
HAL Id: inria-00078780
https://hal.inria.fr/inria-00078780

Submitted on 7 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative Threads and Preemptive Computations
Frédéric Boussinot, Frederic Dabrowski

To cite this version:
Frédéric Boussinot, Frederic Dabrowski. Cooperative Threads and Preemptive Computations. [Re-
search Report] 2006, pp.15. �inria-00078780�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50446502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00078780
https://hal.archives-ouvertes.fr

Cooperative Threads and Preemptive

Computations

Frédéric Dabrowski⋆ and Frédéric Boussinot⋆⋆

INRIA Sophia-Antipolis, B.P. 93, 06902 Sophia-Antipolis Cedex, France

Abstract. A two-level model for reactive systems programming is in-
troduced in which threads linked to the same scheduler are run coop-
eratively and have the possibility to escape from the scheduler control
to run preemptively. We present a type and effect system to enforce a
logical separation of the memory which ensures that, when running in
preemptive mode, threads do not interfere with those running in cooper-
ative mode. Thus, the atomicity property at the basis of the cooperative
model is preserved.

1 Introduction

Intuitively, a reactive program (RP) reacts to activations coming from the en-
vironment. In general, a RP is not supposed to globally terminate. However, a
RP which, in response to an activation, does not terminate its reaction is erro-
neous as it becomes unable to process the next activations (it cannot anymore be
called reactive in this case). From this point of view, a RP is a non-terminating
program, all reactions of which terminate.

To be effective, reaction time should not increase forever: a system with a
reaction of 1 second in response to the first activation, of 2 seconds in response
to the second activation, and so on, is clearly unacceptable from a reactivity
point of view.

Among reactive programs are those for embedded and/or safety critical sys-
tems. A crucial question concerning these programs is: how to ensure their reac-
tivity? The work presented here originated from a line of research on synchronous
languages [12], in the version of reactive programming described in [1]; it is part
of a more global work [3], the purpose of which is to provide static analysis tools
to guarantee the reactivity of programs in the context of concurrency.

The decomposition in several concurrent activities often simplifies the task of
programming complex systems: concurrency is an important tool for modularity.
From the modulartity point of view, it is natural to demand that the execution
of a sequential code fragment remains atomic from a logical point of view, when
put in a concurrent context; we call this property preservation of the semantics
of sequentiality.

⋆ with support from ACI CRISS
⋆⋆ with support from ACI ALIDECS

In this paper, we consider a thread-based model for reactive programming.
This model combines the cooperative and preemptive approaches, and is equipped
with a type system which tests for the preservation of the semantics of sequential-
ity. We do not consider here the issue of termination of reactions, nor the bounds
for computations during reactions, which are presently under investigation (they
are discussed in the conclusion).

Having given the context and the motivation of our work, let us now describe
in more detail the computing model considered.

We consider a two stage model: Several schedulers are run preemptively and
are executing threads linked to them. Threads linked to the same scheduler
are executed cooperatively and communicate using a common memory. Threads
can dynamically go from one scheduler to another one (this can be seen as an
elementary form of thread migration).

We introduce the possibility for a thread to temporarily unlink from the
scheduler to which it is linked, in order to perform an asynchronous autonomous
computation. This can be seen as a special case of migration to a dedicated
scheduler. After having performed the asynchronous task, the unlinked thread
re-links to the initial scheduler and returns to the cooperative mode of execution.

Let us justify the two-level structure of the model. First, we advocate cooper-
ative concurrency, because of its clear and precise semantics. Moreover, coopera-
tivity achieves the preservation of the semantics of sequentiality, which is part of
our goal. The traditional criticism made to cooperative threads is that absence
of cooperation from one thread blocks the whole system. Note that this criticism
does not hold in our context, as we mandatorily ask for termination of reactions
which entails cooperativity. Second, we know that cooperative concurrency is not
appropriate to deal with some constructs (for example, input/output) which are
blocking by nature. We also know that some contexts need some kind of preemp-
tive behaviors, for example when some hardware signals (e.g. interrupts) have
to be immediately processed. For these reasons, a preemptive level is introduced
in the computing model.

In the paper, we statically check that in programs the semantics of the se-
quential composition is preserved despite the preemptive level. More precisely,
we consider a simplified model with a unique scheduler in which threads are
allowed to unlink. We claim that the main issues concerning the combination of
preemption and cooperation are still captured in this simplified model. We ba-
sically show that one can partition the memory in regions in a way that forbids
an unlinked thread to interfere with the other threads.

