where h is the step discretization. Even if this choice may introduce some noise in the final
evaluation of s′(xi), the commited errors remains quite negligeable since the use of the finite
differences is now sufficiently far from the junction points. The final approximation of s′(xi)
then reads

s′(xi) =

j=10
∑

j=−10

ω̃jfi+j ,

=

j=−1
∑

j=−10

ω̃−

j fi+j +

j=10
∑

j=1

ω̃+

j fi+j , (16)

since the coefficient ω̃0 is null here. Let us note that ω−

j and ω+

j are computed once for all.
Other iterations can also be done, but formula (16) gives satisfying results.

The coefficients ω̃j , j = −10, ..., 10 are summarized in the table 1. The ω̃+

j coefficients

are given from the following relation: ω̃+
j = −ω̃−

j .
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ω̃−

−10 ω̃−

−9 ω̃−

−8 ω̃−

−7 ω̃−

−6

0.2214309755E-5 -1.771447804E-5 7.971515119E-5 -3.011461267E-4 1.113797807E-3

ω̃−

−5 ω̃−

−4 ω̃−

−3 ω̃−

−2 ω̃−

−1

-4.145187862E-3 0.01546473933 -0.05771376946 0.2153903385 -0.8038475846

Table 1: Coefficients for the approximation of the derivatives.

5 Parallelization of computations

In order to perform a parallelization of the interpolation step, data and computation have to
be distributed onto processors. A classical technique of domain decomposition is used here
to split the phase space in subdomains. Thus, a single processor works on local data and
shares information located on the borders of its subdomain with adjacent processors. The
set of values exchanged with the eight processors in the neighborhood of a given processor is
named the ghost area. This area is needed because each processor has to know information
belonging to others, in order to build the right hand side matrix of section 4.2. Values of
function f and some kind of derivatives are stored in the ghost zone in order to manage this
step. From a parallel performance point of view, the number of values transmitted between
processors must be minimal. So the ghost zone should be chosen as small as possible.

Indeed, on the patch, only points (xi, yj) for i = 0, ..., Nx − 1 and j = 0, ..., Ny − 1 are
known, and the interpolation step requires the knowledge of values on the patches borders;
moreover we have to evaluate the derivative in (x0, yj) and (xNx

, yj), for all j, (xi, y0) and
(xi, yNy

) for all i, which requires (see the previous section) a linear combination of 21 points.
The knowledge of these points enables us to build and solve the LU systems, and to

interpolate on [x0, xNx
]×[y0, yNy

]. But we have to take into account the advected points that
come out the targeted patch. As mentionned in the introduction, we impose a restriction on
the time step to enforce the displacement to be lower to the cell size. Hence, the interpolation
area becomes [x0 −∆x, xNx

+∆x]× [y0−∆y, yNy
+∆y] (where ∆x and ∆y denote the steps

discretization) and additional cubic spline coefficients have to be computed.
To that purpose, the resolution of the linear systems described in section 4.2 takes into

account the following augmented right hand side matrix (the derivatives are approximated
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thanks to (16))























f(−1,−1) ∂yf(−1, 0) f(−1, 0) · · · ∂yf(−1, Ny) f(−1, Ny + 1)
∂xf(0,−1) ∂2

xyf(0, 0) ∂xf(0, 0) · · · ∂2
xyf(0, Ny) ∂xf(0, Ny + 1)

f(0,−1) ∂yf(0, 0) f(0, 0) · · · ∂yf(0, Ny) f(0, Ny + 1)
...

...
. . .

. . .
...

...
f(Nx,−1) ∂yf(Nx, 0) f(Nx, 0) · · · ∂yf(Nx, Ny) f(Nx, Ny + 1)

∂xf(Nx,−1) ∂2
xyf(Nx, 0) ∂xf(Nx, 0) · · · ∂2

xyf(Nx, Ny) ∂xf(Nx, Ny + 1)
f(Nx + 1,−1) ∂yf(Nx + 1, 0) f(Nx + 1, 0) · · · ∂yf(Nx + 1, Ny) f(Nx + 1, Ny + 1)























.

(17)
The resolution in the x-direction is done for all j, which gives us the temporary spline

coefficients γν(yj), ν = −1, .., Nx and j = −2, ..., Ny + 1. The coefficients corresponding to
ν = −2 and ν = Nx + 1 are deduced from (4) applied for i = −1 and i = Nx.

