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Abstract

The ModEasy project seeks to develop techniques and
software tools to aid in the development of reliable micro-
processor based electronic (embedded) systems using ad-
vanced development and verification systems. The tools are
to be evaluated in practical domains such as the automotive
sector for reactive cruise control and anti-collision radar.
We choose to define specific IPs using FPGA techniques to
cover this application domain. This paper presents the im-
plementation of such a complex and safety application on a
single FPGA. The target system is composed of a reactive
cruise control, a detection radar and the associated treat-
ments.

1 Introduction and Motivation

The ModEasy project [1] seeks to develop techniques
and software tools to aid in the development of reliable
microprocessor based electronic (embedded) systems using
advanced development and verification systems. The tools
are to be evaluated in practical domains such as the auto-
motive sector for reactive cruise control and anti-collision
radar but are envisaged to be applicable for generic em-
bedded systems in any safety and mission critical applica-
tions in the wider industrial domain. The project seeks to
reduce development and costs while maintaining existing
high dependability and safety levels as embedded systems
become more complex for many existing and new products.
To cover this application domain, we foresee two different
solutions: a System on Chip (SOC) implementation of dif-
ferent Intellectual Property (IPs), and a full integration on
FPGA component.

SoC design covers a lot of different viewpoints including
the application modeling by the aggregation of functional
components, the assembly of existing physical components,
the verification and the simulation of the modeled system,
the synthesis of a complete end-product integrated into a
single chip. As a rule, a SoC includes programmable pro-

cessors, memory units (data/instruction), interconnection
mechanisms and hardware functional units (Digital Signal
Processors (DSP) and Application-Specific Integrated Cir-
cuits (ASIC)). These components can be generated for a
particular application; they can also be obtained from IP
providers. For the safety systems we target, such solution
seems inappropriate because of the cost and availability of
IPs for this system. In ModEasy project, we choose to de-
fine specific IPs using FPGA techniques. Metamodel with
behavior specifications has to be available from the higher
level of modeling. Using model driven engineering we will
automatically produce lower level (Register Transfer Level)
via successive refinements of the models and compilation
techniques.

With this particular approach a single low cost and flex-
ible FPGA has to include IPs for dedicated pieces of the
application, general purpose processors to execute elemen-
tary tasks and memory to store data. All these parts have to
coexist inside the same component and interact to proceed
the embedded system.

In this paper, we present the implementation of such
complex and safety application on a single FPGA. The tar-
get system is composed of a reactive cruise control, a detec-
tion radar and the associated treatments.

The paper is organized as follows: section 2 describes
the global system. Section 3 describes the automaton which
controls and regulates the vehicle speed. Section 4 presents
the obstacle detection algorithm we implemented. Section 5
introduces the restitution and the analysis of the environ-
ment issued from the radar detection. Moreover, we intro-
duce a way to link both radar and regulation from the envi-
ronment analysis. Finally, Section 6 concludes this article.

2 Global System Description

Anti-collision radar and the reactive cruise control re-
quire information external from the system. The driver has
no direct access to the anti-collision radar system, which
requires data from the radar (placed at the front of the vehi-
cle). The anti-collision system can decide to slow down the



vehicle speed using brakes. Thanks to an interface placed
on the vehicle board, the driver is allowed to switch between
the several modes proposed by the cruise control. The
cruise control permits the regulation of the vehicle speed
via the accelerator pedal. In both cases, the vehicle behav-
ior information (speed, acceleration. . . ) is necessary. The
study of a such system can be very important since it makes
possible to considerably increase the drivers safety.

Figure 1 gives a simplified UML view on the studied
FPGA component which mainly contains four basic ele-
ments. The Intelligent Cruise Control with GPS (ICCG),
component regulates the car speed; the Detection
component detects obstacles in front of the car; the
Generator component generates radar waves and speci-
fies the time base for the system; and the Processor com-
ponent reconstitutes the car external environment provided
by the radar, and analyzes this environment for making de-
cisions and sending information to the ICCG system.

2.1 ICCG Component

The ICCG system represents a significant automatic con-
tribution in the automotive field. It allows the control of a
car speed depending on the radar information and on its po-
sition given by a GPS. The ICCG system can be seen as an
electronic device which facilitates the control of a car. It
informs the driver about the various changes of speed limits
and, in some cases, obliges him to respect them by control-
ling the accelerator pedals Car Throttle.

2.2 Generator Component

The Generator component generates the emitted
wave, send to the radar emitter, according to a particular
reference code which is transmitted to the Detection
component. The comparison of this reference code with
the future received wave will be allow to detect obsta-
cles. The wave is periodically generated according to a
time base (counter in the figure 1) which is recovered
by Processor. The Generator component is not fully
described in this paper, it is based on works done in [7].