We introduce a type and effect system which enforces a separation of the
memory into: (1) a public area which may be used by all threads, but only when
linked to the scheduler and (2) private areas, one for each thread; the private
area of a thread is only accessible by it, either when linked or when unlinked. We
rely on regions to distinguish among sharable and unsharable memory locations
and we introduce constraints on the creation of memory locations which ensure
the separation of the distinct private areas. We rely on effects to ensure that an
unlinked thread only has access to unsharable memory locations.

Section 2 introduces the language for programming threads. In section 3, we
present the type and effect system which ensures the desired separation property
of the memory. In section 4, we prove the correction of the system. Finally, after
considering related work in section 5, we conclude in section 6 and sketch future
developments.

2 Language

We introduce a small language for programming cooperative threads, provid-
ing recursive functions based on pattern-matching, dynamic thread creation and
computations in preemptive mode. Intuitively, a cooperative thread in preemp-
tive mode escapes from the cooperative scheduling and acts as a preemptive
thread. Its evaluation interleaves with the evaluation of other threads.

2.1 Syntax

We assume two countable sets of memory location names: Ls (sharable memory
locations) and Lu (unsharable memory locations). We note L = Ls ∪ Lu.

Definition 1. A program P is a triple (C,F , defs) where C (the constructors)
and F (the function symbols) are disjoint finite sets of symbols and defs is
a finite set of equations. An equation has the shape f(p1, . . . , pn) = e where
f ∈ F , p1, . . . , pn are patterns and e is a static expression (i.e, not built with
memory location names) such that fv(e) ⊆ var(p1, . . . , pn). For c ∈ C, f ∈ F
ρ ∈ {s, u} and l ∈ L, patterns, values and expressions are defined by the following
grammars:

p ::= x | c(p, . . . , p) (patterns)
v ::= c(v, . . . , v) | l (values)
e ::= x | c(e, . . . , e) | f(e, . . . , e)

| let x = e in e | refρ(e) | get(e) | set(e, e)
| thread{f(e, . . . , e)} | unlink{e} | l (expressions)

Here, fv(e) (resp. var(p1, . . . , pn)) is the set of free variables (resp. variables)
occurring in e (resp. p1, . . . , pn). We always assume that for all function symbol
f , patterns do not overlap, i.e at most one equation can be used for a reduction.
We also assume a symbol main ∈ F of arity n ≥ 0 and a symbol () of arity 0
∈ C. From now on, for the sake of simplicity, we will identify main and P .

Intuitively, () is the single value of a type unit denoting side effects and main is
the first function evaluated when the program P runs. The basic policy for the
scheduling of threads is cooperative: one of the threads is elected and reduced
until it returns the control to the scheduler. This happens either because it
terminates, or because it explicitly requires to escape the cooperative scheduling
policy by evaluating unlink{e}. A preemptive scheduling policy is used for the
evaluation of e. Each global reduction consists then in a non-deterministic choice

between a reduction of the elected cooperative thread or a reduction of one of the
escaped threads. By evaluating thread{f(e1, . . . , en)}, a new thread is created
which evaluates f(e1, . . . , en). The evaluation of refρ(v) creates a new memory
location with a name l ∈ Lρ and the initial value v. Here ρ ∈ {s, u} should
simply be seen as a typing annotation. The intuitive meaning of s (resp. u) is
that the newly created memory location should be sharable (resp. unsharable).
The evaluation of get(l) gives the value currently held at l. The evaluation of
set(l, v) updates the content of l with v. As usual, the evaluation let x = e in e′

is the evaluation of e′ where x is replaced by the value denoted by e.

2.2 Dynamic Semantics

We formalize the semantics of the language introduced above. We assume a
countable set T of thread names.

Definition 2. An assignment is a mapping O : Lu → T such that for all t ∈ T ,
the set O−1(t) = {l | O(l) = t} is infinite and O−1(t) ∩ O−1(t′) = ∅ as soon
as t 6= t′ 1. A thread (of a program P) is a couple (e, t) where e is a closed
expression (without free variables) built with constructors and function symbols
of P and t ∈ T ; we will use the notation et instead of (e, t).

We define actions which, for each read or write access, capture the name and
the mode (co for cooperative and pr for preemptive) of the thread performing
it.

Definition 3. An action has the shape access(t, α, l) where t ∈ T , α ∈ {co, pr}
and l ∈ L. A store is a partial function from memory locations to values. We note
S[l := v] the store such that S[l := v](l′) = S(l′) if l′ 6= l and S[l := v](l) = v.
We note Dom(S) the domain of S. We note S ∪ {l 7→ v} for the store which
maps l to v and which is equal to S on the domain of S.