In the same way, the resolution in the y-direction is done for all ν = −2, ..., Nx + 1, and
gives the coefficients ην,β for β = −1, ..., Ny + 1; the boundary values ην,−2 and ην,Ny+1 are
obtained from (4)

The target processor has to gather all points needed to compose the matrix (17). To that
purpose, as the values of the distribution function are known at (xi, yj) for i = 0, ..., Nx − 1
and j = 0, ..., Ny − 1. The local ghost zone received from others processors

- f(−1, j) for j = 0, ..., Ny − 1,
- f(i,−1) for i = 0, ..., Nx − 1,
- f(Nx : Nx + 1, j) for j = 0, ..., Ny − 1,
- f(i, Ny : Ny + 1) for i = 0, ..., Nx − 1,
- f(−1,−1),
- f(−1, Ny : Ny + 1),
- f(Nx : Nx + 1,−1),
- f(Nx : Nx + 1, Ny : Ny + 1),
- some ponderative summations of 10 points which are computed on the neighboring

processors to evaluate all derivatives.

6 Numerical simulations

In this section, some numerical results obtained with the methodology we exposed above
are presented. We compare sequential and parallel simulations for two problems that occur
in plasma physics: the Landau damping and the two stream instability test cases.

6.1 Landau damping

In this section, we propose to validate the method against the standard test case of the
Landau damping. We study the evolution of electrons whose distribution function is initially
an isotropic Maxwellian of density and temperature equal to one. The plasma is then
perturbed and a periodic damped wave is then created. The purpose of this numerical test
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is the study of the evolution of this damped wave. To achieve this task, we consider the
distribution function of electrons which is solution to the Vlasov-Poisson system (1)-(2).

Linear Landau damping

The initial condition associated to the scaled Vlasov-Poisson equation (1)-(2) has the
following form

f0(x, v) =
1√
2π

exp(−v2/2)(1 + α cos(kx)), (x, v) ∈ [0, 2π/k]× IR, (18)

where k is the wave number and α = 0.001 is the amplitude of the perturbation, so that
we consider linear regimes here. To capture the Landau damping, the size of the velocity
domain must be chosen greater than the phase velocity vφ. The phase velocity is equal to
ω/k, where ω is the frequency related to k and is approximated by

ω2 ' 1 + 3k2. (19)

Then, we set vmax = 6 where the velocity domain extend from −vmax to vmax. We use a
number of cells Nv = 32 or 64 for the velocity domain and Nx = 32 or 64 in the spatial
direction. The boundary conditions for the distribution function are periodic in the space
variable and compact in the velocity direction. Finally, the wave number is taken equal to
k = 0.3 or 0.5. The final time is T = 60 ω−1

p , with ωp the plasma frequency.
In this test, we are interested in the evolution of the square root of the electric energy

approximated by

Eh(t) =

(

∑

i

E2
i (t)∆x

)1/2

, (20)

where ∆x is the space step. According of the Landau theory, the amplitude of Eh(t) is
expected to be exponentially decreasing with a frequency ω.

On figure 1, we represent the evolution of log(Eh(t)) in the sequential case; two different
values of the wave number are shown: k = 0.3 and k = 0.5. The number of cells is equal to
Nx = Nv = 32 or Nx = Nv = 64. We observe that Eh(t) is always exponentially decreasing,
and the damping rate becomes larger when k increases, as predicted by the Landau theory.
The damping rate obtained are given by γ = 0.0127 for k = 0.3, and γ = 0.154 for k = 0.5,
which are very similar to the predicted values available in the literature (see [20, 2, 10]).

We also observe the “recurrence effect” (see [21]): on figure 1 (b) for example, with
Nx=Nv=32 points, the amplitude of the electric energy increases at t ' 31 ω−1

p which
appears in a quite good agreement with the theoritical time TR ≈ 2π/(k∆v). This time is
predicted from the free streaming case (∆v is the velocity step). This phenomenon is pushed
away by taking more points in velocity (see figure 1 with Nx = Nv = 64 points).

On figure 2, the same results are shown in the parallel case. The phase space domain is
decomposed into 4 patches of the same size 32×32 points, so that the global domain involves
64×64 points; moreover, Hermite boundary conditions are imposed at the boundary of each
patch using the approximation (16). We can observe that the results are very similar to the
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(a) (b)

Figure 1: Electric energy as a function of time for the linear Landau damping in the se-
quential case. (a) k=0.3 with Nx=Nv=32 points and Nx=Nv=64 points. (b) k=0.5 with
Nx=Nv=32 points and Nx=Nv=64 points.

sequential case since the damping rate are the same and the recurrence effect occurs at the
correct time.

Strong Landau damping

The initial datum is the following

f(0, x, v) =
1√
2π

exp(−v2/2)(1 + α cos(kx)), (x, v) ∈ [0, 2π/k]× IR,

where the amplitude of the initial perturbation of the density is taken equal to α = 0.5.
Moreover, the wave number k = 0.5, whereas vmax is equal to 6.5 in order to take into
account nonlinear effects. The number of cells will be equal to Nx = Nv = 128.