2.3 Detection Component

An embedded detection radar is a system which emits
a wave (according to the Generator stage in our case).
When the emitted wave hits an obstacle (other vehicles, ani-
mals. . . ), it is re-emitted in the direction of the vehicle. The
system compares the received wave with the emitted one,
searching for similarities resulting from the presence of an
obstacle in front of the car.

Thus, detecting an obstacle comes down to one task: per-
forming the correlation of an emitted and a received wave.

A well-known correlation algorithm fails to satisfy the fol-
lowing constraint [5]: according to the characteristics of
the radar, the maximum detection distance of such an al-
gorithm is almost 100 m in favorable conditions [7]. In
this paper, we propose a new algorithm, based on Tugnait’s
work [13, 14], which increases the maximum detection dis-
tance. This algorithm is based on Higher Order Statistics
formulation [13].

2.4 Processor Component

By computing the time spent between the emission and
the reception of the wave, the system can determine the dis-
tance between the car and the obstacle. The periodically
computation of this distance allows the system to estimate
the relative speed of the car and the obstacle. Similarly, the
system can determinate the acceleration using two or more
speed estimations. All these tasks permit the environment
reconstitution from the radar point of view.

Using this reconstitution, it is feasible to prevent col-
lision and to bypass it by slowing down (braking) the
car. Moreover, a tracking algorithm may compute speed
of the others car and permits to safely follow the previ-
ous car, in a convoy mode. These tasks remain in the
EnvironmentAnalysis sub-stage of the figure 1.

2.5 FPGA Implementation

The obstacle detection and the ICCG are placed in
an embedded system context, where resources are lim-
ited. This leads us to use FPGA technologies, which of-
fer flexible solutions for the implementation of the different
stages composing the whole of the system. Moreover, FP-
GAs allow us to efficiently implement a complete system,
where intensive signal processing tasks are implemented
as hardware blocks and sequential computations (distance,
speed. . . ) are performed on a soft-core processor (see Fig-
ure 1).

3 Intelligent Cruise Control with GPS

Globally, the ICCG system combines both control and
data processing, and it is composed of two main parts:
ControlAutomaton and ModeComputation. The
ControlAutomaton part on figure 2 represents the
automaton which controls the ICCG system by choos-
ing the appropriated running mode to activate. The
ModeComputation part represents the different run-
ning modes of the system which can operate in six dif-
ferent modes: Alarm, Limit, Cruise, Limit GPS,
Cruise GPS, and Cruise Tracking, as specified in
the dashed box of the figure 2.
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Figure 1. Schematic view of the whole system on FPGA

The interaction with the system and the activation or de-
activation of the different modes are done according to input
information provided by the environment. These informa-
tion are given by the GPS system, the driver, the car posi-
tion, and the radar system. As result, the ICCG system re-
acts and provides information on the car speed. In order to
keep readable the automaton, all transactions are not shown
on the figure 2.

3.1 Control Automaton

Car_Throttle_Measured

Car_Speed_Measured

Car_Throttle_ComputeCar_Speed

State (from ControlAutomaton)
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Cruise_Tracking
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Others
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Regulator_Throttle

Others

Corrector

Figure 3. Computation Mode of the states us-
ing cruise regulation

The automaton shown on figure 2 permits the transac-
tion between the several modes of the ICCG system, and
activates the associated mode. The behavior of these modes

is described in the following.
The Alarm mode is only an informative mode. It in-

dicates the driver, by an audio or luminous signal, that the
allowed speed limit, given by a GPS, is exceeded. Neverthe-
less, the driver controls the car by accelerating or braking,
independently of its speed. The Cruise mode maintains
the car at a constant speed given by the driver. This speed
is not controlled via the accelerator pedal but rather by us-
ing a set of buttons. The Limit GPS mode is similar to
Limit mode, where the speed limit is the minimum of the
speed required by the driver and the one given by a GPS.
The Cruise GPS mode behaves similarly as the Cruise
mode, but the speed limit is calculated in the same way as
in Limit GPS mode. The Cruise Tracking mode re-
covers information produced by the radar system and ma-
nipulated by the processor to adjust the speed of the car
according to that of the car which precedes it. This mode is
particularly useful in the convoy case.

The others states of the automaton, represented outside
the dashed box, are used to guarantee the safety of the sys-
tem in some particular cases such as Limit GPS Fail,
Cruise Tracking Fail and Limit StdB.