A (read or write) access performed by a thread t on a memory location l produces
an action access(t, co, l) in cooperative mode and an action access(t, pr, l) in
preemptive mode.

In order to define the election of the thread to be executed by the scheduler,
we introduce the notion of marking of a set of threads; intuitively, a marking of
T is T in which one of the threads has been choosen.

Definition 4. A marking of a set of threads T is either the empty marking ǫ if
T = ∅, or a pair (T, t) where et ∈ T . We define a choice operator ↑ which, given
a set of threads, non deterministically chooses one of its markings.

If (T, t) is a marking of T , we use the notation et · T ′, where T ′ = T\et, instead
of (T, t) to make the marked thread explicit. Given a set of threads T , we note
|T | a possible marking of T . We note |T |0, |T |1, . . . when several markings of T

are to be considered.

1 Given a countable set A, it is always possible to find a countable sequence A1, A2, . . .
such Ai ⊆ A, Ai is a countable set, and Ai ∩ Aj = ∅ for all i 6= j.

Definition 5. A state (of a program P) is a tuple |Tco|, Tpr, S,A where Tco and
Tpr are sets of threads, S is a store, and A is a set of actions. The initial state of
a program P = (C,F , defs) fed with inputs v1, . . . , vn is P (v1, . . . , vn)t · ∅, ∅, ∅, ∅
where t ∈ T .

We define the operational semantics of the language as a state transformation.
It is a call-by-value semantics and the evaluation order is, as usual, specified by
means of evaluation contexts.

Definition 6. An evaluation context E is a one-hole context. Evaluation con-
texts are defined by the following grammar

E ::= [] | c(v,E, e) | f(v,E, e) | let x = E in e

| refρ(E) | get(E) | set(E, e) | set(v,E)
| thread{f(v,E, e)}

where v (resp. e) stands for a list of values (resp. expressions). A redex 2 is an
expression defined by the following grammar:

r ::= f(v1, . . . , vn) | let x = v in e | refρ(v) | get(l) | set(l, v)
| thread{f(v1, . . . , vn)} | unlink{e}

Lemma 1. For all closed expression e which is not a value, there exists an eval-
uation context E and a redex r such that e = E[r]. Moreover, this decomposition
is unique.

Definition 7. The reduction relation → on states is defined by rules of Fig. 1
and Fig. 2. We note →∗ the reflexive and transitive closure of →.

A reduction may either be performed by a thread in cooperative mode (rules
(co1), (co2), (co3) and (co4), or by a thread in preemptive mode (rules (pr1),
(pr2) and (pr3)). The semantics of thread creation is described by the rule (co2).
The evaluation of thread{f(e1, . . . , en)} terminates immediately, producing a
new thread which evaluates f(e1, . . . , en). A request for a preemptive computa-
tion simply switches the mode of the thread as expressed by the rule (co3) and
elects, when possible, a new cooperative thread. Once terminated, a thread is
simply dropped and a new thread, when possible, is elected (rule (co4)). Once
the evaluation of a preemptive computation terminates, the thread returns to
the cooperative mode, as expressed in rules (pr2) and (pr3). Finally, in both
modes, a thread may perform actions which do not depend on other threads
(rules (co1) and (pr1)). We use the auxiliary rules of Figure 2 to enhance read-
ability. The meaning of ⊢t,α e0, S → e1, S

′ is that a reduction of the thread et
0,

in mode α and with the store S, leads to the thread et
1 and to the store S′. A

function call simply returns the body in which parameters have been substituted
(rule (r1)). In the rule (r1), σ denotes a substitution from variables to values.

2 Actually, we should use the term pre-redex because such an expression may not be
reducible for an untyped program.

⊢t,co e, S, A →ε e′, S′, A′

E[e]t · Tco, Tpr, S, A → E[e′]t · Tco, Tpr, S′, A′
(co1)

t′ ∈ T , t′ fresh

E[thread{f(v1, . . . , vn)}]t · Tco, Tpr, S, A → E[()]t · Tco ∪ {f(v1, . . . , vn)t′}, Tpr, S, A
(co2)

E[unlink{e}]t · Tco, Tpr, S, A →↑Tco, Tpr ∪ {E[unlink{e}]t}, S, A
(co3)

()t · Tco, Tpr, S, A →↑Tco, Tpr, S, A
(co4)

et
0 ∈ Tpr e0 = E0[unlink{E1[e1]}] ⊢t,pr e1, S, A →ε e′1, S

′, A′

|Tco|, Tpr, S, A → |Tco|, Tpr\{et
0
} ∪ {E0[unlink{E1[e′1]}]

t}, S′, A′
(pr1)

et ∈ Tpr e = E[unlink{v}]