We are also interested in the evolution of log(Eh(t)) (where Eh(t) is given by (20)) as a
function of the time. The linear theory of the previous test can not be applied in this case
since the nonlinear effects have to be taken into account. Nevertheless, this test has been
studied by several authors and comparisons can be made with numerical results available in
the literature (see [2, 10, 11, 21]).

On figure 3, we compare the evolution of the logarithm of electric energy between the
sequential case and the parallel case. We notice that the amplitude of the electric energy is
first exponentially decreasing in time, and oscillates around a constant for larger times for
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Figure 2: Electric energy as a function of time for the linear Landau damping in the parallel
case. (a) k=0.3 with Nx=Nv=64 points. (b) k=0.5 with Nx=Nv=64 points.

the two simulations. As in the linear case, the sequential and the parallel case present quite
good results compared to results available in the literature. Moreover, until large times, the
two cases are very similar, and only at t ' 50 ω−1

p , the two results become slightly different.
On figure 3, we also plot a reference solution computed using 512× 1024 points.

Moreover, we can see on figure 4 the projection of the distribution function as a function
of the velocity. We plot the following quantity

F (v) =

∫ 2π/k

0

f(x, v)dx,

as a function of the velocity for different times, in the parallel case. We observe that particles
whose kinetic energy is smaller than the potential energy are trapped by electrostatic waves
around the phase velocity vφ = ω/k, where small bumps appear preceded by small holes.
Only the parallel case is presented, since the sequential results are too close to discuss
differences. We can first notice that the projection is symmetric with respect to the origin.
This a consequence of centered approximation of the derivatives (see section 4.3). Indeed,
uncentered approximation using finite differences formulas introduces some unsymmetry in
the distribution function leading to a loss of accuracy. Moreover, we observe a good junction
(similar to the sequential case) of the global reconstructed distribution function in v = 0
where is located a decomposition point of our parallelization; the patches are joined to each
other by the Hermite boundary conditions which preserves an accurate global numerical
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approximation, even when the distribution function is very unstable (see on figure 4 at
t = 35 ω−1

p for example).
Moreover, to emphasize the influence of the approximation of the derivative on the re-

sults, we plot on figures 5 and 6 the evolution in time of the total relative mass. Comparisons
between the parallel and sequential case are presented in two different contexts; on figure 5,
all the derivatives are approximated through the following 4 order finite differences operator

s′(xi) '
−f(xi−2) + 8f(xi−1) − 8f(xi+1) + f(xi+2)

12h
,

where h is the step corresponding to the derivative direction. On figure 6, the derivatives
are replaced by the formula (16). We can observe that the finite differences approximation is
not well suited for the parallel implementation since the total mass presents some important
oscillations from t ' 20 ω−1

p , these fluctuations becoming greater when time increases.
On the contrary, the use of cubic spline approximation with 21 points leads to a mass
conservation which is very similar to the mass conservation occuring in the sequential case.
Let us remark that the use of finite differences or cubic spline approximation does not affect
the mass conservation in the sequential case.

6.2 Two stream instability

In this subsection, we solve the Vlasov-Poisson equation considering the following initial
datum

f(0, x, v) =
1√
2π

v2 exp(−v2/2)(1 + α cos(kx)), (x, v) ∈ [0, 2π/k]× IR,

where the amplitude of the perturbation is α = 0.05, the number of wave is k = 0.5, and
vmax is taken equal to 9. The number of mesh points is Nx = 128 in space and to Nv = 128
in velocity to get a good accuracy. The final time is T = 500 ω−1

p .
In this model, two streams of charged particles encounter each other in the physical space

with opposite velocities (see [3] for more details). When evolving in time, a perturbation
occurs and grows rapidly. In the phase space, this perturbation corresponds to a vortex
creation at the center of the computational domain.

On figures 7 and 8, we plot the time evolution of the distribution function in the phase
space in the parallel case (4 patches equally decompose the phase space domain). We observe
at time t ' 10 ω−1

p (where ωp is the plasma frequency) vortex creation which is associated
to trapped particles. From t ' 10 ω−1

p until t ' 20 ω−1
p , the instability grows rapidly and a

hole appears. After t ' 20 ω−1
p , the trapped particles oscillate in the electrostatic potential

and the vortex rotates periodically. These remarks are in good agreement with the results
available in [2, 11].