3.2 Mode Computation

We have defined the different computation modes
according to the design methodology described in [9]
and [8]. We focus our study on the behavior of some
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Figure 2. Control automaton of the ICCG system

modes which permit the regulation of the car speed.
The concerned modes are Cruise, Cruise GPS and
Cruise Tracking.

The main part of this regulation system is the
Regulator Throttle, which computes the percent-
age Car Throttle Compute necessary to reach the
Car Speed from the Car Speed Measured. In others
words, it computes the pressure on the accelerator pedal re-
quired to reach or to maintain the vehicle at a given speed.

The current state of the control automaton stage
is evaluated in order to provide Car Speed and
Car Throttle. The Car Speed is the target speed of
the vehicle which can be Driver Speed, GPS Speed,
Tracking speed or Car Speed Measured. The
MIN function is not submitted to control and allows to
choose the minimum speed of that provided by the GPS and
the driver, in order to ensure the driver safety.

Some experimental simulation and verification processes
proved [10] the correct functionality of the ICCG system,
including both automaton and computation parts. Currently,
we are interested in its implementation on a FPGA.

4 Obstacle Detection

According to the Detection step presented on fig-
ure 1, detecting an obstacle is possible thanks to the com-
parison between the received wave and the emitted one. A

common correlation algorithm [4] performs this compari-
son and allows the detection of an obstacle located at 100 m
or less in front of the radar. Increasing the algorithm’s
signal-to-noise ratio (SNR) is equivalent to increasing its
maximum detection distance. This in turn helps to better
anticipate a collision. Several solutions exist to enhance the
SNR. One of them is the modification of the detection algo-
rithm.

We decide to implement a modified version of the third
Higher Order Statistic algorithm [13, 14]. We aim at in-
creasing the SNR and, in doing so, increasing the maximum
detection distance till 150 m. Other algorithms [3, 6, 15]
that propose to reduce the noise within the emitted signal
may be considered in the future.

4.1 Mathematical Formulation

The mathematical formulation of the Higher Order
Statistics (HOS) [13] algorithm is given by:

J32(i0) =

L−1
∑

j=0

[

1

N

N−1
∑

i=0

y(i) · c(i + 1) · c(i + j)

]

·

[

1

N

N−1
∑

i=0

y(i) · c(i + 1) · y(i + j + io)

]

(1)

The 1

N
factor normalizes the results. We do not take into

account this factor while implementing the algorithm. Thus,
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a reduced formula is:

J32(i0) =

L−1
∑

j=0

Cycc(j) · Cycy(j + i0) (2)

Cycc =

N−1
∑

i=0

y(i) · c(i + 1) · c(i + j) (3)

Cycy =

N−1
∑

i=0

y(i) · c(i + 1) · y(i + j) (4)

• N: The number of samples in the reference code. In our
case, we fix N to 1023 based on previous work [7].

• L: The maximum distance between peaks generated
by Cycc and Cycy. In our particular case, L is directly
equal to the maximum distance detection (in meter) we
are targeting: 150.

• c: The reference code [12] used to create the emitted
wave (to be more precise, the radar signal is modulated
with a reference code, and is continuously emitted)
generated by a Linear Feedback Shift Registers [11]
contained in the Generator step of the figure 1.

• y: The received wave (only noise if there is no obsta-
cle, reference code in addition of the noise otherwise).
Each sample of y is encoded using 4 bits (previous
studies have shown that it is a good trade-off between
precision and resources used) and is used N times [7].

4.2 Hardware Implementation

It has been shown in [2] that a hardware implementa-
tion of such an algorithm is much more efficient than the
software one. Thus, only the hardware implementation de-
scription is presented in this article.

The evaluation of the formula 5 is needed to compute
both Cycc(j) and Cycy(j). To optimize the implementa-
tion, this evaluation is done only once and then sent to both
Cycc and Cycy modules, as shown on figure 4.

s(i) = y(i) · c(i + 1) (5)

Three elements are required to compute Cycc: y(i),
c(i + 1), c(i + j). The last two are coded using 1 bit, and
can easily be implemented by a multiplexer. The last one,
y(i), uses 4 bits.

Cycy structure is similar to the Cycc one. However, its
implementation is much more complex. The difference is
that y(i + j) is needed. Since y(i + j) is a previous value
of the input signal (encoded using 4 bits, as opposed to the
1-bit encoding of c(i + j)), synthesizing this part of the
algorithm requires more resources than synthesizing Cycc.

Interrupt
s

Cycy

Cycc

J 3,2

Reference code

Received wave

c

y

Detection
Peak

Figure 4. Schematic view of the modified Tug-
nait algorithm

J3, 2(io) is a correlation. Since the two entry points of
this correlation are themselves results of previous correla-
tions, we can expect the synthesis to produce a large design.