ǫ, Tpr, S, A →↑{E[v]t}, Tpr\{et}, S, A
(pr2)

et ∈ Tpr e = E[unlink{v}]

et0
0

· Tco, Tpr, S, A → et0
0

· (Tco ∪ {E[v]t}), Tpr\{et}, S, A
(pr3)

Fig. 1. Dynamic Semantics 1

As usual, we consider a substitution modulo α-renaming of variables bound by
a let construction. The let construction behaves as expected (rule (r2)). The
initialization of a new memory location l, with the value v by a thread t, chooses
a name in Lu if the memory location must be unsharable. A read or write access,
at a memory location l by a thread t in mode α, produces an action access(t, α, l)
(rules (r4) and (r5)).

3 Static Semantics

We introduce a type and effect system [10, 14] with constraints. Intuitively, this
system first introduces a distinction between two sets of memory locations, called
sharable and unsharable. The sharable memory locations are used by threads to
communicate and must not be accessed during preemptive computations. At the
opposite, the unsharable memory locations may be accessed in both cooperative
and preemptive modes. The system also introduces a distinction between un-
sharable memory locations owned by different threads. Regions (whose number
must be known statically) are not expressive enough to deal with the dynamic
nature of the second distinction. We use two regions s and u to distinguish among
sharable and unsharable memory locations respectively, and enforce the second
condition by means of constraints on communication between threads.

f(p1, . . . , pn) = e ∈ defs ∃σ.piσ = vi, i = 1, . . . , n

⊢t,α f(v1, . . . , vn), S, A →ε eσ, S, A
(r1)

⊢t,α let x = v in e, S, A →ε e[v/x], S, A
(r2)

l ∈ Ls, l fresh

⊢t,α refs(v), S, A →ε l, S ∪ {l 7→ v}, A
(r3)

l ∈ O−1(t), l fresh

⊢t,α refu(v), S, A →ε l, S ∪ {l 7→ v}, A
(r3′)

S(l) = v

⊢t,α get(l), S, A →ε v, S, A ∪ {access(t, α, l)}
(r4)

⊢t,α set(l, v), S, A →ε (), S[l := v], A ∪ {access(t, α, l), }
(r5)

Fig. 2. Dynamic Semantics 2

Definition 8. Let P = (C,F , defs). Let N be a set of type names. A N -typing
of P associates:

1. to each constructor c ∈ C of arity n, a type τ1 ∗ . . . ∗ τn → t for t ∈ N (noted
c : τ1 ∗ . . . ∗ τn → t);

2. to each function symbol f ∈ F of arity n, a type τ1 ∗ . . . ∗ τn
E,F
→ τ (noted

f : τ1 ∗ . . . ∗ τn
E,F
→ τ).

where

– τ, τ1, . . . , τn are types defined by the grammar τ ::= t | τ refρ for ρ ∈ {s, u}.
– E and F are effects defined by the grammar effect ::= access(ρ) | thread |

unlink, for ρ ∈ {s, u} and τ a type. We always assume that the constructor
() is assigned the type unit and that the function main is assigned a type of

the shape τ1 ∗ . . . ∗ τn
E,F
→ unit.

Each name t ∈ N defines a (possibly empty) domain Vt which is the set of values
c(v1, . . . , vn) for c : τ1 ∗ . . . ∗ τn → t and vi ∈ Vτi

. The set Vτ refρ
is the set of

memory locations in the region ρ, carrying values of type τ . For a value v of type
τi, we note v : τi.

In a function type τ1∗. . .∗τn
E,F
→ τ , E and F are sets of effects, denoting the latent

effects of f , i.e effects of the body of f . Intuitively, effects in E denote actions
performed in cooperative mode while effects in F denote actions performed in
preemptive mode.

In order to verify that threads do not transmit their unsharable memory
locations to other threads, we define a predicate which guarantees that no un-

sharable memory location is embedded in values of a given type. If the predicate
is verified for a type, values of this type may be safely communicated.

Definition 9. The predicate Sharable is defined by:

ρ = s

Sharable(τ refρ)

∀c : τ1 ∗ . . . ∗ τn → t ∈ D Sharable(τ1) · · ·Sharable(τn)

Sharable(t)

Definition 10. A set of actions E is said to safe, noted Safe(E), if and only
if all element of E has the shape access(t, α, l) ∈ E with l 6∈ Ls.

We introduce a notion of store model (a mapping from memory locations to
types), in order to be able to type expressions containing memory locations. It
is now possible to introduce the type and effect system we are going to study in
the following subsections.