This simulation is quite interesting since the hole has to stay at the middle of the com-
putational domain during all the simulation; a displacement of this centered vortex can
occur due to a failing numerical resolution for large times. Here again, the good mass con-
servation depends on the derivative approximation, as explained previously; in particular,
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Figure 3: Electric energy as a function of time for the strong Landau damping. Comparison
between the sequential and the parallel case. k=0.5 and Nx=Nv=128. An almost “exact”
solution (512× 1024 points) is plotted for comparison.
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Figure 4: Time development of the spatially integrated distribution function for the strong
Landau damping. Parallel case. Nx = Nv = 128.
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Figure 5: Comparison between the sequential and parallel case for the total relative mass
conservation as a function of time, for the strong Landau damping. The finite differences
approximation of order 4 is used.
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Figure 6: Comparison between the sequential and parallel case for the total relative mass
conservation as a function of time, for the strong Landau damping. The cubic spline ap-
proximation with 21 points is used.
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Numbers of processors 1 4 8 16 32 64
Time (in s.) 40 9.4 4.7 2.4 1.2 0.7

Speedup 1 4.25 8.51 16.6 33.3 57.14

Table 2: Speedup for the two stream instability on a shared memory SGI machine. The
results corresponds to 512 × 512 points in the phase space; the simulation is stopped after
300 iterations.

we remarked that finite differences approximations (even centered ones) lead to uncorrected
results for large times (the hole comes out early). Moreover, the inherent precision of the
cubic spline interpolation allows to follow thin filaments developed by the solution; even if
the methodology which enables the parallelization is slightly different from the sequential
version, we observe that the parallelization does not affect the precision due to the spline
interpolation.

Finally, several tests have been implemented to evaluate the influence of the number of
processors on the numerical results and on the time simulation. The number of points in
each patch has to be important enough (for small patches, the overhead in computations to
estimate the derivatives becomes too large). The performance of the parallel algorithm is
summarized in the tables 2 and 3, for the two stream instability implemented with Nx =
Nv = 512 points. The experiments were conducted on two parallel machines: a cluster1

of 11 IBM nodes (16-way Power5 processors at 1.9 Ghz), a shared memory SGI machine2

of 512 processors (Origin 3800 with 500 Mhz processors). Let us mention that the results
presented in tables 2 and 3 do not take into account the diagnostics computations.

Our speedup is quite good since it takes into account the numerical solution of the Pois-
son equation. Indeed, after each two dimensional advection in the phase space, the Poisson
equation has to be globally solved (corrector part of the algorithm, see section 3). This step
is time consuming when the number of processor increases. Nevertheless, our methodology
focuses on the interpolation step. In particular, we are confident that higher dimensional
problems will improve the speedup since we will perform communication-computation over-
lap easily in the four dimensional cases. Let us remark that the decomposition of the global
domain does not affect the numerical results neither the length of the simulation.

7 Conclusion

In this paper, we introduced a local semi-Lagrangian method which has been applied to
the Vlasov-Poisson equation. The methodology seems to present a good behaviour when it
is tested on standard plasma configurations. Indeed, the numerical results show the good

1The IBM machine belongs to the M3PEC group, Bordeaux 1 University
2The SGI machine is located at Montpellier, France, at the computing center CINES

http://www.cines.fr
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Figure 7: Evolution of the distribution function f in the phase space, with Nx = 128 and
Nv = 128 in the parallel case (4 processors are used), for the two stream instability. (a)
t = 0 ω−1

p , (b) t = 10 ω−1
p , (c) t = 16 ω−1

p , (d) t = 20 ω−1
p , (e) t = 26 ω−1

p , (f) t = 30 ω−1
p .
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Figure 8: Evolution of the distribution function f in the phase space, with Nx = 128 and
Nv = 128 in the parallel case (4 processors are used), for the two stream instability. (g) t =
50 ω−1

p , (h) t = 100 ω−1
p , (i) t = 200 ω−1

p , (j) t = 500 ω−1
p .
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Numbers of processors 1 4 8 16 32 64
Time (in s.) 89.2 19.4 9.7 4.9 2.6 1.6

Speedup 1 4.59 9.19 18.2 34.3 55.75

Table 3: Speedup for the two stream instability on a cluster of 11 IBM nodes. The results
corresponds to 512 × 512 points in the phase space; the simulation is stopped after 300
iterations.

efficiency of our code for the two dimensional case, and its good scalability shown with up
to 64 processors.

Using the method we introduced here, we developed a fortran 90 module to locally
interpolate any advected function on a two dimensional domain. This module will then
enable us to deal with many problems occuring in plasma physics using the semi-Lagrangian
methodology. Future extensions will be devoted to the paraxial Vlasov model. Moreover,
coupling this methodology with the moving grid strategy can also be envisaged. Finally, a
new algorithm that overcomes the restriction on the time step has to be developed later on.
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