Figure 5 shows the schematic view of our hardware im-
plementation of formula 1. The input point, marked 1 on
the figure 5, is the received wave, composed of the refer-
ence signal and the noise. Mark 2 is the signal produced by
the formula 4, while mark 3 is the result of the formula 3.
Both mark 2 and 3 permit output computation of the full al-
gorithm, marked 4. This signal is encoded on 40 bits. It is
not directly efficiently usable by a processor and a software
task, since the signal contains noise.

As we are targeting software tasks, it is easier to handle
interrupt which are directly associated to the obstacle detec-
tion. The role of the last stage of the figure 5 is to find the
right peak in the noise, and to generate an interrupt, marked
5 once found [7].

We have developed VHDL code corresponding to the
presented algorithm using compound approach. The com-
pound approach allows us to get a useful hierarchical view
of the system, and makes it possible to re-use some hard-
ware bloc, like the multiplication or the addition blocs, de-
scribed by a generic way in VHDL.

4.3 Algorithm Behavior

Simulation processes allow us to quickly evaluate the
algorithm’s behavior. In order to simulate the radar’s in-
puts, we have created an input signal, marked 1 in both
figures 5 and 6, composed of the reference code and of a
noise which increase with time. The noise function used
is based on a classical Gaussian form. Reference code and
noise are cyclically emitted, as in real conditions. This fact
explains the edges on mark 2 (produced by Cycy), 3 (from
Cycc) and 4 (J3, 2, the correlation results between Cycy

and Cycc). The mark 5 is a clean peak that can be sent to
the processor via an interrupt.

4.4 FPGA Implementation

The step following the algorithm behavior validation is
the implementation on a FPGA. We have to ensure that the
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Figure 5. Schematic view of the modified Tugnait algorithm hardware implementation

whole algorithm fits on the targeted FPGA, an Altera Stratix
2, containing 60,000 equivalent logic elements (LE).

The synthesis results of the full algorithm implementa-
tion are given on table 4.4. It can be observed that the de-
sign does not fit into the targeted FPGA. One of the main
reasons is the complexity of the multiplications. The com-
putation of the J3, 2 module from HOS algorithm requires
150 multiplications of a 15-bit operand by a 19-bit operand.
DSP blocks, included in FPGA, can be used to implement
some of the multiplications, but not all of them.

Table 1. Synthesis results of the modified
Tugnait algorithm implementation

Detection step Equivalent logic
elements used

s 8 184
Cycc 11 243
Cycy 33 749 100 953
J32 47 689

Peak detection 88

In order to implement the algorithm on the FPGA, we
developed a reduced version, based on average instead of
addition. This reduced version introduces a performance
decrease in the detection, which has not been estimated.
The reduced version requires approximately 40 000 equiv-
alent logic elements (LEs). However, for other FPGA, big
enough to support the whole algorithm, will be acquired in
order to do testing.

5 Software Tasks

This section describes the part of the global system pre-
sented in figure 1 which is implemented on the processor (it-
self implemented on a FPGA). In this processor, two kinds
of applications are implemented. The first one reconstitutes
the environment of the vehicle, and mainly use radar detec-
tion information. The second one analyzes the environment
in order to detect danger and to prevent collision.

5.1 Environment Reconstitution

The algorithm presented in the previous section produces
a signal in which an edge is generated whenever an obsta-
cle is detected. According to this detection, distances and
speeds can be computed in a sequential way. A soft-core
processor and a C program are enough efficient to do this
work.

Three elements are needed to compute the distance:

• an edge detection module, which generates interrupts
on the processor (Detection module developed in
section 4);

• a counter, which computes the wave course time
(Generator from figure 1);

• the radar direction, creating a 2-dimensional view of
the context in front of the vehicle equipped with the
radar.

Interrupts are used to detect edges. For each position,
edges and their associated distances are stored in mem-
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Figure 6. Simulation results of the modified Tugnait algorithm

ory. When the radar position changes, an average distance,
based on previously stored data, is computed.

When an object is detected, according to the algorithm
described in section 4, the processor stores relevant data
and compute distance. These distance information are writ-
ten to an output VGA screen and are directly associated to
the radar orientation. Sixteen different orientations of the
radar are possible and the distance is the only information
reported on the screen. However, precision of the environ-
ment restitution has been developed in order to get an adap-
tive precision concerning orientation (it is easy to use 64
different orientations for example).

The figure 7 shows an example of what is expected in
real condition tests. For these tests, a radar emulator gen-
erates a received wave y according to the picture shown on
the top of the figure. On the bottom of the figure, all objects
placed on the virtual line at a maximum of 150 meters are
detected. On the screen output, the column comprised be-
tween -1◦ and 2◦ corresponds to the car on the road in front
of the system detection. Others details appear, like the car
situated on the orientation limit of the radar.