Definition 11. A store model is a partial function from memory locations to
types, such that for all memory location l ∈ Ls we have Sharable(M(l)).

Definition 12. Let P be a program and D be a N -typing of P . A typing judge-
ment of P has the shape Γ ⊢M e : τ, E, F where Γ is a typing environment (a
mapping from variables to types), M is a store model and E and F are sets of
effects. An expression e is said to be well-typed according to a typing D, an en-
vironment Γ and a store model M if there exists a type τ and two sets of effects
E and F such that Γ ⊢M e : τ, E, F is derivable from the rules of Fig. 3.

As usual, when empty, Γ is simply omitted.

Definition 13. A store model M is a model of a store S, noted M |= S, if
for all l ∈ Dom(S) there exists a type τ such that M(l) = τ and ⊢M S(l) : τ .
A model M ′ is an extension of M if Dom(M) ⊆ Dom(M ′) and if for all l ∈
Dom(M),M ′(l) = M(l).

We note Ei,j for ∪
k=i,...,j

Ek.

A variable (resp. a memory location) does not produce effects (var) (resp.
(loc)). The application of a constructor or of a function symbol simply collects
the effects of the parameters and the latent effect. A read or write access on
a memory location of type τ refρ produces an effect access(ρ). The typing of
the let construction is standard. The typing rule for expressions of the shape
unlink{e} (unlink) requires the effects resulting of the typing of e to be safe,
that is to contain only actions performed on unsharable memory locations. It
moves cooperative effects to preemptive effects and records the presence of the
unlink construct by introducing the effect unlink in the cooperative effect. The
typing rule of expressions of the shape thread{f(e1, . . . , en)} requires the types
τi of each parameter ei to satisfy Sharable(τi) and introduces the effect thread

in the cooperative effects.

Γ, x : τ ⊢M x : τ, ∅, ∅
(var)

M(l) = τ, l ∈ Lρ

Γ ⊢M l : τ refρ, ∅, ∅
(loc)

c : τ1 ∗ . . . ∗ τn → τ ∈ D Γ ⊢M ei : τi, Ei, Fi

Γ ⊢M c(e1, . . . , en) : τ, E1,n, F1,n

(cons)

f : τ1 ∗ . . . ∗ τn
E,F
→ τ ∈ D Γ ⊢M ei : τi, Ei

Γ ⊢M f(e1, . . . , en) : τ, E1,n ∪ E, F1,n ∪ F
(call)

Γ ⊢M e : τ, E, F

Γ ⊢M refu e : τ refu, E, F
(ref1)

Γ ⊢M e : τ, E, F Sharable(τ)

Γ ⊢M refs e : τ refs, E, F
(ref2)

Γ ⊢M e : τ refρ, E, F

Γ ⊢M !e : τ, E ∪ {access(ρ)}, F
(read)

Γ ⊢M e1 : τ refρ, E1, F1 D; Γ ⊢M e2 : τ, E2, F2

Γ ⊢M e1 := e2 : unit, E1,2 ∪ {access(ρ)}, F1,2

(write)

Γ ⊢M e1 : τ1, E1, F1 Γ, x : τ1 ⊢M e2 : τ2, E2, F2

Γ ⊢M let x = e1 in e2 : τ2, E1,2, F1,2

(let)

Γ ⊢M e : τ, E, F Safe(E)

Γ ⊢M unlink{e} : τ, {unlink}, E ∪ F
(unlink)

f : τ1 ∗ . . . ∗ τn
E,F
→ unit ∈ D Γ ⊢M ei : τi, Ei, Fi Sharable(τi)

Γ ⊢M thread{f(e1, . . . , en)} : unit, E1,n ∪ E ∪ {thread}, F1,n ∪ F
(thread)

Fig. 3. Static Semantics

Definition 14. A program P is well-typed, if there exists a N -typing D of P

such that for all f : τ1, . . . , τn
E,F
→ τ ∈ D and for all equation f(p1, . . . , pn) =

e ∈ defs, there exists E′ ⊆ E and F ′ ⊆ F such that

p1 : τ1, . . . , pn : τn ⊢∅ e : τ, E′, F ′

where pi : τi ≡ x : τi if pi = x and pi : τi ≡ q1 : τ ′
1, . . . , qn : τ ′

n if pi = c(q1, . . . , qn)
and c : τ ′

1 ∗ . . . ∗ τ ′
n → τi ∈ D. Here, ∅ denotes the store model which is undefined

for all memory locations.

In order to make the properties of well-typed programs more readable, we extend
the definition of typing judgments to sets of threads by:

∀eti

i ∈ Tco ∪ Tpr ⊢M eti

i : unit, Ei, Fi

⊢M Tco, Tpr : unit, E1,n, F1,n

(system)

Examples: We consider the type nat defined by the constructors zero : nat

and succ : nat → nat. The function g, defined by g(x) = unlink{set(x, zero)},
admits the type nat refu → unit. Here the memory location must be private
because of an access in preemptive mode. The function main is not typable.
Indeed, the function call g(x) appears in a thread{} construct; but the type
of x denotes a private memory location. This program is rejected by the rule
(thread). It is correct to reject such a program. If it was not rejected, the newly
created thread could interfere (1) with the other one via this memory location.
If the intended meaning of this program is to allow the newly created thread to
perform some computations on a copy of the memory location, we can define
the function main′ which is well-typed. The expression unlink{()} can be seen
as the yield instruction used in thread-based languages.

main() = let x = refu(zero) in
thread{g(x)}; unlink{()}; set(x, succ(zero));(1) get(x)

main′() = let x = refu(zero) in
let y = refs(get(x)) in
thread{g(y)}; unlink{()}; set(x, succ(zero)); get(x)

Another example of program which is not typable is given below. Here the thread
which evaluates the function f creates a private memory location and transmit
it to the thread which evaluates the function g. As in the previous example, the
second thread may interfere (2) with the first one.

f(x) = let y = refu(zero) in
set(x, y); unlink{()}; set(y, succ(zero));(2) get(y)

g(x) = let z = get(x) in unlink{set(z, zero)}

main() = let x = refs(refs(zero)) in thread{f(x)}; thread{g(x)}

4 Confluence

We give a formal definition of the atomicity hypothesis for our language and
prove that it is satisfied by well-typed programs. Intuitively, this property guar-
antees that computations performed by a thread running in cooperative mode
do not depend on other threads. Note that a purely cooperative framework al-
ways satisfies this hypothesis. More precisely, the non-deterministic choices of
the scheduler should not introduce non-determinism (up-to cooperation).

Definition 15. A program P satisfies the atomicity hypothesis if for all state
St = |Tco|, Tpr, S,A of P , if Tco 6= ∅, St → St1 and St → St2 and if none of the
reductions is an instance of one of the rules (co3) or (co4) then there exist some
states St3 and St4, equal up to a renaming of threads and memory locations,
such that St1 → St3 and St2 → St4.

To prove that well-typed programs verify the atomicity hypothesis of the coop-
erative model, we need some auxiliary results. First, we prove the usual property
of subject reduction. Second, we prove that effects are a correct approximation
of actions. Third, we prove that any action performed by a thread during a pre-
emptive computation does not involve a sharable memory location. Fourth, we
prove that threads do not share their unsharable memory locations. Finally, we
we will be able to conclude that the desired property is satisfied.

4.1 Subject Reduction

In the presence of effects, the subject reduction property must also ensure that
reductions do not introduce new effects.

Proposition 1. Let P : τ1 ∗ . . . ∗ τn
E,F
→ unit be a well-typed program and let

v1 : τ1, . . . , vn : τn be some values. If P (v1, . . . , vn)t · ∅, ∅, ∅, ∅ →∗ |Tco|, Tpr, S,A

then, for all model M of S, we have ⊢M Tco, Tpr : unit, E′, F ′, with E′ ⊆ E and
F ′ ⊆ F .

4.2 Correction

The effects introduced by the typing rules are correct approximations of the ac-
tions performed during the evaluation. In order to express this property formally,
we need a relation between actions and effects.

Definition 16. We note ⊢ A : E,F if and only if for all t ∈ T , l ∈ Lρ we have:

∀access(t, co, l) ∈ A. access(ρ) ∈ E

∀access(t, pr, l) ∈ A. access(ρ) ∈ F

Lemma 2. Let P be a well-typed program, let |Tco|, Tpr, S,A be a state of P and
let E and F be some effects such that ⊢ A : E,F . If ⊢M Tco, Tpr : unit, E′, F ′

for a model M of S, and if |Tco|, Tpr, S,A → |Tco
′|, Tpr

′, S′, A′, then ⊢ A′ :
E ∪ E′, F ∪ F ′.

Proposition 2. Let P : τ1 ∗ . . . ∗ τn
E,F
→ unit be a well-typed program and let

v1 : τ1, . . . , vn : τn be some values. If P (v1, . . . , vn)t · ∅, ∅, ∅, ∅ →∗ |Tco|, Tpr, S,A

then we have ⊢ A : E,F .