The basic exploitation of the whole system including the
hardware and the software modules in this visualization on
a VGA screen allows to partially validate the behavior of
the global system.

In this section, we have shown that we are able to use a
processor to analyze the outputs of the algorithm presented
in section 4 and to restitute the environment. However, we
are still not able to anticipate a collision, because of no
analysis of the environment has been done. This concept
is treated in the following section.

150
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6−6

D
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ta
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ce
 (

m
)

0

60

Virtual line

VGA screen

Figure 7. VGA output screen

5.2 Environment Analysis

From the environment reconstitution, no decision can be
taken because no interpretation is done. In our system, the
interpretation of the environment results on the tracking of
different detected obstacles. These obstacles can be immov-
able, like a tree, or movable, like a car.

In order to anticipate a collision, prediction of the envi-
ronment must be computed, using complex filtering trans-
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formation. These filters require an important computation
power. A way to fit their needs is to implement them on a
multiprocessor architecture. We do not treat the filtering as-
pect on this paper, we are currently working on this subject.
We suppose that we are able to detect potential collision and
to prevent it by pushing the brake pedal.

Using tracking, computed by the processor, we can eas-
ily identify an object the car is following. If the object is
another car the driver is following, it is interesting to offer
to the driver the possibility to adjust the car speed accord-
ing to that of the previous car. This kind of system is useful
in convoy context, where all vehicle share the same des-
tination, and where security distance are rarely respected.
Thus, the algorithm we are currently working on shall be
able to provide the speed allowing to respect this distance.
This speed is computed in order to always keep a sufficient
safety distance, and its value is sent to the automaton, as
shown on the figure 1. The CruiseRadar signal contains
the Tracking Speed and the Tracking Fail infor-
mation (in case that no tracking is feasible, the signal is
activated).

6 Conclusion

One objective of the ModEasy project [1] is to develop
safety applications in the automotive domain. Within this
project, we have defined a reactive system which takes into
account four elements: driver controls, vehicle behavior
(speed. . . ), radar wave and GPS signals. From these inputs,
we target a partial control of the vehicle behavior, mainly an
emergency braking or a speed regulation. We have identi-
fied the different stages necessary for a safe behavior of the
system.

Braking the vehicle is possible thanks to the knowledge
of the immediate environment, provided by a radar. The
chosen detection algorithm allows a maximum distance de-
tection of 150 meters, whereas 100 meters is the maximum
distance offered by a classical one. The algorithm imple-
mentation needs important computation power and requires
a meticulous implementation. Based on this detection, the
environment reconstitution is possible. Using filters, the en-
vironment can be analyzed, allowing the anticipation of a
potential collision or the tracking of the vehicle followed
by the driver.

The complete system also includes an Intelligent Cruise
Control with GPS, implemented with an automaton. The
operating modes are accessible by the user, but there also
exist other modes which only depend on the car behavior.
The ICCG system permits a limitation or a regulation of the
vehicle speed, potentially using GPS signals. An original
operating mode takes into account radar wave interpretation
and allows the driver to regulate the car speed according
to the previous one. This operating mode is particularly

interesting in a convoy context.
We have validated each part of the global system and

implemented the whole on a single FPGA. The implemen-
tation of several modules requires both software and hard-
ware development. We are currently validating the global
system behavior by simulation, and plan to carry out tests
in real conditions.
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troducing control in the gaspard2 data-parallel metamodel:
Synchronous approach. Research Report 5794, INRIA, Jan.
2006.

[10] O. Labbani, J.-L. Dekeyser, and Éric Rutten. Separating
control and data flow: Methodology and automotive system
case study. Research Report 5832, INRIA, Feb. 2006.

[11] NASA. Linear feedback shift registers. Technical report,
NASA, 2002.

[12] W. Peterson and E. Weldon. Error-correcting codes. MIT
press, 1972.

[13] J. Tugnait. On time delay estimation with unknown spatially
correlated gaussian noise using fourth-order cumulants and
cross cumulants. In IEEE transaction on signal processing,
volume 39, pages 1258–1267, June 1991.

[14] J. Tugnait. Time delay estimation with unknown spatially
correlated gaussian noise. In IEEE transaction on signal
processing, volume 42, pages 549–558, feb 1993.

[15] M. R. W. Zhang. Nonparametric bispectrum-based time de-
lay estimations for multiple sensor data. In IEEE transaction
on signal processing, volume 39, pages 770–774, Mar. 1991.

8