4.3 Privacy

In this subsection, we prove that unsharable memory locations are effectively
not shared by threads created by well-typed programs. Our goal is to prove
that a thread has only access to the sharable memory locations and to its own
unsharable memory locations. Formally, if the memory location concerned with
an action is unsharable, then this action has been performed by its owner.

Definition 17. A set of actions A is coherent if for all t ∈ T , l ∈ O−1(t) and
access(t′, α, l) ∈ A, we have t = t′.

To prove that the consistency of the store is preserved through reductions, we
need some formal definitions to watch out the communications between threads.
First, we need to be able to extract the set of the memory locations held by a
thread or held at a memory location.

Definition 18. For all expression e, the set loc(e) of memory locations occur-
ring in e is defined by induction on e as follows:

loc(l) = {l}
loc(c(e1, . . . , en)) = loc(f(e1, . . . , en)) =

⋃
i loc(ei)

loc(let x = e1 in e2) = loc(set(e1, e2)) = loc(e1) ∪ loc(e2)
loc(refρ(e)) = loc(get(e)) = loc(unlink{e}) = loc(e)
loc(thread{f(e1, . . . , en}) =

⋃
i loc(ei)

Intuitively, the consistency property may only be preserved if a thread cannot
have access to the unsharable memory locations of the other threads. More
precisely, a thread should not: (1) held unsharable memory locations of other
threads, (2) transmit its own unsharable memory locations to other threads
and (3) be able to obtain unsharable memory locations of other threads by a
reduction. This is expressed more formally in the following definition.

Definition 19. A state |Tco|, Tpr, S,A is well-formed if

1. For all et ∈ Tco ∪ Tpr, we have loc(e) ⊆ Ls ∪ O−1(t).
2. For all l ∈ Dom(S) ∩ Ls, we have loc(S(l)) ⊆ Ls

3. For all t ∈ T , l ∈ Dom(S) ∩ O−1(t), we have loc(S(l)) ⊆ Ls ∪ O−1(t).

A first result is that these conditions are stable through reduction.

Proposition 3. Let P be a well-typed program. If |Tco|, Tpr, S,A is a well-
formed state of P and if |Tco|, Tpr, S,A → |Tco|

′, Tpr
′, S′, A′ then |Tco|

′, Tpr
′, S′, A′

is a well-formed state.

Finally, the following theorem states the first property of well-typed programs:
an unsharable memory location may only be accessed by its owner.

Theorem 1. Let P : τ1 ∗ . . . ∗ τn
E,F
→ unit be a well-typed program and let

v1 : τ1, . . . , vn : τn be some values. If P (v1, . . . , vn)t · ∅, ∅, ∅, ∅ →∗ |Tco|, Tpr, S,A

then A is coherent.

4.4 Safety of preemptive computations

The following theorem states the second property of well-typed programs: threads
do not access sharable memory locations while in preemptive mode. A first result
is that effects of well-typed program are safe.

Proposition 4. If P : τ1, . . . , τn
E,F
→ unit is a well-typed program then Safe(F).

The following theorem is a direct consequence of this result and of Proposition
2.

Theorem 2. Let P : τ1 ∗ . . . ∗ τn
E,F
→ unit be a well-typed program and let

v1 : τ1, . . . , vn : τn be some values. If P (v1, . . . , vn)t · ∅, ∅, ∅, ∅ →∗ |Tco|, Tpr, S,A

then for all t′ ⋃

l∈Ls

{access(t′, pr, l)} ∩ A = ∅

4.5 Validity of the atomicity hypothesis

Theorem 3. For well-typed programs, the atomicity hypothesis is satisfied.

Remark 1. A first consequence of Theorem 3 is that preemptive computations
steps might be delayed till (but before) the cooperation of the running cooper-
ative thread, thus reducing the number of context switches.

Remark 2. In the semantics, a thread may be in cooperative or in preemptive
mode. In a real implementation, it would be possible to map preemptive com-
putations to kernel-level threads. Thanks to Theorem 3 This would allow one
to benefit from the underlying system (possibly a multi-processor one). In that
case, the cooperative thread which asked for a preemptive computation should
appear as suspended until the termination of the preemptive computation.

Remark 3. Note that preemptive computations never prevent the cooperation
of the other threads. This is another consequence of Theorem 3. The effective
cooperation of a thread does not depend on preemptive computations running
concurrently. Of course, this supposes that the scheduler maintains some kind
of fairness between cooperative and preemptive modes.

4.6 Blocking primitives, non-cooperative tasks and efficiency

Blocking primitives should only be used in preemptive computations. This can
be easily obtained by introducing a new effect, say blocking, and by rejecting
programs which exhibit it as an action performed in cooperative mode. Another
interesting feature offered by preemptive computations is the possibility to per-
form non terminating computations which do not cooperate. This would be also
interesting in a language such as the one considered in [3] where the cooperation
is enforced by a static analysis: programs not recognized as being cooperative
could still be executed in a preemptive way.

5 Related Work

The Gnu-Pth[7] thread library designed for Unix platforms provides cooperative
scheduling in the context of POSIX/ANSI-C. Blocking I/O primitives have been
rewritten in order to work in a cooperative scheduling. This differs from our
proposal which gives users the freedom to safely code preemptive computations.

The Cyclone[9] language proposes a safe variant of C by limiting the use of
pointers. Technically, regions are used in order to control that a pointer is not

used outside its definition scope. An extension of Cyclone to multithreading is
proposed in [8]. The main difference with our approach is that only preemptive
threads are considered, controlled by locks and with possibilities of deadlocks.

The FairThreads model defines a framework to mix cooperative and pre-
emptive threads in C[6], Java[5], or Scheme[13]. A cooperative thread linked to
a scheduler can unlink from it to perform preemptive computations. This pro-
gramming model is close to the one we present here but is not concerned by
safety.

The ReactiveML[11] library introduces reactive programming in Objective
Caml[2]. Reactive programming is a variation of the cooperative model introduc-
ing a notion of logical time. However, preemptive computations are not presently
covered by ReactiveML, thus restricting it to purely cooperative systems.

6 Conclusion

In this paper, we have introduced a small language for programming cooperative
threads in which one can define preemptive computations to handle tasks that
are not suited to a purely cooperative framework. We have introduced a type
and effect system which ensures that preemptive computations do not interfere
with the threads running in cooperative mode. This work is part of a more global
work which focuses on the notion of reactivity. The model we consider here is a
subset of the full model but we think that it captures the main difficulties raised
by the preemptive scheduling at the upper level (Indeed, in the full model, an
unlinked thread can be seen as a thread running alone on a special dedicated
scheduler). We are currently working both on the design of a type inference
algorithm for the type system presented here and on its extension to the full
model. Meanwhile, we are investigating the notion of reactivity for this model.
In particular, we have developed static analysis tools to ensure the reactivity
of programs [4, 3]. Using techniques borrowed from term rewriting systems, we
showed that polynomial-time termination of reactions can be ensured.

References

1. http://www.inria.fr/mimosa/rp.

2. The Objective Caml System. http://www.ocaml.org.

3. R.M. Amadio and F. Dabrowski. Feasible reactivity for synchronous cooperative
threads. presented at the workshop Expressiveness in Concurrency, San Francisco,
to appear, 2005.

4. Roberto M. Amadio and Silvano Dal Zilio. Resource control for synchronous co-
operative threads. In Proc. of CONCUR 2004 – 15th International Conference on
Concurrency Theory, pages 68–82. Lecture Notes in Computer Science, Vol. 3170,
Springer-Verlag, 2004.

5. F. Boussinot. Java Fair Threads. Inria research report, RR-4139, 2001.

6. F. Boussinot. FairThreads: mixing cooperative and preemptive threads in C. Con-
currency and Computation-Practice and Experience, in press, 2005.

7. Ralf S. Engelschall. Portable Multithreading. Proc. USENIX Annual Technical
Conference, San Diego, California, 2000.

8. Dan Grossman. Type-safe multithreading in Cyclone. In TLDI ’03: Proceedings
of the 2003 ACM SIGPLAN international works hop on Types in languages design
and implementation, pages 13–25, New York, NY, USA, 2003. ACM Press.

9. Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Tech-
nical Conference, General Track, pages 275–288, 2002.

10. J. M. Lucassen. Types and effects: Towards the integration of functional and imper-
ative programming. In Ph.D. Thesis MIT/LCS/TR-408. Massachusetts Institute
of Technology, 1987.

11. Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to ML. In ACM
International conference on Principles and Practice of Declarative Programming
(PPDP’05), Lisbon, Portugal, July 2005.

12. N. Halbwachs. Synchronous programming of reactive systems. 1993.
13. Manuel Serrano, Frédéric Boussinot, and Bernard Serpette. Scheme Fair Threads.

In PPDP ’04: Proceedings of the 6th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 203–214, New York, NY,
USA, 2004. ACM Press.

14. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Seventh
Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California,
pages 162–173, Los Alamitos, California, 1992. IEEE Computer Society Press.

